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Abstract. In this paper we gave some results of the two Diophantine equations x2˙ 2apb D
y4;x;y 2N;gcd.x;y/D 1;a;b 2Z;a � 0;b � 0, where p is an odd prime.
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1. INTRODUCTION

Let D denote an odd positive integer without any squared factor > 1: In 1964,
W.Ljunggren [15] showed that the Diophantine equation x2C 4D D yq has no so-
lutions in rational integers if q 6� 3 .mod 8/ where the class number of Q

p
�D/ is

indivisible by the odd prime and also he showed that this equation has only a finite
number of solutions in rational integers x and y and primes q for given D:

Let Z;N be the sets of integers and positive integers respectively. Let p be a fixed
odd prime. Recently many authors are interested in the equation

x2C ı2apb D yn; x;y;a;b 2Z;x;y � 1;gcd.x;y/D 1;a;b � 0;n� 3; (1.1)

where p is an odd prime and ı D 1. In 2002, F.Luca [18] found all positive integer
solutions .x;y;a;b;n/ of x2C2a3b D yn with n� 3 and coprime x and y. In 2008,
F.Luca and A.Togbé [19] solved x2C2a5b D yn;gcd.x;y/D 1. In 2009, F.Luca and
A.Togbé [20] found all positive integer solutions of x2C2a13b D yn;gcd.x;y/D 1.
I.N.Cangül, M.Demirci, F.Luca, Á.Pintér and G.Soydan [5] solved x2C 2a11b D
yn;gcd.x;y/D 1. Recently, in [23], G.Soydan, M.Ulas and H.Zhu found all positive
integer solutions of x2C 2a19b D yn;gcd.x;y/D 1. Obviously, the authors above
researched the special cases of (1.1) and p 2 f3;5;11;13;19g. In [4] A.Bérczes and
I.Pink gave all the solutions of the Diophantine equation (1.1), when ı D 1, a D 0
and b is even, where p is any prime in the interval Œ2;100� and gcd.x;y/ D 1. In
[25] all the positive integer solutions .x;y;n/ of the Diophantine equation x2Ca2D
2yn with a 2 f3;4; : : : ;501g were found under the conditions that n � 3 and that
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gcd.x;y/D 1.
For general odd prime p and general n, (1.1) is difficult to solve completely, but for
special n, maybe we can get some information. For example, when n D 4, (1.1) is
rewritten as

x2C2apb D y4; x � 1; y > 1; gcd.x;y/D 1; a � 0; b � 0: (1.2)

where ıD 1. Obviously, y4�x2 can be factorized as .y2�x/.y2Cx/. Our research
is based on .y2�x/.y2Cx/D 2apb and gcd.x;y/D 1. Similarly, our research on
another equation

x2�2apb D y4; x � 1; y � 1; gcd.x;y/D 1; a � 0; b � 0 (1.3)

is based on .x�y2/.xCy2/D 2apb and gcd.x;y/D 1. When bD 0, (1.1) is solved
by J.H.E. Cohn [8, 9], S.A.Arif and F.S.Abu Muriefah [1, 2] and M.Le [14]. When
aD 1 and b � 3, we find (1.2) is concerned with the famous equation

x2�2D yn; x > 1; y � 1; n� 3: (1.4)

This is still unsolved and is one of the most exciting questions on “classical Diophan-
tine equations”. We do have good bounds for n, something like n < 1237 or so, see
the Appendix written by S.Siksek in the GTM book of [7]. And it has been solved for
“half” the primes (namely those n� 1.mod3)), by I.Chen [6]. Most people believe
(1.4) has no solution, but this has not been proved up to day.

Now we introduce some notations and symbols. For any positive integer k, let

uk D
1

2
.�kC�k/; vk D

1

2
p
2
.�k ��k/;2 − k; (1.5)

Uk D
1

2
.�0kC�0

k
/; Vk D

1

2
p
2
.�0k ��0

k
/; (1.6)

where

�D 1C
p
2; N�D 1�

p
2;�0 D 3C2

p
2; N�0 D 3�2

p
2: (1.7)

By basic properties of Pell equations [26], .u;v/ D .uk;vk/.k D 1;3;5; � � �/; and
.U;V /D .Uk;Vk/.k D 1;2;3; � � �/ are all solutions of equations

u2�2v2 D�1;u;v 2N; (1.8)

and

U 2�2V 2 D 1;U;V 2N; (1.9)

respectively.
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2. STATEMENT OF THE RESULTS

Theorem 1. If (1.4) has no solution, then all solutions of the equation

x2C ı2apb D y4; x � 1; y > 1; gcd.x;y/D 1; a � 0; b � 0;ı 2 f1;�1g

are given as follows:
a b p x y ı restrictions on f , k, r , s, t
0 1 2f 2�1 f 2�1 f 1 f 2N;f � 2

2f 2C1 f 2C1 f -1 f 2N

0 2 uk

u2
k
�1

2
vk 1 k 2N, 2 − k

Uk V 2
k
C1 Vk -1 k 2N

0 3 3 122 11 -1 -
0 5 23 6083 78 1 -
3 0 p 3 1 -1 -

3 1
f 2C1

2
f 2C2 f -1 f 2N,f � 3

3 2 Vk u2
k
C2 uk -1 k 2N, 2 − k

3 3 3 29 5 -1 -
3 4 13 5713 239 -1 -
4 3 5 129 11 -1 -
5 0 p 7 3 1 -
7 2 3 287 17 1 -
7 4 3 113 7 -1 -
9 3 17 4785 71 1 -
11 3 7 855 13 -1 -
sC2 1 2s�f 2 2sC1�f 2 f -1 f;s 2N;2 − f

1 f 2C2s f 2C2sC1 f -1 f;s 2N;2 − f

sC4 1 2s�1 22sC2�2sC2�1 2sC1�1 1 s 2N;s � 2
2 2s�1 j22s�2sC3C2sC1C1j 2sC1 1 s 2N;s � 2

tC2 1 jf 2�2t j jf 2�2tC1j f 1 f;t 2N;2 − f

2rC4 1 22r
C1 22rC1C2C22r C2�1 22r C1C1 1 r 2N

2 22r
C1 22rC1

C22r C3�22r C1C1 22r
�1 -1 r 2N

3. PROOF OF THE THEOREM

We consider the equation

x2C ı2apb D y4;x � 1;y > 1;a � 0;b � 0;gcd.x;y/D 1;ı 2 f1;�1g (3.1)

where p is an odd prime. For the case ı D 1 and b D 0; from [1, 2, 8, 9] and [14],
we get .x;y;a/ D .7;3;5/. For the case ı D �1 and b D 0, we get x2� 2a D y4:
From W.Ivorra [13] and S.Siksek [22], we know when a � 2; this equation has the
solution .x;y;a/ D .3;1;3/. When a D 1, from gcd.x;y/ D 1 we have 2 − xy and
x2� y4� 1.mod 8/, so a� 3, it is a contradiction. When aD 0, from P. Mihǎilescu
[21], this equation has no solutions.

When a D 0 and b > 0, from (3.1) we have ıpb D .y2 � x/.y2C x/. From
gcd.x;y/ D 1, we have gcd.ı.y2 � x/;y2C x/ D 1. Otherwise pj.y2 � x/ and
pj.y2Cx/, pj2y2 and pj2x, pjy and pjx. It is a contradiction with gcd.x;y/D 1.



1108 HUILIN ZHU, GÖKHAN SOYDAN, AND WEI QIN

So we have
y2�x D ı; y2Cx D pb

and it leads to
2y2 D pbC1: (3.2)

and
pb D 2y2C1: (3.3)

where ı D 1 and ı D �1, respectively. From Theorem 1.1 of M.A.Bennet [3], we
know that when b � 4; (3.2) has no solutions. When bD 3, we get .4y/2D .2p/3C8
and from J.Gebel [11] and J.London [17], we know that p D 23;y D 78;x D 6083.
When bD 1, we obtain pD 2f 2�1;xD f 2�1, where f 2N;f � 2. When bD 2,

we obtain p2�2y2 D�1 and p D uk;y D vk;x D
u2

k
�1

2
where k 2N;2 − k.

From J.H.E.Cohn [10] and E.Herrmann [12], we know that when b � 3; (3.3) has
the only solution .p;b;y/ D .3;5;11/. When b D 1, we obtain p D 2f 2C 1;x D
f 2C 1, where f 2 N. When b D 2, we obtain p2 � 2y2 D 1 and p D Uk;y D
Vk;x D V

2
k
C1, where k 2N.

When a > 0 and b > 0, from (3.1) we have the factorization

ı2apb D .y2�x/.y2Cx/; 2 − xy: (3.4)

Because gcd.x;y/D 1, we have gcd.ı
y2�x

2
;
y2Cx

2
/D 1 and

y2�x

2
�
y2Cx

2
D

ı2a�2pb: Therefore, we get

y2�x

2
D ı;

y2Cx

2
D 2a�2pb; (3.5)

y2�x

2
D ı2a�2;

y2Cx

2
D pb (3.6)

and
y2�x

2
D ıpb;

y2Cx

2
D 2a�2: (3.7)

In the following, we discuss the three cases:
Case 1: From (3.5), we get

y2� ı D 2a�2pb; (3.8)

For the case ı D 1, we obtain
y�1

2
�
yC1

2
D 2a�4pb: (3.9)

So from (3.9) we have

y�1

2
D 1;

yC1

2
D 2a�4pb (3.10)
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or
y�1

2
D 2a�4;

yC1

2
D pb (3.11)

or
y�1

2
D pb;

yC1

2
D 2a�4: (3.12)

(3.10) leads to y D 3;aD 5;b D 0. (3.11) leads to

pb �2a�4 D 1: (3.13)

When b � 2, we have a� 4 � 2 and from P.Mihǎilescu [21] we have .p;a;b/ D
.3;7;2/; the responding .x;y/D .287;17/: When b D 1; p D 2a�4C 1 is a Fermat
prime. We have p D 22

r

C1;aD 2r C4;y D 22
rC1C1;x D 22

rC1C2C22
rC2�1;

where r 2Z. (3.12) leads to
2a�4�pb D 1: (3.14)

When b � 2, we have a� 4 � 3 and from P.Mihǎilescu [21] we know (3.14) has no
solutions. When b D 1; pD 2a�4�1 is a Mersenne prime. We have pD 2s�1;aD
sC4;y D 2sC1�1;x D 22sC2�2sC2�1, where s 2N; s � 2.

For the case ı D�1, from (3.8) we get

y2C1D 2a�2pb: (3.15)

Because 2 − y, we have y2C1� 2.mod8/ . So aD 3 and

y2C1D 2pb: (3.16)

By using [16,24], we know (3.16) with b � 3 has the solution .y;p;b/D .239;13;4/;

the responding xD 57123:When bD 1, pD
f 2C1

2
;xD f 2C2, where f 2N;f �

3. When b D 2, we have y2� 2p2 D �1 and y D uk;p D vk;x D u2kC 2, where
k 2N;2 − k.

Case 2: For the case ı D 1, from (3.6) we get

y2�2a�2 D pb: (3.17)

When b D 1, from (3.17) we have p D jf 2�2t j; where f; t 2N;2 − f . When 2jb,

from (3.17) we have
�y�p b

2

2

��yCp b
2

2

�
D 2a�4 and p

b
2 D 2a�4 � 1. If b D 2,

then p D 2a�4�1, which is a Mersenne prime. We have p D 2s �1;aD sC4;y D
2s C 1;x D j22s � 2sC3C 2sC1C 1j, where s 2 N; s � 2. If 2jb and b > 2; then
a� 4 > 3. From [21], we know it has no solution. So 2 − b and b � 3. From
W.Ivorra [13] and S.Siksek [22] we know (3.17) with a�2� 2 has the only solution
.y;p;a;b/D .71;17;9;3/, the responding xD 4785. There remainders the following
unsolved equation

y2�2D pb; 2 6 jb; b � 3: (3.18)
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For the case ı D�1, from (3.6) we get

y2C2a�2 D pb: (3.19)

When b D 1, from (3.19) we have p D f 2C 2s;a D sC 2;x D f 2C 2sC1; where

f;s 2 N;2 − f . When b D 2, from (3.19) we have
�p�y

2

��pCy
2

�
D 2a�4 and

p D 2a�4C 1 is a Fermat prime. So we have p D 22
r

C 1;a D 2r C 4;y D 22
r

�

1;x D 22
rC1

C22
rC3�22

rC1C1; where r 2 Z. If b > 2; from [1, 2, 8, 9] and [14],
we know that (3.19) has the solutions .y;p;a;b/D .5;3;3;3/; .7;3;7;4/; .11;5;4;3/,
the responding x D 29;113;129.

Case 3: For the case ı D 1 from (3.7), we also get (3.17) and discuss it similarly
with Case 2.

For the case ı D�1 from (3.7) we get

y2Cpb D 2a�2: (3.20)

When b D 1; we have p D 2s�f 2;aD sC2;x D 2sC1�f 2, where f;s 2N,2 − f:
When b � 2; from Theorem 8.4 of M.A.Bennet [3], we see (3.20) has the solution
.y;p;a;b/ D .13;7;11;3/, the responding x D 855: We complete the proof of the
theorem.
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2ˇyp D ´2 et xpC2ˇyp D 2´2),” Acta Arith., vol. 108, no. 4, pp. 327–338, 2003.

[14] M. Le, “On Cohn’s conjecture concerning the Diophantine equation x2C2m D yn,” Arch. Math.,
vol. 78, no. 1, pp. 26–35, 2002.

[15] W. Ljunggren, “On the Diophantine equationCx2CDD yn,” Pac. J. Math., vol. 14, pp. 585–596,
1964.

[16] W. Ljunggren, “Zur Theorie der Gleichung x2C 1DDy4,” Avh. Norske Vid. Akad. Oslo, no. 5,
pp. 1–27, 1942.

[17] H. London and R. Finkelstein, On Mordell’s equation y2 � k D x3. Bowling Green, Ohio:
Bowling Green State University, 1973.

[18] F. Luca, “On the equation x2C2a �3b D yn,” Int. J. Math. Math. Sci., vol. 29, no. 4, pp. 239–244,
2002.
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