Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 14 (2013), No 3, pp. 1105-1111

A note on two Diophantine equations

$$
x^{2} \pm 2^{a} p^{b}=y^{4}
$$

Huilin Zhu, Gökhan Soydan, and Wei Qin

A NOTE ON TWO DIOPHANTINE EQUATIONS $x^{2} \pm 2^{a} p^{b}=y^{4}$

HUILIN ZHU, GÖKHAN SOYDAN, AND WEI QIN
Received 21 February, 2012

Abstract. In this paper we gave some results of the two Diophantine equations $x^{2} \pm 2^{a} p^{b}=$ $y^{4}, x, y \in \mathbb{N}, \operatorname{gcd}(x, y)=1, a, b \in \mathbb{Z}, a \geq 0, b \geq 0$, where p is an odd prime.

2010 Mathematics Subject Classification: 11D61; 11D41
Keywords: exponential Diophantine equation

1. Introduction

Let D denote an odd positive integer without any squared factor >1. In 1964, W.Ljunggren [15] showed that the Diophantine equation $x^{2}+4 D=y^{q}$ has no solutions in rational integers if $q \not \equiv 3(\bmod 8)$ where the class number of $\mathbb{Q} \sqrt{-D})$ is indivisible by the odd prime and also he showed that this equation has only a finite number of solutions in rational integers x and y and primes q for given D.

Let \mathbb{Z}, \mathbb{N} be the sets of integers and positive integers respectively. Let p be a fixed odd prime. Recently many authors are interested in the equation

$$
\begin{equation*}
x^{2}+\delta 2^{a} p^{b}=y^{n}, \quad x, y, a, b \in \mathbb{Z}, x, y \geq 1, \operatorname{gcd}(x, y)=1, a, b \geq 0, n \geq 3 \tag{1.1}
\end{equation*}
$$

where p is an odd prime and $\delta=1$. In 2002, F.Luca [18] found all positive integer solutions (x, y, a, b, n) of $x^{2}+2^{a} 3^{b}=y^{n}$ with $n \geq 3$ and coprime x and y. In 2008, F.Luca and A.Togbé [19] solved $x^{2}+2^{a} 5^{b}=y^{n}, \operatorname{gcd}(x, y)=1$. In 2009, F.Luca and A.Togbé [20] found all positive integer solutions of $x^{2}+2^{a} 13^{b}=y^{n}, \operatorname{gcd}(x, y)=1$. I.N.Cangül, M.Demirci, F.Luca, Á.Pintér and G.Soydan [5] solved $x^{2}+2^{a} 11^{b}=$ $y^{n}, \operatorname{gcd}(x, y)=1$. Recently, in [23], G.Soydan, M.Ulas and H.Zhu found all positive integer solutions of $x^{2}+2^{a} 19^{b}=y^{n}, \operatorname{gcd}(x, y)=1$. Obviously, the authors above researched the special cases of (1.1) and $p \in\{3,5,11,13,19\}$. In [4] A.Bérczes and I.Pink gave all the solutions of the Diophantine equation (1.1), when $\delta=1, a=0$ and b is even, where p is any prime in the interval $[2,100]$ and $\operatorname{gcd}(x, y)=1$. In [25] all the positive integer solutions (x, y, n) of the Diophantine equation $x^{2}+a^{2}=$ $2 y^{n}$ with $a \in\{3,4, \ldots, 501\}$ were found under the conditions that $n \geq 3$ and that

[^0]$\operatorname{gcd}(x, y)=1$.
For general odd prime p and general n, (1.1) is difficult to solve completely, but for special n, maybe we can get some information. For example, when $n=4$, (1.1) is rewritten as
\[

$$
\begin{equation*}
x^{2}+2^{a} p^{b}=y^{4}, x \geq 1, y>1, \operatorname{gcd}(x, y)=1, a \geq 0, b \geq 0 \tag{1.2}
\end{equation*}
$$

\]

where $\delta=1$. Obviously, $y^{4}-x^{2}$ can be factorized as $\left(y^{2}-x\right)\left(y^{2}+x\right)$. Our research is based on $\left(y^{2}-x\right)\left(y^{2}+x\right)=2^{a} p^{b}$ and $\operatorname{gcd}(x, y)=1$. Similarly, our research on another equation

$$
\begin{equation*}
x^{2}-2^{a} p^{b}=y^{4}, x \geq 1, y \geq 1, \operatorname{gcd}(x, y)=1, a \geq 0, b \geq 0 \tag{1.3}
\end{equation*}
$$

is based on $\left(x-y^{2}\right)\left(x+y^{2}\right)=2^{a} p^{b}$ and $\operatorname{gcd}(x, y)=1$. When $b=0,(1.1)$ is solved by J.H.E. Cohn [8, 9], S.A.Arif and F.S.Abu Muriefah [1,2] and M.Le [14]. When $a=1$ and $b \geq 3$, we find (1.2) is concerned with the famous equation

$$
\begin{equation*}
x^{2}-2=y^{n}, x>1, y \geq 1, n \geq 3 \tag{1.4}
\end{equation*}
$$

This is still unsolved and is one of the most exciting questions on "classical Diophantine equations". We do have good bounds for n, something like $n<1237$ or so, see the Appendix written by S.Siksek in the GTM book of [7]. And it has been solved for "half" the primes (namely those $n \equiv 1(\bmod 3))$, by I.Chen [6]. Most people believe (1.4) has no solution, but this has not been proved up to day.

Now we introduce some notations and symbols. For any positive integer k, let

$$
\begin{gather*}
u_{k}=\frac{1}{2}\left(\rho^{k}+\bar{\rho}^{k}\right), \quad v_{k}=\frac{1}{2 \sqrt{2}}\left(\rho^{k}-\bar{\rho}^{k}\right), 2 \nmid k \tag{1.5}\\
U_{k}=\frac{1}{2}\left(\rho^{\prime k}+{\overline{\rho^{\prime}}}^{k}\right), \quad V_{k}=\frac{1}{2 \sqrt{2}}\left(\rho^{\prime k}-{\overline{\rho^{\prime}}}^{k}\right), \tag{1.6}
\end{gather*}
$$

where

$$
\begin{equation*}
\rho=1+\sqrt{2}, \bar{\rho}=1-\sqrt{2}, \rho^{\prime}=3+2 \sqrt{2}, \bar{\rho}^{\prime}=3-2 \sqrt{2} \tag{1.7}
\end{equation*}
$$

By basic properties of Pell equations [26], $(u, v)=\left(u_{k}, v_{k}\right)(k=1,3,5, \cdots)$, and $(U, V)=\left(U_{k}, V_{k}\right)(k=1,2,3, \cdots)$ are all solutions of equations

$$
\begin{equation*}
u^{2}-2 v^{2}=-1, u, v \in \mathbb{N} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{2}-2 V^{2}=1, U, V \in \mathbb{N} \tag{1.9}
\end{equation*}
$$

respectively.

2. Statement of the results

Theorem 1. If (1.4) has no solution, then all solutions of the equation

$$
x^{2}+\delta 2^{a} p^{b}=y^{4}, x \geq 1, y>1, \operatorname{gcd}(x, y)=1, a \geq 0, b \geq 0, \delta \in\{1,-1\}
$$

are given as follows:

a	b	p	x	y	δ	restrictions on f, k, r, s, t
0	1	$\begin{aligned} & 2 f^{2}-1 \\ & 2 f^{2}+1 \end{aligned}$	$f^{2}-1$	f	1	$f \in \mathbb{N}, f \geq 2$
			$f^{2}+1$	f	-1	$f \in \mathbb{N}$
0	2	u_{k}	$\underline{u_{k}^{2}-1}$	v_{k}	1	$k \in \mathbb{N}, 2 \nmid k$
		U_{k}	$\overline{V_{k}^{2}+1}$	V_{k}	-1	$k \in \mathbb{N}$
0	3	3	122	11	-1	-
0	5	23	6083	78	1	-
3	0	p	3	1	-1	-
3	1	$\frac{f^{2}+1}{2}$	$f^{2}+2$	f	-1	$f \in \mathbb{N}, f \geq 3$
3	2	V_{k}	$u_{k}^{2}+2$	u_{k}	-1	$k \in \mathbb{N}, 2 \nmid k$
3	3	3	29	5	-1	-
3	4	13	5713	239	-1	-
4	3	5	129	11	-1	-
5	0	p	7	3	1	-
7	2	3	287	17	1	-
7	4	3	113	7	-1	-
9	3	17	4785	71	1	-
11	3	7	855	13	-1	-
$s+2$	1	$2^{s}-f^{2}$	$2^{s+1}-f^{2}$	f	-1	$f, s \in \mathbb{N}, 2 \nmid f$
	1	$f^{2}+2^{s}$	$f^{2}+2^{s+1}$	f	-1	$f, s \in \mathbb{N}, 2 \nmid f$
$s+4$	1	$2^{s}-1$	$2^{2 s+2}-2^{s+2}-1$	$2^{s+1}-1$	1	$s \in \mathbb{N}, s \geq 2$
	2	$2^{s}-1$	$\left\|2^{2 s}-2^{s+3}+2^{s+1}+1\right\|$	$2^{s}+1$	1	$s \in \mathbb{N}, s \geq 2$
$t+2$	1	$\left\|f^{2}-2^{t}\right\|$	$\left\|f^{2}-2^{t+1}\right\|$	f	1	$f, t \in \mathbb{N}, 2 \nmid f$
$2^{r}+4$	1	$2^{2^{r}}+1$	$2^{2^{r+1}+2}+2^{2^{r}+2}-1$	$2^{2^{r}+1}+1$	1	$r \in \mathbb{N}$
	2	$2^{2^{r}}+1$	$2^{2^{r+1}}+2^{2^{r}+3}-2^{2^{r}+1}+1$	$2^{2^{r}}-1$	-1	$r \in \mathbb{N}$

3. PROOF OF THE THEOREM

We consider the equation

$$
\begin{equation*}
x^{2}+\delta 2^{a} p^{b}=y^{4}, x \geq 1, y>1, a \geq 0, b \geq 0, \operatorname{gcd}(x, y)=1, \delta \in\{1,-1\} \tag{3.1}
\end{equation*}
$$

where p is an odd prime. For the case $\delta=1$ and $b=0$, from [1, 2, 8, 9] and [14], we get $(x, y, a)=(7,3,5)$. For the case $\delta=-1$ and $b=0$, we get $x^{2}-2^{a}=y^{4}$. From W.Ivorra [13] and S.Siksek [22], we know when $a \geq 2$, this equation has the solution $(x, y, a)=(3,1,3)$. When $a=1$, from $\operatorname{gcd}(x, y)=1$ we have $2 \nmid x y$ and $x^{2} \equiv y^{4} \equiv 1(\bmod 8)$, so $a \geq 3$, it is a contradiction. When $a=0$, from P. Mihǎilescu [21], this equation has no solutions.

When $a=0$ and $b>0$, from (3.1) we have $\delta p^{b}=\left(y^{2}-x\right)\left(y^{2}+x\right)$. From $\operatorname{gcd}(x, y)=1$, we have $\operatorname{gcd}\left(\delta\left(y^{2}-x\right), y^{2}+x\right)=1$. Otherwise $p \mid\left(y^{2}-x\right)$ and $p\left|\left(y^{2}+x\right), p\right| 2 y^{2}$ and $p|2 x, p| y$ and $p \mid x$. It is a contradiction with $\operatorname{gcd}(x, y)=1$.

So we have

$$
y^{2}-x=\delta, y^{2}+x=p^{b}
$$

and it leads to

$$
\begin{equation*}
2 y^{2}=p^{b}+1 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{b}=2 y^{2}+1 \tag{3.3}
\end{equation*}
$$

where $\delta=1$ and $\delta=-1$, respectively. From Theorem 1.1 of M.A.Bennet [3], we know that when $b \geq 4$, (3.2) has no solutions. When $b=3$, we get $(4 y)^{2}=(2 p)^{3}+8$ and from J.Gebel [11] and J.London [17], we know that $p=23, y=78, x=6083$. When $b=1$, we obtain $p=2 f^{2}-1, x=f^{2}-1$, where $f \in \mathbb{N}, f \geq 2$. When $b=2$, we obtain $p^{2}-2 y^{2}=-1$ and $p=u_{k}, y=v_{k}, x=\frac{u_{k}^{2}-1}{2}$ where $k \in \mathbb{N}, 2 \nmid k$.

From J.H.E.Cohn [10] and E.Herrmann [12], we know that when $b \geq 3$, (3.3) has the only solution $(p, b, y)=(3,5,11)$. When $b=1$, we obtain $p=2 f^{2}+1, x=$ $f^{2}+1$, where $f \in \mathbb{N}$. When $b=2$, we obtain $p^{2}-2 y^{2}=1$ and $p=U_{k}, y=$ $V_{k}, x=V_{k}^{2}+1$, where $k \in \mathbb{N}$.

When $a>0$ and $b>0$, from (3.1) we have the factorization

$$
\begin{equation*}
\delta 2^{a} p^{b}=\left(y^{2}-x\right)\left(y^{2}+x\right), 2 \nmid x y . \tag{3.4}
\end{equation*}
$$

Because $\operatorname{gcd}(x, y)=1$, we have $\operatorname{gcd}\left(\delta \frac{y^{2}-x}{2}, \frac{y^{2}+x}{2}\right)=1$ and $\frac{y^{2}-x}{2} \cdot \frac{y^{2}+x}{2}=$ $\delta 2^{a-2} p^{b}$. Therefore, we get

$$
\begin{align*}
& \frac{y^{2}-x}{2}=\delta, \quad \frac{y^{2}+x}{2}=2^{a-2} p^{b} \tag{3.5}\\
& \frac{y^{2}-x}{2}=\delta 2^{a-2}, \quad \frac{y^{2}+x}{2}=p^{b} \tag{3.6}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{y^{2}-x}{2}=\delta p^{b}, \frac{y^{2}+x}{2}=2^{a-2} \tag{3.7}
\end{equation*}
$$

In the following, we discuss the three cases:
Case 1: From (3.5), we get

$$
\begin{equation*}
y^{2}-\delta=2^{a-2} p^{b} \tag{3.8}
\end{equation*}
$$

For the case $\delta=1$, we obtain

$$
\begin{equation*}
\frac{y-1}{2} \cdot \frac{y+1}{2}=2^{a-4} p^{b} . \tag{3.9}
\end{equation*}
$$

So from (3.9) we have

$$
\begin{equation*}
\frac{y-1}{2}=1, \frac{y+1}{2}=2^{a-4} p^{b} \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{y-1}{2}=2^{a-4}, \frac{y+1}{2}=p^{b} \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{y-1}{2}=p^{b}, \frac{y+1}{2}=2^{a-4} \tag{3.12}
\end{equation*}
$$

(3.10) leads to $y=3, a=5, b=0$. (3.11) leads to

$$
\begin{equation*}
p^{b}-2^{a-4}=1 \tag{3.13}
\end{equation*}
$$

When $b \geq 2$, we have $a-4 \geq 2$ and from P.Mihǎilescu [21] we have $(p, a, b)=$ $(3,7,2)$, the responding $(x, y)=(287,17)$. When $b=1, p=2^{a-4}+1$ is a Fermat prime. We have $p=2^{2^{r}}+1, a=2^{r}+4, y=2^{2^{r}+1}+1, x=2^{2^{r+1}+2}+2^{2^{r}+2}-1$, where $r \in \mathbb{Z}$. (3.12) leads to

$$
\begin{equation*}
2^{a-4}-p^{b}=1 \tag{3.14}
\end{equation*}
$$

When $b \geq 2$, we have $a-4 \geq 3$ and from P.Mihǎilescu [21] we know (3.14) has no solutions. When $b=1, p=2^{a-4}-1$ is a Mersenne prime. We have $p=2^{s}-1, a=$ $s+4, y=2^{s+1}-1, x=2^{2 s+2}-2^{s+2}-1$, where $s \in \mathbb{N}, s \geq 2$.

For the case $\delta=-1$, from (3.8) we get

$$
\begin{equation*}
y^{2}+1=2^{a-2} p^{b} \tag{3.15}
\end{equation*}
$$

Because $2 \nmid y$, we have $y^{2}+1 \equiv 2(\bmod 8)$. So $a=3$ and

$$
\begin{equation*}
y^{2}+1=2 p^{b} \tag{3.16}
\end{equation*}
$$

By using [16,24], we know (3.16) with $b \geq 3$ has the solution $(y, p, b)=(239,13,4)$, the responding $x=57123$. When $b=1, p=\frac{f^{2}+1}{2}, x=f^{2}+2$, where $f \in \mathbb{N}, f \geq$ 3. When $b=2$, we have $y^{2}-2 p^{2}=-1$ and $y=u_{k}, p=v_{k}, x=u_{k}^{2}+2$, where $k \in \mathbb{N}, 2 \nmid k$.

Case 2: For the case $\delta=1$, from (3.6) we get

$$
\begin{equation*}
y^{2}-2^{a-2}=p^{b} \tag{3.17}
\end{equation*}
$$

When $b=1$, from (3.17) we have $p=\left|f^{2}-2^{t}\right|$, where $f, t \in \mathbb{N}, 2 \nmid f$. When $2 \mid b$, from (3.17) we have $\left(\frac{y-p^{\frac{b}{2}}}{2}\right)\left(\frac{y+p^{\frac{b}{2}}}{2}\right)=2^{a-4}$ and $p^{\frac{b}{2}}=2^{a-4}-1$. If $b=2$, then $p=2^{a-4}-1$, which is a Mersenne prime. We have $p=2^{s}-1, a=s+4, y=$ $2^{s}+1, x=\left|2^{2 s}-2^{s+3}+2^{s+1}+1\right|$, where $s \in \mathbb{N}, s \geq 2$. If $2 \mid b$ and $b>2$, then $a-4>3$. From [21], we know it has no solution. So $2 \nmid b$ and $b \geq 3$. From W.Ivorra [13] and S.Siksek [22] we know (3.17) with $a-2 \geq 2$ has the only solution $(y, p, a, b)=(71,17,9,3)$, the responding $x=4785$. There remainders the following unsolved equation

$$
\begin{equation*}
y^{2}-2=p^{b}, 2 \nmid b, b \geq 3 \tag{3.18}
\end{equation*}
$$

For the case $\delta=-1$, from (3.6) we get

$$
\begin{equation*}
y^{2}+2^{a-2}=p^{b} \tag{3.19}
\end{equation*}
$$

When $b=1$, from (3.19) we have $p=f^{2}+2^{s}, a=s+2, x=f^{2}+2^{s+1}$, where $f, s \in \mathbb{N}, 2 \nmid f$. When $b=2$, from (3.19) we have $\left(\frac{p-y}{2}\right)\left(\frac{p+y}{2}\right)=2^{a-4}$ and $p=2^{a-4}+1$ is a Fermat prime. So we have $p=2^{2^{r}}+1, a=2^{r}+4, y=2^{2^{r}}-$ $1, x=2^{2^{r+1}}+2^{2^{r}+3}-2^{2^{r}+1}+1$, where $r \in \mathbb{Z}$. If $b>2$, from [1, 2, 8, 9] and [14], we know that (3.19) has the solutions $(y, p, a, b)=(5,3,3,3),(7,3,7,4),(11,5,4,3)$, the responding $x=29,113,129$.

Case 3: For the case $\delta=1$ from (3.7), we also get (3.17) and discuss it similarly with Case 2.

For the case $\delta=-1$ from (3.7) we get

$$
\begin{equation*}
y^{2}+p^{b}=2^{a-2} \tag{3.20}
\end{equation*}
$$

When $b=1$, we have $p=2^{s}-f^{2}, a=s+2, x=2^{s+1}-f^{2}$, where $f, s \in \mathbb{N}, 2 \nmid f$. When $b \geq 2$, from Theorem 8.4 of M.A.Bennet [3], we see (3.20) has the solution $(y, p, a, b)=(13,7,11,3)$, the responding $x=855$. We complete the proof of the theorem.

Acknowledgement

The authors would like to thank Professor Michael A. Bennett, Professor Yann Bugeaud, Professor Imin Chen and Professor Samir Siksek for their help.

REFERENCES

[1] S. A. Arif and F. S. Abu Muriefah, "On the Diophantine equation $x^{2}+2^{k}=y^{n}$. II," Arab J. Math. Sci., vol. 7, no. 2, pp. 67-71, 2001.
[2] S. A. Arif and F. S. Abu Muriefah, "On the diophantine equation $x^{2}+2^{k}=y^{n}$," Int. J. Math. Math. Sci., vol. 20, no. 2, pp. 299-304, 1997.
[3] M. A. Bennett and C. M. Skinner, "Ternary Diophantine equations via Galois representations and modular forms," Can. J. Math., vol. 56, no. 1, pp. 23-54, 2004.
[4] A. Bérczes and I. Pink, "On the Diophantine equation $x^{2}+p^{2 k}=y^{n}$," Arch. Math., vol. 91, no. 6, pp. 505-517, 2008.
[5] I. N. Cangüla, M. Demirci, F. L. A. Pintér, and G. Soydan, "On the Diophantine equation $x^{2}+$ $2^{a} \cdot 11^{b}=y^{n}$, , Fibonacci Q., vol. 48, no. 1, pp. 39-46, 2010.
[6] I. Chen, "On the equations $a^{2}-2 b^{6}=c^{p}$ and $a^{2}-2=c^{p}$," LMS Journal of Comp. and Math., vol. 15, no. 1, pp. 158-171, 2012.
[7] H. Cohen, Number theory. Volume II: Analytic and modern tools, ser. Graduate Texts in Mathematics. New York: Springer, 2007, vol. 240.
[8] J. H. E. Cohn, "The diophantine equation $x^{2}+2^{k}=y^{n}$," Arch. Math., vol. 59, no. 4, pp. 341-344, 1992.
[9] J. H. E. Cohn, "The Diophantine equation $x^{2}+2^{k}=y^{n}$. II," Int. J. Math. Math. Sci., vol. 22, no. 3, pp. 459-462, 1999.
[10] J. H. E. Cohn, "The Diophantine equation $x^{n}=D y^{2}+1, "$ Acta Arith., vol. 106, no. 1, pp. 73-83, 2003.
[11] J. Gebel, A. Pethö, and H. G. Zimmer, "On Mordell's equation," Compos. Math., vol. 110, no. 3, pp. 335-367, 1998.
[12] E. Herrmann, I. Járási, and A. Pethő, "Note on J. H. E. Cohn's paper "The Diophantine equation $x^{n}=D y^{2}+1 ", "$ Acta Arith., vol. 113, no. 1, pp. 69-76, 2004.
[13] W. Ivorra, "On the equations $x^{p}+2^{\beta} y^{p}=z^{2}$ and $x^{p}+2^{\beta} y^{p}=2 z^{2}$. (Sur les équations $x^{p}+$ $2^{\beta} y^{p}=z^{2}$ et $\left.x^{p}+2^{\beta} y^{p}=2 z^{2}\right), "$ Acta Arith., vol. 108, no. 4, pp. 327-338, 2003.
[14] M. Le, "On Cohn's conjecture concerning the Diophantine equation $x^{2}+2^{m}=y^{n}$, "Arch. Math., vol. 78, no. 1, pp. 26-35, 2002.
[15] W. Ljunggren, "On the Diophantine equation $C x^{2}+D=y^{n}$," Pac. J. Math., vol. 14, pp. 585-596, 1964.
[16] W. Ljunggren, "Zur Theorie der Gleichung $x^{2}+1=D y^{4}$," Avh. Norske Vid. Akad. Oslo, no. 5, pp. 1-27, 1942.
[17] H. London and R. Finkelstein, On Mordell's equation $y^{2}-k=x^{3}$. Bowling Green, Ohio: Bowling Green State University, 1973.
[18] F. Luca, "On the equation $x^{2}+2^{a} \cdot 3^{b}=y^{n}$, , Int. J. Math. Math. Sci., vol. 29, no. 4, pp. 239-244, 2002.
[19] F. Luca and A. Togbé, "On the Diophantine equation $x^{2}+2^{a} \cdot 5^{b}=y^{n}$," Int. J. Number Theory, vol. 4, no. 6, pp. 973-979, 2008.
[20] F. Luca and A. Togbé, "On the Diophantine equation $x^{2}+2^{\alpha} 13^{\beta}=y^{n}$," Colloq. Math., vol. 116, no. 1, pp. 139-146, 2009.
[21] P. Mihăilescu, "Primary cyclotomic units and a proof of Catalan's conjecture," J. Reine Angew. Math., vol. 572, pp. 167-195, 2004.
[22] S. Siksek, "On the Diophantine equation $x^{2}=y^{p}+2^{k} z^{p}$," J. Théor. Nombres Bordx., vol. 15, no. 3, pp. 839-846, 2003.
[23] G. Soydan, M. Ulas, and H. Zhu, "On the Diophantine equation $x^{2}+2^{a} \cdot 19^{b}=y^{n}$," Indian J. Pure Appl. Math., vol. 43, no. 3, pp. 251-261, 2012.
[24] C. Störmer, "Complete solution of the equation $m \arctan \frac{1}{x}+n \arctan \frac{1}{y}=k \frac{\pi}{4}$ in integers. (Solution complète en nombres entiers de l'équation $m \arctan \frac{1}{x}+n \arctan \frac{1}{y}=k \frac{\pi}{4}$)," Bull. Soc. Math. Fr., vol. 27, pp. 160-170, 1899.
[25] S. Tengely, "On the Diophantine equation $x^{2}+a^{2}=2 y^{p}$," Indag. Math., New Ser., vol. 15, no. 2, pp. 291-304, 2004.
[26] D. T. Walker, "On the Diophantine equation $m X^{2}-n Y^{2}= \pm 1, "$ Am. Math. Mon., vol. 74, pp. 504-513, 1967.

Authors' addresses

Huilin Zhu

School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P.R.China
E-mail address: hlzhu@xmu.edu.cn

Gökhan Soydan

Işıklar Air Force High School, 16039, Bursa, TURKEY
E-mail address: gsoydan@uludag.edu.tr

Wei Qin

Department of Mathematics, University of Illinois, Urbana, Champaign, 61801, Illinois, USA
E-mail address: qinweistudymaths@gmail.com

[^0]: The first author was supported in part by Fundamental Research Funds for the Central Universities, Grant No. 2011121039.

