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Abstract. A convex function f : [a,b]→ R satisfies the so-called Hermite-Hadamard inequality

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
.

Motivated by the above estimates, in this paper we consider approximately monotone and convex
functions, and give upper and lower bounds to the numerical integral mean, i.e., to 1

b−a In( f ),
where In( f ) denotes some of the most popular Newton-Cotes quadrature formulas.
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1. INTRODUCTION

The theory of approximately convex functions goes back to the work of Hyers
and Ulam [10] where they first introduced the concept of δ-convexity. A function
f : I → R is said to be δ-convex, if for any x,y ∈ I and for all t ∈ [0,1] the following
functional inequality holds

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+δ.

They showed that a function satisfying δ-convexity can be decomposed as the algeb-
raic sum of an ordinary convex and a bounded function whose supremum norm is not
greater than δ

2 . Since then many different versions of approximate convexity were
introduced and investigated (see [5], [6], [7] and their references).

The notion of approximate monotonicity often appears during the study of gener-
alized convex functions. A function f : I → R is said to be ε-monotone, if it satisfies
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the following functional inequality

f (x)≤ f (y)+ ε for all x,y ∈ I with x < y.

Páles in [12] showed that an ε-monotone function f can also be expressed as g+ h;
where g is nondecreasing and h is a bounded function satisfying ||h|| ≤ ε

2 .
We are going to see results associated with more generalized versions of approx-

imate monotonicity and convexity. Throughout this paper I ⊆ R represents the non-
empty and non-singleton interval [a,b]. The length of the interval I will be denoted by
ℓ(I). The function Φ : [0, ℓ(I)]→ R+ will be termed as error function, where R+ de-
notes the set of nonnegative reals. With the help of error function Φ, we can introduce
terminologies such as approximately monotone, Hölder, convex and affine functions.
These function classes are studied in depth in the papers [5]-[7], [11], where along
with structural properties, some characterizations, decompositions, several sandwich
type theorems and applications are discussed. For readability purposes, we recall
these notions.

A function f : I → R is said to be Φ-monotone if for any x,y ∈ I with x < y, the
following inequality holds

f (x)≤ f (y)+Φ(y− x).

This version of approximate monotonicity was first introduced in [5]. A more in
depth study can be found in [6]. Due to association of the non-negative error term,
the class of Φ-monotone functions is bigger than the class of ordinary nondecreasing
functions. If both of the functions f and − f satisfy Φ-monotonicity, i.e.,

| f (x)− f (y)| ≤ Φ(|y− x|) for all x,y ∈ I,

then f is termed as Φ-Hölder.
The following definition was introduced in [11]. A function f : I →R is said to be

Φ-convex if the functional inequality

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ tΦ((1− t)|y−x|)+(1− t)Φ(t|y−x|) (1.1)

holds for any x,y ∈ I and for all t ∈ [0,1]. It is also evident that any ordinary convex
function also possesses Φ-convexity. If both f and − f are Φ-convex, i.e.,

| f (tx+(1− t)y)− t f (x)− (1− t) f (y)| ≤ tΦ((1− t)|y− x|)+(1− t)Φ(t|y− x|)
holds for any x,y ∈ I and for all t ∈ [0,1], then we say that f is a Φ-affine function.

In [6], one of the results states that if f : I → R is Φ-monotone, then

f (a)− 1
b−a

∫ b−a

0
Φ(s)ds ≤ 1

b−a

∫ b

a
f (s)ds ≤ f (b)+

1
b−a

∫ b−a

0
Φ(s)ds

holds, provided both f and Φ are Lebesgue integrable. Our goal in this paper is to
estimate the numerical integral mean of f , i.e., 1

b−a In( f ), where In( f ) denotes some
of the most popular Newton-Cotes quadrature formulas: the Trapezoidal, Simpson’s
and Simpson’s 3/8 rules. Without assuming the Lebesgue integrability of the error
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function Φ, we can show that a continuous Φ-monontone function f satisfies the
following inequality

f (a)− n
2

Φ

(
b−a

n

)
≤ 1

b−a
In( f )≤ f (b)+

n
2

Φ

(
b−a

n

)
.

Let xi = a+ (b−a)i
n , i = 0,1, . . . ,n be an equidistant partition of the interval [a,b]. For

a continuous function f : I →R, we recall the Trapezoidal, Simpson’s and Simpson’s
3/8 rules as follows (see e.g. [3]):

Tn( f ) :=
(

b−a
2n

)[
f (x0)+2

n−1

∑
i=1

f (xi)+ f (xn)

]
(n ∈ N),

Sn( f ) :=
(

b−a
3n

)[
f (x0)+2

(n/2)−1

∑
i=1

f (x2i)+4
n/2

∑
i=1

f (x2i−1)+ f (xn)

]
(n ∈ N is even),

and

S
3
8

n ( f ) :=
(

3(b−a)
8n

) n/3

∑
i=1

[ f (x3i−3)+3 f (x3i−2)+3 f (x3i−1)+ f (x3i)]

(n = 3k, k ∈ N).

The classical Hermite-Hadamard inequality was independently introduced by Her-
mite and Hadamard in [8] and [9]. It states that ”In a compact interval, integral mean
of a convex function is greater than the functional value at the mid-point, while the
same is dominated by the average of the functional values at the extreme points of
that interval.” Mathematically, for a convex function f : I →R, this inequality can be
represented as follows

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
. (1.2)

Various generalized forms of this inequality were presented for approximate and
higher order convex functions. Along with it many associated concepts and applica-
tions were also studied (see e.g. [1], [2], [4] and the references therein).

In this paper, we present the numerical version of Hermite-Hadamard inequality
for the continuous Φ-convex function f : I → R. We show that for any even number
n ∈ N, the following functional inequality holds

f
(

a+b
2

)
− n2 +2

12
Φ

(
b−a

n

)
≤ 1

b−a
Tn( f )≤ f (a)+ f (b)

2
+

n2 −1
6

Φ

(
b−a

n

)
.

One can easily observe that it resembles very closely with the original inequality
(1.2). We show similar estimates for odd n, see Theorem 4 below.
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For the cases of Φ-Hölder and Φ-affine functions we will obtain inequalities with
improved lower and upper bounds. Furthermore, in our results, we discuss particular
cases where we can omit the dependency on n from the error terms.

The graphs of approximately monotone and convex functions often appear in
the stock prices of share market, various financial and business models, population
growth of certain regions etc. To have an estimate of mean values for such scen-
arios, numerical integration techniques are useful. Through this we can neglect the
stochastic nature of the associated error term.

2. ON APPROXIMATELY MONOTONE FUNCTIONS

We start with Φ-monotone and Φ-Hölder functions. As discussed before, through-
out this section, I will denote the non-empty and non-singleton interval [a,b] with
a < b.

Theorem 1. Let f : I → R be a continuous Φ-monotone function. Then for any
n ∈ N, the following inequalities hold

f (a)− n
2

Φ

(
b−a

n

)
≤ 1

b−a
Tn( f )≤ f (b)+

n
2

Φ

(
b−a

n

)
. (2.1)

Proof. For the proof, we consider partitioning the interval I into n equal subinter-
vals as follows

P = {a = x0 < x1 < · · ·< xn = b} with xi−xi−1 =
b−a

n
, i ∈ {1, . . . ,n}. (2.2)

By applying Φ-monotonicity in each of the subintervals [xi−1,xi] of I, we get the
following system of n inequalities

f (x0)− f (x1)≤ Φ

(
b−a

n

)
... (2.3)

f (xn−1)− f (xn)≤ Φ

(
b−a

n

)
.

First multiplying each inequalities of the above system respectively by 1,3, . . . ,2n−1
and then summing those up, we arrive at

f (x0)+2
n−1

∑
i=1

f (xi)+ f (xn)≤ 2n f (xn)+

(
n

∑
i=1

(2i−1)

)
Φ

(
b−a

n

)
= 2n f (xn)+n2

Φ

(
b−a

n

)
.
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Now multiplying both side of the above inequality by
b−a

2n
and using the definition

of the Trapezoidal rule, we obtain

Tn( f )≤ (b−a)
(

f (b)+
n
2

Φ

(
b−a

n

))
.

Dividing both side by b−a, we get the second part of inequality (2.1).
Similarly, multiplying each inequalities of (2.3) by 2n− 1,2n− 3, . . . ,1, respect-

ively, and then adding the resultant inequalities, we arrive at

(2n) f (x0)−

(
n

∑
i=1

(2(n− i)+1)

)
Φ

(
b−a

n

)
≤ f (x0)+2

n−1

∑
i=1

f (xi)+ f (xn).

As before, we multiply the both sides of this inequality by
b−a

2n
and utilizing the

definition of the Trapezoidal rule, we get

(b−a)
(

f (a)− n
2

Φ

(
b−a

n

))
≤ Tn( f ).

This yields the first part of inequality (2.1) and establishes the statement. □

Next we are going to see result associated with trapezoidal integral mean for the
Φ-Hölder functions.

Corollary 1. Let f : I → R be a continuous Φ-Hölder function. Then for any
n ∈ N, the following inequalities hold

max{ f (a), f (b)}− n
2

Φ

(
b−a

n

)
≤ 1

b−a
Tn( f )≤ min{ f (a), f (b)}+ n

2
Φ

(
b−a

n

)
.

(2.4)

Proof. For the proof, we consider partitioning the interval I as defined in (2.2).
Since f is Φ-Hölder; the function (− f ) also possesses Φ-monotonicity. Therefore
by Theorem 1, substituting − f instead of f in (2.1), we obtain

f (b)− n
2

Φ

(
b−a

n

)
≤ 1

b−a
Tn( f )≤ f (a)+

n
2

Φ

(
b−a

n

)
.

This together with (2.1) yields the inequality (2.4) and completes the proof. □

The next corollary shows that under a usual characteristics of error function Φ, the
dependency of n can be relaxed in the bounds of the numerical integral. We say that
the error function Φ is superadditive if Φ(x)+Φ(y)≤ Φ(x+y) holds for any x,y and
x+ y ∈ [0, ℓ(I)].

Corollary 2. Let f : I → R be a continuous Φ-monotone function where Φ pos-
sesses superadditivity. Then for any n ∈ N, the following inequalities hold

f (a)− 1
2

Φ(b−a)≤ 1
b−a

Tn( f )≤ f (b)+
1
2

Φ(b−a). (2.5)
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Proof. Since Φ : [0, ℓ(I)] → R+ is superadditive, for any n ∈ N, it satisfies the
following functional inequality

nΦ

(
b−a

n

)
=

n

∑
i=1

Φ

(
b−a

n

)
≤ Φ

(
n

∑
i=1

b−a
n

)
= Φ(b−a). (2.6)

Using the above inequality at (2.1) of Theorem 1, we obtain the desired result. □

The above corollary can also be formulated for Theorems 2 and 3 under necessary
assumptions on n. The next theorems replicate the similar result for Simpson’s and
Simpson’s 3/8 rules.

Theorem 2. Let f : I → R be a continuous a Φ-monotone function. Then for any
even number n ∈ N, the following inequalities hold

f (a)− n
2

Φ

(
b−a

n

)
≤ 1

b−a
Sn( f )≤ f (b)+

n
2

Φ

(
b−a

n

)
. (2.7)

Proof. To prove the statement, we consider partitioning the interval I into n equal
subintervals as mentioned in (2.2). Utilizing Φ-monotonicity of f in each of the
subintervals [xi−1,xi] of I, we get the system of n inequalities as mentioned in (2.3).

Now we multiply both sides of the odd numbered inequalities of (2.3) by (6i−5)
and even numbered inequalities by (6i−1) respectively for i = 1, . . . , n

2 and summing
up those side by side, we obtain

n/2

∑
i=1

[ f (x2i−2)+4 f (x2i−1)+ f (x2i)]

≤ 3n f (xn)+Φ

(
b−a

n

)(n/2

∑
i=1

(6i−1)+
n/2

∑
i=1

(6i−5)

)
.

It can be easily observable that
n/2

∑
i=1

(6i−1)+
n/2

∑
i=1

(6i−5) =
3
2

n2. Upon multiplying the

above inequality by
b−a

3n
and using the definition of Simpson’s rule we get

Sn( f )≤ (b−a)
(

f (b)+
n
2

Φ

(
b−a

n

))
.

Dividing both side of it by b−a, we obtain the right most inequality of (2.7).
To show the initial part of inequality (2.7), once again we consider the system

of inequalities (2.3). First we multiply both sides of odd numbered inequalities by
6(n

2 − i)+ 5 and then even numbered inequalities by 6(n
2 − i)+ 1 for i = 1,2, . . . , n

2
respectively. After adding up the resultant inequalities side by side, we arrive at

3n f (x0)−Φ

(
b−a

n

)(n/2

∑
i=1

(
6
(n

2
− i
)
+1
)
+

n/2

∑
i=1

(
6
(n

2
− i
)
+5
))
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≤
n/2

∑
i=1

[ f (x2i−2)+4 f (x2i−1)+ f (x2i)] .

Multiplying the above inequality by
b−a

3n
and using the definition of Simpson’s rule

we obtain

(b−a)
(

f (a)− n
2

Φ

(
b−a

n

))
≤ Sn( f ).

This shows the first inequality part of (2.7) and establishes the result. □

The corollary below can be derived by using the above theorem. Hence the proof
of it is not included.

Corollary 3. Let f : I →R be a continuous Φ-Hölder function. Then for any even
number n ∈ N, the following inequalities hold

max{ f (a), f (b)}− n
2

Φ

(
b−a

n

)
≤ 1

b−a
Sn( f )≤ min{ f (a), f (b)}+ n

2
Φ

(
b−a

n

)
.

The next corollary shows that in case the error function Φ is superadditive, then
we can obtain bounds for the numerical integral mean of f , which are independent of
n.

Corollary 4. Let f : I →R be a continuous Φ-Hölder function where Φ possesses
superadditivity. Then

max{ f (a), f (b)}− 1
2

Φ(b−a)≤ 1
b−a

Sn( f )≤ min{ f (a), f (b)}+ 1
2

Φ(b−a)

hold for any even number n ∈ N.

Proof. The statement is a direct consequence of Corollary 3 and (2.6). □

We can construct similar results for Φ-Hölder functions for the Trapezoidal and
Simpson’s 3/8 rule under the appropriate restriction/relaxation on the value of n.

Theorem 3. Let f : I → R be a continuous Φ-monotone function. Then for any
number n ∈ N which is a multiple of 3, the inequalities

f (a)− n
2

Φ

(
b−a

n

)
≤ 1

b−a
S

3
8

n ( f )dx ≤ f (b)+
n
2

Φ

(
b−a

n

)
(2.8)

hold.

Proof. To prove the statement, we consider partitioning the interval I into n equal
subintervals as mentioned in (2.2). Utilizing Φ-monotonicity of f in each of the
subintervals [xi−1,xi] of I, we get the system of n inequalities as mentioned in (2.3).
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Since n is a multiple of 3, we orderly rearrange the system of inequalities in
n
3

triplets
as follows

f (x3k−3)≤ f (x3k−2)+Φ

(
b−a

n

)
f (x3k−2)≤ f (x3k−1)+Φ

(
b−a

n

)
(k = 1,2, . . . ,n/3) (2.9)

f (x3k−1)≤ f (x3k)+Φ

(
b−a

n

)
.

Now initially, we multiply the first, second and 3rd inequalities of kth triplet respect-
ively by 8k− 7, 8k− 4 and 8k− 1. After summing up all resultant inequalities side
by side, we arrive at the following

n/3

∑
k=1

((8k−7) f (x3k−3)+3 f (x3k−2)+3 f (x3k−1)− (8k−1) f (x3k))

≤

(
n/3

∑
k=1

(24k−12)

)
Φ

(
b−a

n

)
.

One can easily see that
n/3

∑
k=1

(24k−12) =
4
3

n2. Now rewriting the above inequality, we

get

n/3

∑
i=1

( f (x3i−3)+3 f (x3i−2)+3 f (x3i−1)+ f (x3i))≤
8n
3

f (b)+
4
3

n2
Φ

(
b−a

n

)
.

Multiplying both sides of the above inequality by
3(b−a)

8n
and using the definition

of Simpson’s 3/8 rule, we obtain the following functional inequality

S
3
8

n ( f )≤ (b−a)
(

f (b)+
n
2

Φ

(
b−a

n

))
.

By diving both sides of it by (b−a) we get the right most inequality of (2.8).
To obtain the first part of the inequality, we multiplying the first, second and 3rd

inequalities of kth triplet in (2.9) by 8(n/3−k)+7, 8(n/3−k)+4 and 8(n/3−k)+1
respectively for k = 1, . . . ,n/3. After that adding up all the inequalities side by side,
we arrive at the following

8n
3

f (a)− 4
3

n2
Φ

(
b−a

n

)
≤

n/3

∑
i=1

[
f (x3i−3)+3 f (x3i−2)+3 f (x3i−1)+ f (x3i)

]
.
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Now we multiply both sides of it by
3(b−a)

8n
and using the definition of Simpson’s

3/8 rule, we obtain the functional inequality below

(b−a)
(

f (a)− n
2

Φ

(
b−a

n

))
≤ S

3
8

n ( f ).

This yields the first part of inequality (2.8) and completes the proof. □

The establishment of the following result is a direct implication of the above the-
orem. For that reason, we just state the statement.

Corollary 5. Let f : I → R be a continuous Φ-Hölder function. Then for any
number n∈N which is a multiple of 3, the function f satisfies the following functional
inequalities

max{ f (a), f (b)}− n
2

Φ

(
b−a

n

)
≤ 1

b−a
S

3
8

n ( f )≤ min{ f (a), f (b)}+ n
2

Φ

(
b−a

n

)
.

In the next section, we discuss results related to Φ-convex and Φ-affine functions.

3. ON APPROXIMATELY CONVEX FUNCTIONS

The main objective of this section is to present a numerical version of Hermite-
Hadamard type inequality for Φ-convex functions. Here also, I will stand for non-
empty and non-singleton interval [a,b] with a < b.

Theorem 4. Suppose f : I → R is a continuous Φ-convex function. Then for any
n ∈ N, the following inequalities satisfy

f
(

a+b
2

)
−En ≤

1
b−a

Tn( f )≤ f (a)+ f (b)
2

+
n2 −1

6
Φ

(
b−a

n

)
, (3.1)

where

En =

{
n2+2

12 Φ
(b−a

n

)
, if n is even,

n2−1
12 Φ

(b−a
n

)
+Φ

(b−a
2n

)
, if n is odd.

(3.2)

Proof. Let x < y. By substituting t = 1
2 in (1.1), we arrive at the following

2 f
(

x+ y
2

)
≤ f (x)+ f (y)+2Φ

(
y− x

2

)
. (3.3)

We partition the interval I as defined in (2.2). Now instead of x and y; substituting
the pairs (xi−1,xi+1) for all i = 1, . . . ,n− 1 in (3.3), we get the following system of
n−1 inequalities

2 f (x1) = 2 f
(

x0 + x2

2

)
≤ f (x0)+ f (x2)+2Φ

(
b−a

n

)
... (3.4)
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2 f (xn−1) = 2 f
(

xn−2 + xn

2

)
≤ f (xn−2)+ f (xn)+2Φ

(
b−a

n

)
To establish (3.1), we consider two cases. At first we assume that n is odd. Now
summing up the all n−1 inequalities of (3.4), we obtain the following

f (x1)+ f (xn−1)≤ f (x0)+ f (xn)+2(n−1)Φ
(

b−a
n

)
.

Now excluding the very first and last inequalities from (3.4) and summing up all the
remaining n−3 inequalities, we arrive at

f (x2)+ f (xn−2)≤ f (x1)+ f (xn−1)+2(n−3)Φ
(

b−a
n

)
.

Continuing the same way, we finally have the system of
n−1

2
inequalities as follows

f
(

x n−1
2

)
+ f

(
x n+1

2

)
≤ f

(
x n−3

2

)
+ f

(
x n+3

2

)
+4Φ

(
b−a

n

)
f
(

x n−3
2

)
+ f

(
x n+3

2

)
≤ f

(
x n−5

2

)
+ f

(
x n+5

2

)
+8Φ

(
b−a

n

)
... (3.5)

f (x2)+ f (xn−2)≤ f (x1)+ f (xn−1)+2(n−3)Φ
(

b−a
n

)
f (x1)+ f (xn−1)≤ f (x0)+ f (xn)+2(n−1)Φ

(
b−a

n

)
.

Now multiplying each of the inequalities of the above system by 2,4, . . . ,n−3,n−1
respectively and summing those up side by side we have

2[ f (x1)+ . . .+ f (xn−1)]≤ (n−1)( f (x0)+ f (xn))+2

(
(n−1)/2

∑
i=1

(2i)2

)
Φ

(
b−a

n

)
.

Adding f (x0)+ f (xn) to both sides of the above inequality and multiplying the res-

ulting inequality by
b−a

2n
, we obtain

Tn( f )≤ (b−a)
[

f (a)+ f (b)
2

+
n2 −1

6
Φ

(
b−a

n

)]
. (3.6)

On the other hand, if n is even; we formulate the following system of n−1 inequal-
ities by applying the same method as described above

2 f
(

x n
2

)
≤ f

(
x n

2−1

)
+ f

(
x n

2+1

)
+2Φ

(
b−a

n

)
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f
(

x n
2−1

)
+ f

(
x n

2+1

)
≤ f

(
x n

2−2

)
+ f

(
x n

2+2

)
+6Φ

(
b−a

n

)
... (3.7)

f (x2)+ f (xn−2)≤ f (x1)+ f (xn−1)+2(n−3)Φ
(

b−a
n

)
f (x1)+ f (xn−1)≤ f (x0)+ f (xn)+2(n−1)Φ

(
b−a

n

)
.

We multiply each inequalities of the above system respectively by 1,3, . . . ,n−3,n−1
and then adding the resultant inequalities side by side, we arrive the following

2[ f (x1)+ · · ·+ f (xn−1)]≤ (n−1)( f (x0)+ f (xn))+2

(
n/2

∑
i=1

(2i−1)2

)
Φ

(
b−a

n

)
.

By adding f (x0)+ f (xn), and then multiplying both sides of the resulting inequality

by
b−a

2n
and utilizing the identity 2

n/2

∑
i=1

(2i−1)2 =
n3 −n

3
we again obtain (3.6). This

yields the second inequality of (3.1) for any n ∈ N and establishes the first assertion.
To show the first inequality of (3.1), first we assume n is even, and we construct the

n−1 system of inequalities as described in (3.7). Now first multiplying the inequalit-
ies of the system by n−1,n−3, . . . ,1 respectively and then summing the resultant in-

equalities side by side, and using the identity 2
n/2

∑
i=1

(2i−1)(n− (2i−1)) =
n(n2 +2)

6
,

we obtain

2n f (x n
2
)≤ f (x0)+2

n−1

∑
i=1

f (xi)+ f (xn)+
n(n2 +2)

6
Φ

(
b−a

n

)
.

Now we again multiply both sides of the above inequality by
b−a

n
. Applying the

trapezoidal rule to the resultant, we get

(b−a)
[

f
(

a+b
2

)
− n2 +2

12
Φ

(
b−a

n

)]
≤ Tn( f ).

Next we suppose n is odd. We multiply the inequalities in (3.5) by n−2,n−4, . . . ,3,1,
respectively, and add them up, then we get

(n−2)
[

f
(

x n−1
2

)
+ f

(
x n+1

2

)]
≤ f (x0)+2

(
f (x1)+ · · ·+ f

(
x n−3

2

)
+ f

(
x n+3

2

)
+ · · ·

+ f (xn−1)

)
+ f (xn)+2

(n−1)/2

∑
i=1

2i(n−2i)Φ
(

b−a
n

)
.
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This yields

n
(
[ f
(

x n−1
2

)
+ f

(
x n+1

2

)]
≤ f (x0)+2

n−1

∑
i=1

f (xi)+ f (xn)+
n3 −n

6
Φ

(
b−a

n

)
,

hence by multiplication with
1
2n

we obtain

1
2

(
[ f
(

x n−1
2

)
+ f

(
x n+1

2

)]
≤ 1

b−a
Tn( f )+

n2 −1
12

Φ

(
b−a

n

)
.

Then (3.3) implies

f
(

a+b
2

)
−Φ

(
b−a

2n

)
≤ 1

2

(
[ f
(

x n−1
2

)
+ f

(
x n+1

2

)]
≤ 1

b−a
Tn( f )+

n2 −1
12

Φ

(
b−a

n

)
.

This together with (3.2) establishes the first inequality of (3.1) and completes the
proof. □

For the case Φ ≡ 0; the definition of Φ-convex function (in equation (1.1)), turns
to be the usual convexity. From the above theorem; it is evident that if f : I → R is
convex, then for any n ∈ N, the function f satisfies the following inequality

f
(

a+b
2

)
≤ 1

b−a
Tn( f )≤ f (a)+ f (b)

2
.

Next, we are going to study Hermite-Hadamard inequality for Φ-affine functions.

Corollary 6. Suppose f : I → R is a continuous Φ-affine function. Then for any
n ∈ N, the following inequalities are satisfied

max
{

f
(

a+b
2

)
−En,

f (a)+ f (b)
2

− n2 −1
6

Φ

(
b−a

n

)}
(3.8)

≤ 1
b−a

Tn( f )≤ min
{

f
(

a+b
2

)
+En,

f (a)+ f (b)
2

+
n2 −1

6
Φ

(
b−a

n

)}
,

where En is defined by (3.2).

Proof. Since f is Φ-affine, together with f , the function − f also satisfies Φ-
convexity. Thus instead of f , we can replace − f in (3.1) to obtain

f (a)+ f (b)
2

− n2 −1
6

Φ

(
b−a

n

)
≤ 1

b−a
Tn( f )≤ f

(
a+b

2

)
+En.

This inequality together with (3.1) establishes the result. □
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We note that by following the method of Theorem 4 we can obtain similar estim-
ates for Simpson’s and Simpson’s 3/8 rules. Clearly, the proofs of this paper can
be easily extended to estimates of the numerical integral mean associated to other
Newton-Cotes quadrature formulas.

We close this paper with the following observation. If f ∈C2[a,b], then it is known
(see, e.g., [3]) that Tn( f ) →

∫ b
a f (x)ds as n → ∞. Therefore, if the error function

satisfies

lim
n→∞

n2
Φ

(
b−a

n

)
= 0,

then estimates (3.1) imply the classical Hermite-Hadamard inequality (1.2) for Φ-
convex functions too.
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