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Abstract. In this paper, the notion of a generalized Stonean BE-algebra is introduced. A set of
equivalent conditions is given for every quasi-complemented BE-algebra to become a general-
ized Stonean BE-algebra. A necessary and sufficient condition is stated for a self-distributive and
commutative BE-algebra to become a generalized Stonean BE-algebra. The concept of Stonean
filters is introduced and then generalized Stonean BE-algebras are characterized by Stonean fil-
ters. The notion of hyper Stonean BE-algebras is introduced and then a characterization theorem
in terms of prime filters is given.
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1. INTRODUCTION

The notion of BE-algebras was introduced and extensively studied by H.S. Kim
and Y.H. Kim in [3]. These classes of BE-algebras were introduced as a generaliz-
ation of the class of BCK-algebras of K. Iseki and S. Tanaka [2]. Some properties
of filters of BE-algebras were studied by S.S. Ahn and Y.H. Kim in [1] and by B.L.
Meng in [8]. In [12], A. Walendziak discussed some significant properties of com-
mutative BE-algebras. He also investigated the relationship between BE-algebras,
implicative algebras and J-algebras. In [8], Meng introduced the notion of prime fil-
ters in BCK-algebras, and then gave a description of the filter generated by a set, and
obtained some of fundamental properties of prime filters. Some properties of prime
ideals are investigated in BCK-algebras [2]. The first author studied some properties
of prime filters in BE-algebras. Also, the author extensively studied the algebraic as
well as the topological properties of prime filters of commutative BE-algebras [11].
The notion of dual annihilators of commutative BE-algebra is introduced and stud-
ied extensively the properties of these dual annihilators [4]. In 2020, the notions of
regular filters [6] and O-filters [5] in commutative BE-algebras are introduced and
studied the interconnection between those two special classes of filters. A. Soleimani
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Nasab and A. Borumand Saeid introduced the notion of Stonean implicative filters
in Hilbert algebras and characterized the Stonean Hilbert algebras with the help of
Stonean implicative filters [9].

In this paper, certain properties of dual annihilator filters, prime filters, and min-
imal prime filters of commutative BE-algebras are investigated. The notion of gen-
eralized Stonean BE-algebras is introduced. It is proved that a self-distributive and
commutative BE-algebra will become a generalized Stonean BE-algebra whenever
every prime filter of the BE-algebra is minimal. It is observed that every general-
ized Stonean BE-algebra is a quasi-complemented BE-algebra, the other direction is
not always true. However, a set of equivalent conditions is given for every quasi-
complemented BE-algebra to become a generalized Stonean BE-algebra. Some ne-
cessary conditions of generalized Stonean BE-algebras are derived. Generalized
Stonean BE-algebras are also characterized with the help of σ-filters, dual annihilator
filters and regular filters.

Filters are important substructures in a BE-algebra and play an important role. It
is well understood that filters are the kernels of congruences. Filter theory is crucial
in the study of any class of logical algebras. From a logical standpoint, different fil-
ters correspond to different sets of valid formulas in an appropriate logic. Designing
various types of filters in some logical algebra, on the other hand, is also algebraic-
ally interesting. With this motivation, we introduce the concept of Stonean filters is
introduced in commutative BE-algebras. Some sufficient conditions are derived for
every filter of a self-distributive and commutative BE-algebra to become a Stonean
filter. The notion of hyper Stonean BE-algebras is introduced and observed that every
hyper Stonean BE-algebra is generalized Stonean BE-algebra. Though every gener-
alized Stonean BE-algebra need not to be a hyper BE-algebra, however, a sufficient
condition is derived for every generalized Stonean BE-algebra to become a hyper
BE-algebra. The class of hyper Stonean BE-algebras is characterized with the help
of prime filters of self-distributive and commutative BE-algebras. It is observed that
every maximal filter of a self-distributive and commutative BE-algebra is Stonean
filter. Some equivalent conditions are given for every filter of a commutative BE-
algebra to become a Stonean filter which leads to a characterization of generalized
Stonean BE-algebras. Finally, an extension property of Stonean filters of commutat-
ive BE-algebras is derived.

2. PRELIMINARIES

In this section, we present certain definitions and results which are taken mostly
from the papers [1], [3], [11], [7], [4], [6], and [5] for the ready reference.

Definition 1. [3] An algebra (X ,∗,1) of type (2,0) is called a BE-algebra if it
satisfies the following properties:

(1) x∗ x = 1,
(2) x∗1 = 1,
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(3) 1∗ x = x,
(4) x∗ (y∗ z) = y∗ (x∗ z) for all x,y,z ∈ X .

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all
x,y,z∈X . A BE-algebra X is called transitive if y∗z≤ (x∗y)∗(x∗z) for all x,y,z∈X .
A BE-algebra X is called commutative if (x∗y)∗y = (y∗x)∗x for all x,y ∈ X . Every
commutative BE-algebra is transitive. For any x,y ∈ X , define x∨ y = (y ∗ x) ∗ x. If
X is commutative, then (X ,∨) is a semilattice [12]. We introduce a relation ≤ on a
BE-algebra X by x ≤ y if and only if x∗ y = 1 for all x,y ∈ X . Clearly ≤ is reflexive.
If X is commutative, then ≤ is transitive, anti-symmetric and hence a partial order on
X .

Theorem 1. [3] Let X be a transitive BE-algebra and x,y,z ∈ X. Then

(1) 1 ≤ x implies x = 1,
(2) y ≤ z implies x∗ y ≤ x∗ z and z∗ x ≤ y∗ x.

Definition 2. [1] A non-empty subset F of a BE-algebra X is called a filter of X
if, for all x,y ∈ X , it satisfies the following properties:

(1) 1 ∈ F ,
(2) x ∈ F and x∗ y ∈ F imply that y ∈ F .

For any non-empty subset A of a transitive BE-algebra X , the set ⟨A⟩ = {x ∈
X | a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · ·)) = 1 for some a1,a2, . . . ,an ∈ A} is the smallest filter
containing A. For any a∈X ,⟨a⟩= {x∈X | an∗x= 1 for some n∈N}, where an∗x=
a∗(a∗(· · ·∗(a∗x) · · ·)) with the repetition of a is n times, is called the principal filter
generated a. If X is self-distributive, then ⟨a⟩= {x ∈ X | a∗x = 1}. If X is commutat-
ive and self-distributive, then ⟨a⟩∩⟨b⟩= ⟨a∨b⟩ for any a,b ∈ X . Let F be a filter of a
transitive BE-algebra and a∈X , then ⟨F∪{a}⟩= {x∈X | an∗x∈F for some n∈N}.
A proper filter P of a BE-algebra X is called prime [11] if F ∩G ⊆ P implies F ⊆ P
or G ⊆ P for any two proper filters F,G of X . A proper filter P of a BE-algebra is
prime if and only if ⟨x⟩∩ ⟨y⟩ ⊆ P implies x ∈ P or y ∈ P for any x,y ∈ X . A proper
filter M of a transitive BE-algebra is called maximal if there exists no proper filter Q
such that M ⊂ Q. Every maximal filter of a commutative BE-algebra is prime.

Theorem 2. [11] Let F and G be two filters of a transitive BE-algebra X. Then

F ∨G = {x ∈ X | a∗ (b∗ x) = 1 for some a ∈ F,b ∈ G}

is the supremum of F and G. Hence the set F (X) of all filters of X is a lattice with
respect to the operation ∨.

Lemma 1. [4] Let X be a commutative BE-algebra. Then for any x,y,a ∈ X

(1) y∗ z ≤ (z∗ x)∗ (y∗ x),
(2) (x∗ y)∨a ≤ (x∨a)∗ (y∨a).
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For any non-empty subset A of a BE-algebra X , the dual annihilator [4] of A is
defined as A+ = {x ∈ X | x∨ a = 1 for all a ∈ A}. In a commutative BE-algebra X ,
the set A+ forms a filter of X such that A∩A+ = {1}. In case of A = {a}, we have
(a)+ = {x ∈ X | a∨ x = 1}. Clearly X+ = {1} and {1}+ = X . An element a ∈ X is
called dual dense if (a)+ = {1}.

Proposition 1. [4] Let X be a commutative BE-algebra and ∅ ̸= A,B ⊆ X. Then
(1) if A ⊆ B, then B+ ⊆ A+,
(2) A ⊆ A++,
(3) A+ = A+++.

Proposition 2. [4] Let F,G be two filters of a commutative BE-algebra X. Then
(1) F ∩G = {1} if and only if F ⊆ G+,
(2) (F ∨G)+ = F+∩G+,
(3) (F ∩G)++ = F++∩G++.

Proposition 3. [4] Let X be a commutative BE-algebra and a,b ∈ X. Then
(1) ⟨a⟩ ⊆ (a)++,
(2) a ≤ b implies (a)+ ⊆ (b)+,
(3) a ∈ (b)++ implies (b)+ ⊆ (a)+.

A prime filter P of a commutative BE-algebra X is called minimal [7] if it is min-
imal in the class of all prime filters of X .

Theorem 3. [7] Let X be a self-distributive and commutative BE-algebra. A prime
filter P of X is minimal if and only if to each x ∈ P, there exists y /∈ P such that
x∨ y = 1.

Proposition 4. [6] Let X be a self-distributive and commutative BE-algebra. Then
for any x ∈ X, we have

(x)+ =
⋂

{P | P is a minimal prime filter such that x /∈ P}

A filter F of a commutative BE-algebra X is called a dual annihilator filter [4] if
F = F++. A filter F of a commutative BE-algebra X is called a regular filter [6] if
(x)++ ⊆ F whenever x ∈ F . Every dual annihilator filter is a regular filter.

Proposition 5. [6] Every minimal prime filter of a self-distributive and commut-
ative BE-algebra is a regular filter.

A filter F of a commutative BE-algebra X is called an O-filter [5] if F = O(S)
for some ∨-closed subset S of X . Every O-filter of a commutative BE-algebra is a
regular filter. A commutative BE-algebra X is called quasi-complemented [5] if to
each x ∈ X , there exists y ∈ X such that x∨ y = 1 and (x)+∩ (y)+ = {1}.

Theorem 4. [5] A commutative BE-algebra X is quasi-complemented if and only
if to each x ∈ X, there exists y ∈ X such that (x)++ = (y)+
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A filter F of a commutative BE-algebra X is called a σ-filter [10] of X if σ(F) = F
where σ(F) = {x ∈ X | (x)+∨F = X}. Every σ-filter of a commutative BE-algebra
is a regular filter and every σ-filter of a commutative BE-algebra is an O-filter.

3. PROPERTIES OF GENERALIZED STONEAN BE-ALGEBRAS

In this section, the notion of generalized Stonean BE-algebras is introduced. A set
of equivalent conditions is derived for a quasi-complemented BE-algebra to become
a generalized Stonean BE-algebra. It is proved that every quasi-complemented BE-
algebra is a generalized Stonean if and only if D+(X) = {(x)+ | x ∈ X} is a Boolean
algebra.

Lemma 2. Let X be a commutative BE-algebra and a,b ∈ X. Then the following
properties hold:

(1) (a)+ = (⟨a⟩)+;
(2) a ∈ (b)+ if and only if ⟨a⟩ ⊆ (b)+;
(3) ⟨a⟩∩ ⟨b⟩= {1} if and only if ⟨a⟩ ⊆ (b)+;
(4) (a)+∩ (a∗b)+ ⊆ (b)+;
(5) (a)++∩ (b)++ = (a∨b)++.

Proof. (1) Since {a} ⊆ ⟨a⟩, we get (⟨a⟩)+ ⊆ (a)+. Conversely, let x ∈ (a)+.
Then a∨ x = 1. For any c ∈ ⟨a⟩, we get an ∗ c = 1 for some positive integer
n. Now

1 = an ∗ c ≤ (an ∗ c)∨ x ≤ (a∨ x)n ∗ (c∨ x) = 1∨ (c∨ x) = c∨ x

Hence c∨ x = 1 for any c ∈ ⟨a⟩. Then x ∈ (⟨a⟩)+. Therefore (a)+ ⊆ (⟨a⟩)+.
(2) Assume that a ∈ (b)+. Then a∨ b = 1. Let x ∈ ⟨a⟩. Then there exists a

positive integer n such that an ∗ x = 1. Now, we get

1 = an ∗ x ≤ (an ∗ x)∨b ≤ (a∨b)n ∗ (x∨b) by Lemma 1(2)

= 1∗ (x∨b) = x∨b

which yields that x ∈ (b)+. Therefore ⟨a⟩ ⊆ (b)+. Converse is clear since
a ∈ ⟨a⟩.

(3) Let a,b ∈ L. Assume that ⟨a⟩ ∩ ⟨b⟩ = {1}. Let x ∈ ⟨a⟩. For any y ∈ ⟨b⟩,
we get x∨ y ∈ ⟨a⟩ ∩ ⟨b⟩ = {1}. Hence x∨ y = 1 for any y ∈ ⟨b⟩. Thus x ∈
(⟨b⟩)+ = (b)+. Therefore ⟨a⟩ ⊆ (b)+. Conversely, assume that ⟨a⟩ ⊆ (b)+.
Let x ∈ ⟨a⟩∩ ⟨b⟩. Then x ∈ ⟨a⟩ ⊆ (b)+ and x ∈ ⟨b⟩. Hence x ∈ ⟨b⟩∩ (b)+ =
{1}. Thus x = 1. Therefore ⟨a⟩∩ ⟨b⟩= {1}.

(4) Let x ∈ (a)+∩ (a∗b)+. Then a∨ x = 1 and (a∗b)∨ x = 1. Hence

1 = (a∗b)∨ x ≤ (a∨ x)∗ (b∨ x) by Lemma 1(2)

= 1∗ (b∨ x) = b∨ x

which means b∨ x = 1. Hence x ∈ (b)+. Therefore (a)+∩ (a∗b)+ ⊆ (b)+.
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(5) Let a,b ∈ X . Since a,b ≤ a∨ b, we get (a)+,(b)+ ⊆ (a∨ b)+. Hence (a∨
b)++ ⊆ (a)++,(b)++. Thus (a ∨ b)++ ⊆ (a)++ ∩ (b)++. Conversely, let
x ∈ (a)++ ∩ (b)++. Suppose y ∈ (a∨ b)+ be an arbitrary element. Since
y ∈ (a∨b)+, we get

y∨ (a∨b) = 1 ⇒ y∨a ∈ (b)+ ⇒ x∨ y∨a = 1 since x ∈ (b)++

⇒ x∨ y ∈ (a)+ ⇒ x∨ (x∨ y) = 1 since x ∈ (a)++

⇒ x∨ y = 1 for all y ∈ (a∨b)+

which means that x ∈ (a∨b)++. Therefore (a)++∩ (b)++ ⊆ (a∨b)++.
□

Proposition 6. Let X be a commutative BE-algebra and a,b ∈ X. Then the fol-
lowing assertions are equivalent:

(1) a∨b = 1;
(2) (a)++∩⟨b⟩= {1};
(3) (a)++∩ (b)++ = {1}.

Proof. (1)⇒ (2): Let a,b ∈ X . Assume that a∨b = 1. Then b ∈ (a)+. By Lemma
2(1), we get ⟨b⟩ ⊆ (a)+. Hence (a)++∩⟨b⟩ ⊆ (a)++∩ (a)+ = {1}.
(2)⇒ (3): Assume that (a)++∩⟨b⟩= {1} for any a,b ∈ X . By Lemma 2(3), we get
(a)++ ⊆ (b)+. Therefore (a)++∩ (b)++ ⊆ (b)+∩ (b)++ = {1}.
(3)⇒ (1): Assume that (a)++∩ (b)++ = {1} for any a,b ∈ X . By Lemma 2(3), we
get (a)++ ⊆ (b)+++ = (b)+. Hence a ∈ (a)++ ⊆ (b)+, which means a∨b = 1. □

Lemma 3. Every prime filter of a BE-algebra contains a minimal prime filter.

Proof. Let P be a prime filter of a BE-algebra X . Consider

ℑ = {Q | Q is a prime filter such that Q ⊆ P}.
Clearly P ∈ ℑ and hence ℑ ̸= ∅. By Zorn’s Lemma, ℑ has a minimal element, say
P0. Clearly P0 is the required minimal prime filter in X . □

Proposition 7. The intersection of all minimal prime filters of a BE-algebra is
{1}.

Proof. Clearly {1} ⊆
⋂
{P | P is a minimal prime filter }. Let x ̸= 1 or x /∈ ⟨1⟩.

Then there exists a prime filter P such that x /∈ P. By Lemma 3, there exists a minimal
prime filter P0 of X such that P0 ⊆ P. Since x /∈ P, we must have x /∈ P0. Hence x /∈
∩{P | P is a minimal prime filter }. Thus

⋂
{P | P is a minimal prime filter } ⊆ {1}.

Therefore {1}=
⋂
{P | P is a minimal prime filter }. □

Theorem 5. A prime filter P of a self-distributive and commutative BE-algebra X
is minimal if and only if it satisfies the following condition:

x /∈ P if and only if (x)+ ⊆ P
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Proof. Assume that P is minimal. Let x /∈ P. Then clearly (x)+ ⊆ P. Conversely,
let (x)+ ⊆P. Suppose x∈P. Since P is minimal, there exists y /∈P such that x∨y= 1.
Hence y ∈ (x)+ and y /∈ P. Thus (x)+ ⊈ P, which is a contradiction. Therefore x /∈ P.

Conversely, assume that X satisfies in the above condition. Let x ∈ P. By the
assumed condition, we get (x)+ ⊈ P. Hence, there exists y ∈ (x)+ such that y /∈ P.
Thus y∨ x = 1 where y /∈ P. By Theorem 5, P is a minimal prime filter of X . □

Definition 3. A commutative BE-algebra X is called a generalized Stonean BE-
algebra if (x)+∨ (x)++ = X for all x ∈ X .

Example 1. Let X = {1,a,b,c} be a set. Define a binary operation ∗ on X and then
deduce the operation ∨ from ∗ as given in the following tables:

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

∨ 1 a b c
1 1 1 1 1
a 1 a 1 1
b 1 1 b 1
c 1 1 1 c

Then clearly (X ,∗,∨,1) is a commutative BE-algebra. Clearly (a)+= {1,b,c};(b)+=
{1,a,c} and (c)+ = {1,a,b}. Hence, it can be seen that (a)++ = {1,a}; (b)++ =
{1,b}; (c)++ = {1,c}. It can be easily verified that (a)+ ∨ (a)++ = X ; (b)+ ∨
(b)++ = X and (c)+∨ (c)++ = X . Therefore X is a generalized Stonean BE-algebra.

Example 2. Let X = {1,a,b,c,d} and define a binary operation ∗ on X and then
deduce the operation ∨ from ∗ as given in the following tables:

∗ 1 a b c d
1 1 a b c d
a 1 1 b c b
b 1 a 1 b a
c 1 a 1 1 a
d 1 1 1 b 1

∨ 1 a b c d
1 1 1 1 1 1
a 1 a 1 1 a
b 1 1 b d b
c 1 1 d c b
d 1 a b b d

Clearly (X ,∗,∨,1) is a commutative BE-algebra. It is easy to check that (b)+ =
{1,a} and (b)++ = {1,b,c}. Hence (b)+ ∨ (b)++ = {1,a}∨ {1,b,c} = X . Simil-
arly, we can see that (a)+ ∨ (a)++ = X ; (c)+ ∨ (c)++ = X and (d)+ ∨ (d)++ = X .
Therefore X is a generalized Stonean BE-algebra.

Proposition 8. If every prime filter of a self-distributive and commutative BE-
algebra X is minimal, then X is a generalized Stonean BE-algebra.

Proof. Assume that every prime filter of a self-distributive and commutative BE-
algebra X is minimal. Let x ∈ X . Suppose (x)+ ∨ (x)++ ̸= X . Then there exists a
maximal filter P of X such that (x)+∨(x)++ ⊆P. Since every maximal filter is prime,
P is a prime filter of X . Hence (x)+ ⊆ P and (x)++ ⊆ P. Since (x)+ ⊆ P, by Theorem
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5, we get x /∈ P. Clearly x ∈ (x)++ ⊆ P. Hence x ∈ P, which is a contradiction. Thus
(x)+∨ (x)++ = X . Therefore X is a generalized Stonean BE-algebra. □

The converse of Proposition 8 is not true. That is, every generalized Stonean BE-
algebra need not to have all of it’s prime filters to be minimal. Indeed, consider the
following example:

Example 3. Let X = {1,a,b,c} be a set. Define a binary operation ∗ X and then
deduce the operation ∨ from ∗ as given in the following tables:

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 b 1 1
c 1 c c 1

∨ 1 a b c
1 1 1 1 1
a 1 a b c
b 1 b b c
c 1 c c c

Then clearly (X ,∗,∨,1) is a self-distributive and commutative BE-algebra. Observe
that (x)+ = {1} for all x ∈ X . Hence (x)+∨ (x)++ = X for all x ∈ X . Therefore X is
a generalized Stonean BE-algebra. Clearly {1} is a prime filter of X . It can be easily
verified that P = {1,c} is a prime filter of X which is not minimal.

Proposition 9. Every generalized Stonean BE-algebra with a dual dense element
is a quasi-complemented BE-algebra.

Proof. Suppose X is generalized Stonean. Let d ∈ X be such that (d)+ = {1}. Let
x ∈ X . Then (x)+∨(x)++ = X . Hence d ∈ (x)+∨(x)++, which implies a∗(b∗d) = 1
for some a ∈ (x)+ and b ∈ (x)++. Since b ∈ (x)++, we get (b)++ ⊆ (x)++. Thus

a∗ (b∗d) = 1 ⇒ a ≤ b∗d ⇒ (a)+ ⊆ (b∗d)+

⇒ (a)+∩ (b)+ ⊆ (b)+∩ (b∗d)+

⇒ (a)+∩ (b)+ ⊆ (d)+ = {1} by Lemma 2(4)

⇒ (a)+∩ (b)+ = {1}⇒ (a)+ ⊆ (b)++ by Lemma 2(3)

⇒ (a)+ ⊆ (x)++ since (b)++ ∈ (x)++

⇒ (a)+∩ (x)+ = {1} by Lemma 2(3)

Since a ∈ (x)+, we get a∨ x = 1. Therefore L is quasi-complemented. □

The importance of the sufficient condition of having a dual-dense element can be
seen in Example 1. Clearly X is a generalized Stonean BE-algebra. Observe that X
has no dual-dense element. For a ∈ X , there exists no x ∈ X such that a∨ x = 1 and
(a)+∩ (x)+ = {1}. Therefore X is not a quasi-complemented BE-algebra.

A filter F of a BE-algebra X is called a factor of X if there exists a proper filter
G such that F ∩G = {1} and F ∨G = X . Denote D++(X) = {(x)++ | x ∈ X} and
D+(X) = {(x)+ | x ∈ X}. The converse of Proposition 9 need not be true. However,
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in the following, a set of equivalent conditions is given to show that every quasi-
complemented BE-algebra to become a generalized Stonean BE-algebra.

Theorem 6. Let X be a quasi-complemented BE-algebra. Then the following
assertions are equivalent:

(1) X is a generalized Stonean BE-algebra;
(2) each (x)+ is a factor of X;
(3) for each x ∈ X, there exists x′ ∈ X such that (x)+∨ (x′)+ = X;
(4) for any x,y ∈ X, (x)+∨ (y)+ = (x∨ y)+;
(5) D++(X) is a sublattice of the lattice F (X) of all filters of X.

Proof. (1)⇒ (2): Assume that X is generalized Stonean. Let x ∈ X . Clearly (x)+∩
(x)++ = {1}. By (1), we get (x)+∨ (x)++ = X . Therefore (x)+ is a factor of L.
(2)⇒ (3): Assume condition (2). Let x ∈ X . Since X is quasi-complemented, there
exists x′ ∈ X such that (x)++ = (x′)+. Since (x)+ is a factor of X , there exists a
filter G such that (x)+ ∩G = {1} and (x)+ ∨G = X . Since (x)+ ∩G = {1}, we get
G ⊆ (x)++ = (x′)+. Therefore X = (x)+∨G ⊆ (x)+∨(x′)+. Hence (x)+∨(x′)+ = X .
(3)⇒ (4): Assume condition (3). Let x,y ∈ X . By (3), there exists x′ ∈ X such that
(x)+∨ (x′)+ = X . Clearly (x)+∨ (y)+ ⊆ (x∨ y)+. Conversely, let a ∈ (x∨ y)+. Then
a∨x∨y = 1, which gives a∨y ∈ (x)+. By Proposition 1.7(2) and Lemma 3.1, we get

a∨ y ∈ (x)+ ⇒ (x)++ ⊆ (a∨ y)+ ⇒ (x)++∩ (a∨ y)++ = {1} by Lemma 2(3)

⇒ (x)++∩ (a)++∩ (y)++ = {1} by Lemma 2(5)

⇒ (x)++∩ (a)++ ⊆ (y)+ by Lemma 2(3)

⇒ (x′)+∩ (a)++ ⊆ (y)+ ⇒ (x′)+∩⟨a⟩ ⊆ (y)+ by Proposition 3(1)

Clearly (x)+∩⟨a⟩ ⊆ (x)+. Hence a ∈ ⟨a⟩= X ∩⟨a⟩= {(x)+∨(x′)+}∩⟨a⟩= {(x)+∩
⟨a⟩}∨{(x′)+∩⟨a⟩} ⊆ (x)+∨ (y)+. Therefore (x∨ y)+ ⊆ (x)+∨ (y)+.
(4) ⇒ (5): For any x,y ∈ X , it is clear that (x)++ ∩ (y)++ = (x∨ y)++. Since X is
quasi-complemented, there exist x′,y′ ∈X such that (x)++ =(x′)+ and (y)++ =(y′)+.
Hence (x)++ ∨ (y)++ = (x′)+ ∨ (y′)+ = (x′ ∨ y′)+ = (c)++ for some c ∈ X , as X is
quasi-complemented. Therefore D++(X) is a sublattice of F (X).
(5)⇒ (1): Assume that the condition (5) holds. Let x ∈ X . Since X is quasi-
complemented, there exists y ∈ X such that (x)++ = (y)+. Since D++(X) is a sub-
lattice of F (X), we get (x)++ ∨ (y)++ = (t)++ for some t ∈ X . Thus ⟨x⟩ ∨ ⟨y⟩ ⊆
(x)++∨ (y)++ = (t)++. Therefore, by Proposition 2(2), we get

(t)+ = (t)+++ ⊆ (⟨x⟩∨ ⟨y⟩)+ = (x)+∩ (y)+ = (x)+∩ (x)++ = {1}

which implies that (t)++ = {1}+ = X . Hence (x)+ ∨ (x)++ = (y)++ ∨ (x)++ =
(t)++ = X . Therefore X is a generalized Stonean BE-algebra. □
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The following corollaries state the properties of generalized Stonean BE-algebra
in terms of minimal prime filters. Two filters F and G of a BE-algebra X are called
comaximal if F ∨G = L.

Corollary 1. If X is a self-distributive and generalized Stonean BE-algebra, then
any two distinct minimal prime filters of X are comaximal.

Proof. Assume that X is a generalized Stonean BE-algebra. By condition (2) of
the main theorem, each (x)+ is a factor of X . Let P and Q be two distinct minimal
prime filters of X . Choose a ∈ P−Q. Hence (a)+ ⊆ Q. Since P is minimal, by
Proposition 5, we get that (a)++ ⊆ P. Since (a)+ is a factor of X , there exists a
filter G such that (a)+ ∩G = {1} and (a)+ ∨G = X . Hence G ⊆ (a)++ ⊆ P. Thus
X = (a)+∨G ⊆ Q∨P. Therefore P and Q are comaximal. □

Corollary 2. If X is a self-distributive and generalized Stonean BE-algebra, then
every prime filter contains a unique minimal prime filter.

Proof. Let P be a prime filter of X . Suppose P contains two distinct minimal
prime filters, say Q1 and Q2. Then Q1 ∨Q2 ⊆ P. Since X is generalized Stonean, by
Corollary 1, we get Q1 ∨Q2 = X . Hence X = Q1 ∨Q2 ⊆ P, which is a contradiction.
Therefore P contains a unique minimal prime filter. □

From Theorem 6, it can be easily observed that D+(X) is a semilattice with respect
to operation ∨ of filters. We now define that (D+(X),∨) is complemented if to
each (a)+ ∈ D+(X), there exists (b)+ ∈ D+(X) such that (a)+ ∩ (b)+ = {1} and
(a)+∨ (b)+ = X .

Theorem 7. Let X be a quasi-complemented BE-algebra. Then X is a generalized
Stonean BE-algebra if and only if D+(X) is a complemented semilattice.

Proof. Assume that X is a generalized Stonean BE-algebra. Let (x)+,(y)+ ∈
D+(X). Since X is a generalized Stonean BE-algebra, by Theorem 6, we get (x)+∨
(y)+ = (x ∨ y)+. Hence (D+(X),∨) is a semilattice. Let (x)+ ∈ D+(X) where
x ∈ X . Since X is quasi-complemented, there exists x′ ∈ X such that (x)++ = (x′)+.
Clearly (x)+∩ (x′)+ = (x)+∩ (x)++ = {1}. Since X is generalized Stonean, we get
(x)+∨ (x)++ = X . Hence (x)+∨ (x′)+ = X . Thus (x′)+ is the complement of (x)+ in
D+(X). Therefore D+(X) is a complemented semilattice.

Conversely, assume that D+(X) is a complemented semilattice. Let x ∈ X . Then
(x)+ ∈ D+(X). Since (D+(X),∨) is complemented, there exists (x′)+ ∈ D+(X)
such that (x)+∩ (x′)+ = {1} and (x)+∨ (x′)+ = X . Since (x)+∩ (x′)+ = {1}, we get
(x′)+ ⊆ (x)++. Hence X = (x)+∨ (x′)+ ⊆ (x)+∨ (x)++, which gives (x)+∨ (x)++ =
X . Therefore X is a generalized Stonean BE-algebra. □

In [10], the notion of σ-filters is introduced in commutative BE-algebras and the
properties of σ-filters are studied. In the following theorem, generalized Stonean
BE-algebras are characterized with the help of σ-filters and dual annihilator filters.
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Theorem 8. The following assertions are equivalent in a commutative BE-algebra:
(1) X is generalized Stonean;
(2) every regular filter is a σ-filter;
(3) every dual annihilator filter is a σ-filter.

Proposition 10. Every prime σ-filter of a self-distributive and commutative BE-
algebra X is a minimal prime filter.

Proof. Let P be a prime σ-filter of X . Since P is proper, there exists a0 ∈ X −P.
Let x ∈ P. Then x ∈ σ(P) and hence (x)+∨P = X . Since a0 ∈ X , there exists a ∈ (x)+

and b ∈ P such that a∗ (b∗a0) = 1 ∈ P. Since a ∈ (x)+, we get a∨ x = 1. Suppose
a ∈ P. Since b ∈ P, we must have a0 ∈ P because of a ∗ (b ∗ a0) ∈ P. But a0 ∈ P
contradicts the fact that a0 ∈ X −P. Hence a /∈ P such that a∨ x = 1. By Proposition
5, P is a minimal prime filter of X . □

The converse of Proposition 10 is true in particular condition.

Theorem 9. If X is a self-distributive and generalized Stonean BE-algebra, then
every minimal prime filter of X is a σ-filter.

Proof. Suppose that X is a generalized Stonean BE-algebra. Let P be a minimal
prime filter of X . By Proposition 5, P is a regular filter of X . Since X is generalized
Stonean, by Theorem 8, P is a σ-filter of X . □

4. STONEAN FILTERS OF BE-ALGEBRAS

In this section, the notion of Stonean filters is introduced in commutative BE-
algebras. Some properties of Stonean filters are derived in commutative BE-algebras.
A set of equivalent conditions is given for every filter of a commutative BE-algebra
to become a Stonean filter.

Definition 4. A proper filter F of a commutative BE-algebra X is called a Stonean
filter of X if F+ ⊆ (x)+∨ (x)++ for all x ∈ X .

Example 4. Let X = {1,a,b,c} be a set. Define a binary operation ∗ X and then
deduce the operation ∨ from ∗ as given in the following tables:

∗ 1 a b c d
1 1 a b c d
a 1 1 b 1 b
b 1 a 1 1 a
c 1 a b 1 d
d 1 1 1 1 1

∨ 1 a b c d
1 1 1 1 1 1
a 1 a b c 1
b 1 b b 1 1
c 1 c 1 c 1
d 1 1 1 1 d

Then clearly (X ,∗,∨,1) is a commutative BE-algebra. It can be easily seen that
(a)+ = {1,d}, (b)+ = {1,c,d}; (c)+ = {1,b,d} and (d)+ = {1,a,b,c}. Now, we
see that (a)++ = {1,a,b,c}; (b)++ = {1,b}; (c)++ = {1,c} and (d)++ = {1,d}.
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Consider the filter F = {1,c}. Then F+ = {1,b,d}. It can be easily verified that
F+ ⊆ (x)+∨ (x)++ for all x ∈ X . Therefore F is a Stonean filter of X .

Example 5. Let X = {1,a,b,c} be a set. Define a binary operation ∗ X and then
deduce the operation ∨ from ∗ as given in the following tables:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 1 d
b 1 c 1 c d
c 1 b b 1 d
d 1 a b c 1

∨ 1 a b c d
1 1 1 1 1 1
a 1 a b c 1
b 1 b b 1 1
c 1 c 1 c 1
d 1 1 1 1 d

Then clearly (X ,∗,∨,1) is a commutative BE-algebra. It can be easily seen that
(a)+ = {1,d}, (b)+ = {1,c,d}; (c)+ = {1,b,d} and (d)+ = {1,a,b,c}. Now, we
see that (a)++ = {1,a,b,c}; (b)++ = {1,b}; (c)++ = {1,c} and (d)++ = {1,d}.
Consider the filter F = {1,c}. Then F+ = {1,b,d}. It can be easily verified that
F+ ⊆ (x)+∨ (x)++ for all x ∈ X . Therefore F is a Stonean filter of X .

Proposition 11. Every prime filter of a self-distributive and commutative BE-
algebra is a Stonean filter.

Proof. Let P be a prime filter of a self-distributive and commutative BE-algebra
X . Suppose x ∈ P. Then ⟨x⟩ ⊆ P. Hence, by Proposition 1(1), we get P+ ⊆ (x)+.
Thus P+ ⊆ (x)+ ⊆ (x)+∨ (x)++. Suppose x /∈ P. Since P is prime, we get (x)+ ⊆ P.
Hence P+ ⊆ (x)++. Thus P+ ⊆ (x)++ ⊆ (x)+∨ (x)++. Therefore P is Stonean. □

The converse of Proposition 11 is not true, which means that every Stonean filter of
a BE-algebra need not be prime. For, consider the self-distributive and commutative
BE-algebra given in Example 5. It can be easily noticed that the filter F = {1,c} is
Stonean but not prime because of a∨d = 1 ∈ F but neither a ∈ F nor d ∈ F .

Since every maximal filter of a self-distributive and commutative BE-algebra is a
prime filter, the following corollary is a direct consequence of Proposition 11.

Corollary 3. Every maximal filter of a self-distributive and commutative BE-
algebra is a Stonean filter.

Definition 5. A commutative BE-algebra X is called a hyper Stonean BE-algebra
if ⟨x⟩∨ (x)+ = X for all x ∈ X .

Since ⟨x⟩ ⊆ (x)++ for all x ∈ X , it can be easily verified that every hyper Stonean
BE-algebra is a generalized Stonean BE-algebra. However, every generalized Ston-
ean BE-algebra need not be a hyper Stonean BE-algebra. For consider the following
example:
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Example 6. Let X = {1,a,b,c} be a set. Define a binary operation ∗ X and then
deduce the operation ∨ from ∗ as given in the following tables:

∗ 1 a b c d
1 1 a b c d
a 1 1 a c d
b 1 1 1 c d
c 1 a b 1 d
d 1 1 1 c 1

∨ 1 a b c d
1 1 1 1 1 1
a 1 a a 1 a
b 1 a b 1 b
c 1 1 1 c 1
d 1 a b 1 d

Clearly (X ,∗,∨,1) is a commutative BE-algebra. It is easily seen that (a)+ = (b)+ =
{1,c}; (c)+ = {1,a,b,d} and (d)+ = {1,c}. Hence X has no dual-dense element.
Now, we see that (a)++ = (b)++ = {1,a,b,d}; (c)++ = {1,c} and (d)++ = X . It is
routinely verified that X is a generalized Stonean BE-algebra. It is clear that ⟨a⟩ =
{1,a}. Hence

⟨a⟩∨ (a)+ = {1,a}∨{1,b}= {1,a,b} ̸= X .

Therefore X is not a hyper Stonean BE-algebra.

In the following result, a sufficient condition is derived for every generalized Ston-
ean BE-algebra to become a hyper Stonean BE-algebra.

Proposition 12. Let X be a self-distributive generalized Stonean BE-algebra. If
every filter of X is a dual annihilator filter, then X is a hyper Stonean BE-algebra.

Proof. Let x ∈ X . By hypothesis, we get (x)++ = ⟨x⟩. Since X is generalized
Stonean, we get (x)+ ∨ ⟨x⟩ = (x)+ ∨ (x)++ = X . Therefore X is a hyper Stonean
BE-algebra. □

In the following theorem, a set of equivalent conditions is given for every self-
distributive and commutative BE-algebra to become a hyper Stonean BE-algebra.

Theorem 10. Let X be a self-distributive and commutative BE-algebra. Then the
following assertions are equivalent:

(1) X is a hyper Stonean BE-algebra;
(2) every prime filter is maximal;
(3) every prime filter is minimal.

Proof. (1) ⇒ (2): Assume that X is a hyper Stonean BE-algebra. Let P be a prime
filter of X . Suppose P is not maximal. Then there exists a proper filter Q of X such
that P ⊂ Q. Choose x ∈ Q−P. Since X is hyper Stonean, we get ⟨x⟩ ∨ (x)+ = X .
Since x ∈ Q, we get ⟨x⟩ ⊆ Q. Since x /∈ P and P is prime, we get (x)+ ⊆ P. Hence
X = ⟨x⟩∨ (x)+ ⊂ Q∨P = Q, which is a contradiction. Therefore P is maximal.
(2) ⇒ (3): Since every maximal filter is prime, it is clear.
(3) ⇒ (1): Assume that every prime filter is minimal. Let x∈X . Suppose ⟨x⟩∨(x)+ ̸=
X . Then there exists a prime filter P such that ⟨x⟩∨ (x)+ ⊆ P. Hence x ∈ ⟨x⟩ ⊆ P and
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(x)+ ⊆ P. Since P is minimal, by Theorem 5, we get x /∈ P which is a contradiction.
Hence ⟨x⟩∨ (x)+ = X . Therefore X is a hyper Stonean BE-algebra □

The converse of Corollary 3 is not true. For, consider the self-distributive and
commutative BE-algebra given in Example 4. Note that {1} is a Stonean filter but
not a prime filter. However, in the following theorem, a set of equivalent conditions
is given for every Stonean filter of a BE-algebra to become a maximal filter.

Theorem 11. Let X be a self-distributive hyper Stonean BE-algebra and F be a
proper filter of X. Then the following assertions are equivalent:

(1) F is a maximal filter;
(2) for each x ∈ X, x /∈ F implies (x)+ ⊆ F;
(3) F is a prime Stonean filter.

Proof. (1) ⇒ (2): Assume that F is a maximal filter of X . Let x ∈ X be such that
x /∈ F . Since F is a prime filter of X , we get that (x)+ ⊆ F .
(2) ⇒ (3): Assume condition (2). Let x ∈ X . Suppose x ∈ F . Then ⟨x⟩ ⊆ F . Hence,
by Proposition 1(1), we get F+ ⊆ (x)+. Thus F+ ⊆ (x)+ ⊆ (x)+ ∨ (x)++. Suppose
x /∈ F . By condition (2), we get (x)+ ⊆ F . Hence F+ ⊆ (x)++. Thus F+ ⊆ (x)++ ⊆
(x)+∨ (x)++. Therefore F is Stonean. We now prove that F is prime. Let x,y ∈ X be
such that x∨ y ∈ F . Suppose x /∈ F . By condition (2), we have (x)+ ⊆ F . Now,

(x)+∨⟨y⟩= X ∩{(x)+∨⟨y⟩}
= {(x)+∨⟨x⟩}∩{(x)+∨⟨y⟩} since X is hyper Stonean

= (x)+∨{⟨x⟩∩ ⟨y⟩}= (x)+∨⟨x∨ y⟩ ⊆ F since (x)+ ⊆ F and x∨ y ∈ F

which gives ⟨y⟩ ⊆ (x)+ ∨ ⟨y⟩ ⊆ F . Hence y ∈ F . Therefore F is a prime Stonean
filter.
(3) ⇒ (1): Assume that F is a prime Stonean filter of X . Suppose F is not maximal.
Then there exists a proper filter F ′ of X such that F ⊂ F ′. Choose x ∈ F ′−F . Since F
is Stonean, we get F+ ⊆ (x)+∨(x)++. Since F is prime and x /∈F , we get (x)+ ⊆F ⊂
F ′. Since x ∈ F ′, we get ⟨x⟩ ⊆ F ′. Since X is hyper Stonean, we get X = ⟨x⟩∨ (x)+ ⊆
F ′, which is a contradiction. Therefore F is a maximal filter. □

In the following theorem, a set of equivalent conditions is given for every filter of
a commutative BE-algebra to become a Stonean filter.

Theorem 12. Let X be a commutative BE-algebra. Then the following are equi-
valent:

(1) X is a generalized Stonean;
(2) every filter is a Stonean filter;
(3) {1} is a Stonean filter.

Proof. (1) ⇒ (2): Assume that X is Stonean. Let F be a filter of X . Since X is
Stonean, we have F+ ⊆ X = (x)+∨ (x)++ for all x ∈ X . Hence F is a Stonean filter
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of X .
(2) ⇒ (3): It is clear.
(3) ⇒ (1): Assume that {1} is a Stonean filter of X . Hence X = {1}+ ⊆ (x)+∨(x)++.
Therefore X is a generalized Stonean BE-algebra. □

Theorem 13. (Extension property of Stonean filters) Let F and G be two filters of
a commutative BE-algebra such that F ⊆ G. If F is a Stonean filter, then so is G.

Proof. If F ⊆ G, by Proposition 1(1), G+ ⊆ F+. Since F is a Stonean filter, then
G+ ⊆ (x)+∨ (x)++ for all x ∈ X , hence G is a Stonean filter. □

5. CONCLUSION

In this work, we have considered the Stonean BE-algebras. The notion of Stonean
filter has been introduced and considered them in detail. These type of filter play a
basic role. Based on these facts, we give a classification for BE-algebras. The notion
of hyper Stonean BE-algebras had been introduced and we show that these structures
are particular cases of commutative BE-algebras. We think such results are very
useful for the further characterization of generalized Stonean BE-algebra in terms
of congruences of this structure. In future, we plan to investigate the topological
properties of generalized Stonean BE-algebras. Further properties of Stonean filters
and their interconnections between various filters existed in BE-algebras can also be
investigated.

In the following diagram, we show the relationships between some filters of BE-
algebras. The notion ”A −→ B” means A should be B.
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