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Abstract. In this paper, we are concerned with a logarithmic nonlinear viscoelastic m(x)-biharmonic
equation. Firstly, we proved the local existence of solutions by using the Faedo-Galerkin method.
Later, we proved the blow up of solutions by using the concavity method.
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1. INTRODUCTION

In this paper, we discuss a viscoelastic m(x)-biharmonic equation with logarithmic
source term

ut +∆2u+∆2
m(x)u−

t∫
0

g(t − z)∆2udz = |u|p−2 u ln |u| ,(x, t) ∈ Ω× (0,T ) ,

u(x, t) = ∂u
∂v (x, t) = 0, x ∈ ∂Ω × (0,T ) ,

u(x,0) = u0 (x) , x ∈ Ω.

(1.1)

Here Ω denotes a bounded domain in Rn (n ≥ 1) , with smooth boundary ∂Ω. The
variable exponents m(.) are provided as measurable functions defined within Ω . The
operator ∆2

m(x) is the so-called m(x)-biharmonic operator and is defined by

∆
2
m(x)u = ∆

(
|∆u|m(x)−2

∆u
)
.

Also, m(x) is given continuous and measurable function on Ω such that

m− = ess inf
x∈Ω

m(x) , m+ = esssup
x∈Ω

m(x) .
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We consider the following hypotheses:

A1) 2 < m− ≤ m(x)≤ m+ < p < Nm(x)
N−m(x) .

A2) g : R+ → R+ is a bounded C1 function with the following assumptions:

g(z)≥ 0, g′ (z)≤ 0, 1−
t∫

0

g(z)dz = l > 0.

A3) E (0)> 0, is the energy functional defined by (4.2).
Up till now, there are so many results about the parabolic-type differential equations.
Our main objective in the present paper is to consider the equation both with vis-

coelastic term (
t∫

0
g(t − z)∆2udz), variable exponent term (∆2

m(x)u) and the logarithmic

source term (|u|p−2 u ln |u|) which make the problem different from those considered
in the literature. The problem we deal with is a very general problem:

• The equation with variable exponents arises in many branches in sciences
such as image processing, electrorheological fluids and nonlinear elasticity
theory (see [5, 8, 23]).

• The equation with logarithmic source term arises in many branches in quantum
field theory, optics, inflation cosmology, nuclear physics and geophysics (see
[2, 4, 10]).

• The fourth-order equation has its origin in the canonical model introduced by
Petrovsky [18, 19]. This type equations arises in many branches in sciences
such as acoustics, geophysics, ocean acoustics and optics [9].

Qu et al. [21] studied the fourth-order parabolic equation

ut +∆
2u = |u|p(x) .

They established the asymptotic behavior of solutions. Later, Liu [15] demonstrated
the local existence and blow-up of solutions for the same equation.

Han [11] investigated the fourth-order parabolic equation

ut +∆
2u−∇ f (∇u) = h(x, t,u) .

The author exhibited the global existence and finite-time blow-up of solutions.
Abita examined in [22] the pseudo-parabolic equation within the context of a linear

memory term and a logarithmic nonlinear source term

ut −∆ut +

t∫
0

g(t − s)∆u(x,s)ds−∆u = |u|p(x)−2 u ln(|u|) . (1.2)

The author demonstrated that a solution to equation (1.2) blows up in finite time T ,
and gave the upper bound for the blow-up time.
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Chuong et al. [7] investigated the following Cahn-Hilliard equation

ut +∆
2u−∆p(x)u = |u|q(x)−2 u.

The authors established the existence and nonexistence of global solutions.
Chuong et al. [6] studied the pseudo-parabolic equations involving p(x)− Lapla-

cian and logarithmic nonlinearity

ut −∆ut −∆p(x)u = |u|q(x)−2 u ln(|u|) .

They obtained some threshold results on existence or nonexistence of global weak
solutions when the initial energy is subcritical.

Wang and Liu [24] studied the p(x)-biharmonic parabolic equation with the logar-
ithmic nonlinearity

ut +∆

(
|∆u|p(x)−2

∆u
)
= |u|q−2 u ln |u| .

They proved the existence of the local weak solutions and the existence of the global
weak solutions.

Narayanan and Soundararajan [16] studied the viscoelastic p(x)− Laplacian equa-
tion with logarithmic nonlinearity

ut −∆u−β∇

(
|∇u|p(x)−2

∇u
)
+

t∫
0

g(t − z)∆u(x,z)dz = |u|q−2 u ln |u| .

They proved the existence and finite time blow up of solutions of the problem.
This work consists of four sections. Firstly, in Section 2, we give some theories

needed about Lebesgue and Sobolev space with variable exponents. Then, Section 3
is about the existence of weak solutions by using the Faedo Galerkin approximation
method. Moreover, in Section 4, we obtain the analysis of blow-up phenomena and
the determination of an upper bound for the blow-up time.

2. PRELIMINARIES

Throughout this study, we represent the Lp(Ω) norm as ∥.∥p. Additionally, we
provide essential background on Lebesgue spaces and Sobolev spaces with variable
exponents (for detailed, see [1, 8, 20]).

Let p : Ω → [1,∞] be a measurable function. We introduce the Lebesgue space
with variable exponent p(.)

Lp(.) (Ω) =
{

u : Ω → R measurable in Ω, ρp(.) (λu) < ∞, for some λ > 0
}
,

where

ρp(.) (u) =
∫
Ω

|u(x)|p(x) dx.
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The norm, known as Luxemburg’s norm, is defined as follows:

∥u∥p(x) = inf

λ > 0 :
∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

 ,

Lp(.) (Ω) is a Banach space.
Next we proceed to define the variable-exponent Sobolev space W m,p(.) (Ω) as

W m,p(.) (Ω) =
{

u ∈ Lp(.) (Ω) such that Dαu exists and Dαu ∈ Lp(.) (Ω) , |α| ≤ m
}
.

Lemma 1 ([8]). Assume that

1 ≤ m− := ess inf
x∈Ω

m(x)≤ m(x)≤ m+ := esssup
x∈Ω

m(x)< ∞,

and we get

min
{
∥u∥m−

m(.) ,∥u∥m+

m(.)

}
≤ ρm(.) (u)≤ max

{
∥u∥m−

m(.) ,∥u∥m+

m(.)

}
, (2.1)

for any u ∈ Lm(.).

Definition 1 ([8]). For any given points x and y belonging to the bounded domain
Ω, there is a constant M > 0 such that the subsequent inequality is satisfied:

|p(x)− p(y)| ≤ M
ln |x− y|

, for x,y ∈ Ω, with |x− y|< δ, 0 < δ < 1,

then we say that p(x) is log-Holder continuous.

Lemma 2 ([8]). Suppose that q : Ω −→ [1,∞) is a measurable function that fulfills
inequality (2.1) and the continuity and compactness of the embedding Lq(.) ↪→ Lp(.)

can be established. In this context, the variable exponents p(x) and q(x) adhere to
the condition p(x)≤ q(x) almost everywhere within the domain Ω.

Lemma 3 ([8]). Assume that q : Ω → [1,∞) is a measurable function that fulfills
inequality (2.1) and there exists a continuous and compact Sobolev embedding from
W 1,m(x)

0 (Ω) ↪→ Lq(x) (Ω) , where the exponents m(x) ∈C
(
Ω
)
, q : Ω → [1,∞),

ess inf
x∈Ω

(m∗ (x)−q(x))> 0,

and

m∗ (x) =
{

Nm(x)
N −m(x)

, if m(x)< N,∞, if m(x)≥ N.

Lemma 4 ([12]). Suppose that v be a positive number. We get

α
q lnα ≤ (ev)−1

α
q+v,

holds for all α ∈ [1,∞) .
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Lemma 5 ([13, 17], Concavity method). Suppose that β > 0, let ψ(t) ≥ 0 be
weakly twice-differentiable on (0,∞) such that ψ(0)> 0, ψ′ (0)> 0 and

ψ
′′ (t)ψ(t)− (1+β)

(
ψ
′ (t)

)2 ≥ 0,

for all t ∈ (0,∞) . Then there exists a T > 0 such that

lim
t→T−

ψ(t) = ∞,

and

T ≤ ψ(0)
βψ′ (0)

.

Here we define a energy functional, which will be used in further calculations:

E (t) =
1
2

1−
t∫

0

g(z)dz

∥∆u∥2
2 +

1
2

t∫
0

g(t − z)∥∆u(x,z)−∆u(x, t)∥2
2 dz

−
∫
Ω

|∆u|m(x)

m(x)
dx+

1
p2 ∥u∥p

p −
1
p

∫
Ω

|u|p ln |u|dx. (2.2)

3. WEAK SOLUTIONS

In this section, we discuss the existence of weak solutions for the problem (1.1),
by using the Faedo Galerkin approximation method.

Lemma 6. A function u(x, t) is considered a weak solution for the problem (1.1)
if it satisfies the following conditions:

u(x, t) ∈ L2
(

0.T ;W 2,m(x)
0 (Ω)∩Lp (Ω)

)
∩L2 (0,T ;H2

0 (Ω)
)
∩C

(
0,T ;L2 (Ω)

)
,

ut (x, t) ∈ L2 (0,T ;L2 (Ω)
)

and u(x,0) = u0 (x) ,

which also satisfies:
T∫

0

∫
Ω

utθdxdt +
T∫

0

∫
Ω

∆u∆θdxdt +
T∫

0

∫
Ω

|∆u|m(x)−2
∆u∆θdxdt

−
T∫

0

t∫
0

g(t − z)
∫
Ω

∆u(x,z)∆θdxdzdt =
T∫

0

∫
Ω

|u|p−2 u ln |u|θdxdt, (3.1)

∀θ ∈C∞ (0,T ;C∞
0 (Ω)) , where the maximal interval of existence is defined as [0,T ] .

Theorem 1. Assuming that u0 ∈ W 2,m(x)
0 (Ω)∩ Lp (Ω)⧹{0} , the problem (1.1)

admits a weak solution u(x, t) , which is provided as described in Lemma 6.
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Proof. We deal with an orthonormal basis of L2 (Ω) , which is orthogonal in H2
0 (Ω)

given by {θi}∞

i=1 . {θi}∞

i=1 is a sequence of eigenfunctions of −∆ corresponding to the
eigenvalues {λi}∞

i=1 . Now, we proceed to seek finite-dimensional approximations of
equation (1.1) denoted as {un} where

un (x, t) =
n

∑
i=1

ani (t)θi (x) , (3.2)

so that∫
Ω

u′nθidx+
∫
Ω

∆un∆θidx+
∫
Ω

|∆un|m(x)−2
∆un∆θidx−

t∫
0

g(t − z)
∫
Ω

∆un (x,z)∆θidxdz

=
∫
Ω

|un|p−2 un ln |un|θidx, (3.3)

and

un (x,0) =
n

∑
i=1

ani (0)θi (x)−→ u0 (x) in W 2,m(x)
0 (Ω)∩Lp (Ω)⧹{0} . (3.4)

Now, we must obtain the coefficients {ani}n
i=1 . For k = 1,2, ...n,

a′nk (t) =−
∫
Ω

∆un∆θkdx−
t∫

0

g(t − z)
∫
Ω

∆un (x,z)∆θkdxdz

+
∫
Ω

|∆un|m(x)−2
∆un∆θkdx+

∫
Ω

|un|p−2 un ln |un|θkdx. (3.5)

Here we take into account the maximum interval of existence as [0,T ] . When we
multiply equation (3.3) by a

′
ni (t) and sum for i = 1,2, ...n, we obtain∫

Ω

∣∣u′n∣∣2 dx+
∫
Ω

∆un∆θ
′
ndx−

∫
Ω

|∆un|m(x)−2
∆un∆θ

′
ndx

+

t∫
0

g(t − z)
∫
Ω

∆un (x,z)∆θ
′
ndxdz =

∫
Ω

|un|p−2 un ln |un|θ′
ndx.

Consequently,∫
Ω

∣∣u′n∣∣2 dx− 1
2

t∫
0

g′ (t − z)∥∆un (x,z)−∆un (x, t)∥2
2 dz+

1
2

g(t)∥∆un∥2
2

=− d
dt

E (un (t)) . (3.6)
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Considering E as the functional defined by equation (2.2), we proceed with the im-
plications of hypothesis (A2) to obtain

E ′ (un (t)) =−
∫
Ω

∣∣u′n∣∣2 dx− 1
2

g(t)∥∆un∥2
2 +

1
2

t∫
0

g′ (t − z)∥∆un (x,z)−∆un (x, t)∥2
2 dz

≤ 0. (3.7)

This leads to the implication that E (un) is non-increasing. Consequently, we estab-
lish E (un (t))≤ E (un (0)) ∀t ∈ [0,T ) and for every n∈N. Multiplying (3.3) by ani (t)
and then taking the sum over i, we have∫

Ω

u′nundx+
∫
Ω

|∆un|2 dx−
∫
Ω

|∆un|m(x) dx−
t∫

0

g(t − z)
∫
Ω

∆un (x,z)∆un (x, t)dxdz

=
∫
Ω

|un|p ln |un|dx.

We get

d
dt

1
2

∫
Ω

|un|2 dx+
d
dt

t∫
0

∫
Ω

|∆un|2 dxdz− d
dt

t∫
0

∫
Ω

|∆un|m(x) dxdz

=

t∫
0

g(t − z)
∫
Ω

∆un (x,z)∆un (x, t)dxdz+
∫
Ω

|un|p ln |un|dx. (3.8)

We call

Hn (t) =
1
2

∫
Ω

|un|2 dx+
t∫

0

∫
Ω

|∆un|2 dxdz−
t∫

0

∫
Ω

|∆un|m(x) dxdz. (3.9)

So,

d
dt

Hn (t) =
t∫

0

g(t − z)
∫
Ω

∆un (x,z)∆un (x, t)dxdz+
∫
Ω

|un|p ln |un|dx. (3.10)

To proceed, we utilize Young’s inequality. Consequently, we obtain
t∫

0

g(t − z)
∫
Ω

∆un (x,z)∆un (x, t)dxdz

=

t∫
0

g(t − z)
∫
Ω

∆un (x, t)(∆un (x,z)−∆un (x, t))dxdz+
t∫

0

g(t − z)∥∆un∥2
2 dz
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≤ 1
2

t∫
0

g(t − z)∥∆un (x,z)−∆un (x, t)∥2
2 dz

+
1
2

t∫
0

g(t − z)∥∆un∥2
2 dz+

t∫
0

g(t − z)∥∆un∥2
2 dz.

This results in
t∫

0

g(t − z)
∫
Ω

∆un (x,z)∆un (x, t)dxdz

≤ 1
2

t∫
0

g(t − z)∥∆un (x,z)−∆un (x, t)∥2
2 dz+

3
2

t∫
0

g(t − z)∥∆un∥2
2 dz.

Therefore, based on hypothesis (A2) and equation (3.7), we get

d
dt

Hn (t)≤ E (un (t))−
1
2

1−
t∫

0

g(z)dz

∥∆un∥2
2

+
∫
Ω

|∆un|m(x)

m(x)
dx+

1
p

∫
Ω

|un|p ln |un|dx

− 1
p2 ∥un∥p

p +
3
2

t∫
0

g(t − z)∥∆un∥2
2 dz+

∫
Ω

|un|p ln |un|dx, (3.11)

and

d
dt

Hn (t)≤ E (un (t))+2
t∫

0

g(z)dz∥∆un∥2
2 −

1
2
∥∆un∥2

2 +
∫
Ω

|∆un|m(x)

m(x)
dx

− 1
p2 ∥un∥p

p +

(
1+

1
p

)∫
Ω

|un|p ln |un|dx,

d
dt

Hn (t)≤ E (un (0))+2(1− l)∥∆un∥2
2 +

(
1+

1
p

)∫
Ω

|un|p ln |un|dx. (3.12)

Now, utilizing Lemma 6, we arrive at∫
Ω

|un|p ln |un|dx ≤
∫

{x∈Ω:|un|≥1}

|un|p ln |un|dx ≤ (ev)−1 .
∫

{x∈Ω:|un|≥1}

|un|p+v dx

≤ (ev)−1 .∥un∥p+v
p+v , (3.13)
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here 0 < v < p∗− p, p∗ = N p
N−p . By using the Gagliardo-Nirenberg interpolation in-

equality as presented in [3], we obtain

∥un∥p+v
p+v ≤C∥∆un∥β(p+v)

m ∥un∥
(1−β)(p+v)
2 , (3.14)

where β = Nm(p+v−2)
(p+v)(Nm−2N+2m) . By employing Young’s inequality with ε we get

∥un∥p+v
p+v ≤ ε∥∆un∥m

m +C (ε)∥un∥
m−(1−β)(p+v)

p−−β(p+v)

2 . (3.15)

Consequently, equation (3.12) implies

d
dt

Hn (t)≤
(

1+
1
p

)
(ev)−1

[
ε∥∆un∥m

m +C (ε)∥un∥
m−(1−β)(p+v)

p−−β(p+v)

2

]
+E (un (0))+2(1− l)∥∆un∥2

2 . (3.16)

We obtain

d
dt

Hn (t)≤
(

1+
1
p

)
(ev)−1

[
ε∥∆un∥m

m +C (ε)∥un∥
m−(1−β)(p+v)

p−−β(p+v)

2

]
+E (un (0))+2(1− l)∥∆un∥2

2 .

Set ψ = m−(1−β)(p+v)
2(m−β)(p+v) > 1 and suppose min

{
∥∆un∥m−

m(x) ,∥∆un∥m+

m(x)

}
= ∥∆un∥m−

m(x) ,

then by (2.1) we obtain

d
dt

Hn (t)≤
(

1+
1
p

)
(ev)−1

C (ε)∥un∥2ψ

2 + ε

∫
Ω

|∆un|m(x) dx


+E (un (0))+2(1− l)∥∆un∥2

2 .

By integrating this inequality from 0 to t, we obtain

Hn (t)≤ Hn (0)+E (un (0)) t +
(

1+
1
p

)
(ev)−1 2C (ε)

t∫
0

1
2
∥un∥2ψ

2 dz

+

(
1+

1
p

)
(ev)−1

ε

t∫
0

∫
Ω

|∆un|m(x) dxdz+2(1− l)
t∫

0

∥∆un∥2
2 dz. (3.17)

We define the constant Hn (0)+E (un (0)) t = c1, which is dependent on t, within the
interval t ∈ [0,T ] . Now, we select l ≥ 3

4 and ε = evp
2(p+1) , in order to derive

Hn (t)≤ c1 (t)+
1
2

t∫
0

∥∆un∥2
2 dz− 1

2

t∫
0

∫
Ω

|∆un|m(x) dxdz+ c2

t∫
0

1
2
∥un∥2ψ

2 dz
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≤ c1 (t)+
1
2

Hn (t)+ c2

t∫
0

Hψ
n dz,

here c2 = 2C (ε)
(

1+ 1
p

)
(ev)−1 . Consequently, we get

Hn (t)≤ c1 (t)+ c2

t∫
0

Hψ
n dz. (3.18)

Applying the Gronwall-Bellman-Bihari type inequality, we will obtain

Hn (t) =
1
2

∫
Ω

|un|2 dx+
t∫

0

∫
Ω

|∆un|2 dxdz−
t∫

0

∫
Ω

|∆un|m(x) dxdz ≤CT , (3.19)

where, CT depends on T. Our assumption min
{
∥∆un∥m−

m(x) ,∥∆un∥m+

m(x)

}
= ∥∆un∥m−

m(x) ,

combined with (A1) gives ∥∆un∥2
m(x) ≤ ∥∆un∥m−

m(x) . Now, referring to equation (2.1)
we obtain

T∫
0

∥∆un∥2
m(x) dz ≤

T∫
0

∥∆un∥m−
m(x) dz ≤

T∫
0

∫
Ω

|∆un|m(x) dxdz ≤CT . (3.20)

Given the existence of equation (3.20), we can apply the Sobolev embedding to de-
duce

T∫
0

∥un∥2
m dx ≤C

T∫
0

∥∆un∥2
m(x) dz ≤CT . (3.21)

The continuity of E yields a constant C and considering that un (x,0) −→ u0 (x) in
W 2,m(x)

0 (Ω)∩Lp (Ω) , we get

E (un (x,0))≤C, for any n. (3.22)

Additionally, we have as derived from equation (3.6)∫
Ω

|unt |
2 dx ≤− d

dt
E (un) ,

integrating from 0 to t yields
t∫

0

∥∥u′n (z)
∥∥2

2 dz+E (un)≤ E (un (x,0))≤C. (3.23)

Together with the standard compactness results, the estimates (3.19), (3.20), (3.21)
and (3.23), will lead to

un −→ u weakly in L2
(

0,T ;W 2,m(x)
0 (Ω)∩Lp (Ω)

)
∩L2 (0,T ;H2

0 (Ω)
)
,
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u′n −→ u′ weakly in L2 (0,T ;L2 (Ω)
)
,

|∆un|m(x)−2
∆un −→ ξ weakly in L2

(
0,T ;Lm′(x) (Ω)

)
. (3.24)

Now, utilizing the Aubin-Lions lemma, we obtain

un −→ u in C
(
0,T ;L2 (Ω)

)
. (3.25)

The operator |k|m(x)−2 k combined with the Minty-Browder condition leads to ξ =

|∆u|m(x)−2
∆u. This concludes the proof. □

4. UPPER BOUND FOR BLOW-UP TIME

We obtain an upper bound for the blow-up time of solutions to equation (1.1).

Theorem 2. Assume the presence of a weak solution u(x, t) as defined in (1.1) for
the problem indicated in equation (1.1). Also (A1)− (A3) satisfied. We can conclude
that the solution u blows up in finite time T ∗,which is determined by

T ∗ ≤
(1+ γ)

(
1+ 1

φ

)
∥u0∥2

2

2µγJ (0)
, (4.1)

where φ,γ and µ are positive constants.

Proof. We multiply equation (1.1) by ut and integrate over Ω, to obtain∫
Ω

u2
t dx =−

∫
Ω

∆u∆utdx+
∫
Ω

|∆u|m(x)−2
∆u∆utdx+

∫
Ω

|u|p−2 u ln |u|utdx

+
∫
Ω

t∫
0

g(t − z)∆
2u(x,z)ut (x, t)dzdx,

consequently∫
Ω

u2
t dx− 1

2

t∫
0

g′ (t − z)∥∆u(x,z)−∆u(x, t)∥2
2 dz+

1
2

g(t)∥∆u∥2
2

=−1
2

d
dt

∥∆u∥2
2 +

d
dt

∫
Ω

|∆u|m(x)

m(x)
dx

− 1
2

d
dt

t∫
0

g(t − z)∥∆u(x,z)−∆u(x, t)∥2
2 dz+

d
dt

t∫
0

g(z)dz∥∆u∥2
2

− 1
p2

d
dt

∥u∥p
p +

1
p

d
dt

∫
Ω

|u|p ln |u|dx.
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Now, we set a functional

J (t) =−1
2

t∫
0

g(t − z)∥∆u(x,z)−∆u(x, t)∥2
2 dz

− 1
2

1−
t∫

0

g(z)dz

∥∆u∥2
2 +

∫
Ω

|∆u|m(x)

m(x)
dx+

1
p

∫
Ω

|u|p ln |u|dx− 1
p2 ∥u∥p

p ,

(4.2)

where by utilizing hypothesis (A2) , we derive

dJ (t)
dt

=
∫
Ω

u2
t dx+

1
2

g(t)∥∆u∥2
2 −

1
2

t∫
0

g
′
(t − z)∥∆u(x,z)−∆u(x, t)∥2

2 dz ≥ 0.

(4.3)

We define an auxiliary functional,

K (t) =
t∫

0

∫
Ω

u2 (x,z)dxdz+A. (4.4)

Subsequently

K′ (t) = 2
∫
Ω

t∫
0

u(x,z)ut (x,z)dzdx+
∫
Ω

u2
0 (x)dx, (4.5)

and

K′′ (t) = 2
∫
Ω

uutdx

=−2
∫
Ω

u(x, t)∆

(
|∆u|m(x)−2

∆u
)

dx+2
∫
Ω

u(x, t)
t∫

0

g(t − z)∆
2u(x,z)dzdx

−2
∫
Ω

u(x, t)∆
2udx+2

∫
Ω

u(x, t) |u|p−2 u ln |u|dx.

So that

K′′ (t) =−2∥∆u∥2
2 −2

∫
Ω

|∆u|m(x) dx+2
∫
Ω

|u|p ln |u|dx+2
t∫

0

g(t − z)dz∥∆u∥2
2 .

+2
t∫

0

g(t − z)
∫
Ω

∆u(x, t)(∆u(x,z)−∆u(x, t))dxdz.
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Next, select a constant µ such that m+ < µ < p and µ(µ−2)> 1−l
l . This yields

K′′ (t) = 2µJ (t)+µ
t∫

0

g(t − z)∥∆u(x,z)−∆u(x, t)∥2
2 dz

+2µ
∫
Ω

|∆u|m(x)

m(x)
dx+µ

1−
t∫

0

g(z)dz

∥∆u∥2
2

− 2µ
p

∫
Ω

|u|p ln |u|dx−2
∫
Ω

|∆u|m(x) dx+
2µ
p2 ∥u∥p

p

−2

1−
t∫

0

g(t − z)dz

∥∆u∥2
2 +2

∫
Ω

|u|p ln |u|dx

+2
t∫

0

g(t − z)
∫
Ω

∆u(x, t)(∆u(x,z)−∆u(x, t))dxdz.

Such that

K′′ (t)≥ 2µJ (t)+µ
∫
Ω

g(t − z)∥∆u(x,z)−∆u(x, t)∥2
2 dxdz

+
2µ
p2 ∥u∥p

p +(µ−2)

1−
t∫

0

g(t − z)dz

∥∆u∥2
2

+

(
2µ
p
−2

)∫
Ω

|u|p ln |u|dx+
(

2µ
m+

−2
)∫

Ω

|∆u|m(x) dx

+

t∫
0

g(t − z)
∫
Ω

∆u(x, t)(∆u(x,z)−∆u(x, t))dxdz.

Utilizing (A2) and assuming |u| ≥ 1, we obtain

K′′ (t)≥ 2µJ (t)+
[
(µ−2) l +

(1− l)
µ

]
∥∆u∥2

2 +

(
2µ
m+

−2
)∫

Ω

|∆u|m(x) dx+
2µ
p2 ∥u∥p

p

+2
(

1− µ
p

)∫
Ω

|u|p ln |u|dx

≥ 2µJ (t) . (4.6)
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From equation (4.3), we deduce

J (t)≥ J (0)+
t∫

0

∫
Ω

u2
t (x,z)dxdz. (4.7)

Now, considering φ > 0

(
K′ (t)

)2 ≤ 4(1+φ)

∫
Ω

t∫
0

u(x,z)ut (x,z)dzdx

2

+

(
1+

1
φ

)∫
Ω

u2
0 (x)dx

2

.

By utilizing Hölder’s inequality, we obtain

K′2 ≤ 4(1+φ)

 t∫
0

∫
Ω

u2 (x,z)dxdz

 t∫
0

∫
Ω

u2
t (x,z)dxdz


+

(
1+

1
φ

)∫
Ω

u2
0 (x)dx

2

.

As φ is arbitrary and positive, we select γ = φ =
√

µ
2 −1 > 0, we get

K′′ (t)K (t)− (1+ γ)
(
K′ (t)

)2 ≥−(1+ γ)

(
1+

1
φ

)∫
Ω

u2
0 (x)dx

2

+2µAJ (0) .

(4.8)

Since we possess equation (4.7) and J (0) > 0, in equation (4.8) we select A > 0 to
be sufficiently large such that

K′′ (t)K (t)− (1+ γ)
(
K′ (t)

)2 ≥ 0. (4.9)

From this we infer the finite time blow up of the solution u at a time T ∗, using Lev-
ine’s [14] concavity method as detailed. By selecting A as

A =

(1+ γ)
(

1+ 1
φ

)[∫
Ω

u2
0 (x)dx

]2

2µJ (0)
,

we obtain an upper bound for T ∗ as provided below:

0 < T ∗ ≤
(1+ γ)

(
1+ 1

φ

)
∥u0∥2

2

2µγJ (0)
. (4.10)

□
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5. CONCLUSION

As far as we know, there have not been any existence and blow up results in the lit-
erature known for the variable exponent biharmonic equation with logarithmic source
term. Our work extends the works for some parabolic type equations with variable
exponents treated in the literature to the variable exponent biharmonic equation with
logarithmic source term.
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