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Abstract. We shall consider two curious divisibility properties due to [1, 5]. Our main purpose
is to generalize these properties for a general second order linear recursion. We use generating
matrix approach for our purposes. By using our results, we derive a new recursive identities for
two general second order linear recurrences. We give a more general result extending earlier
divisibility properties on the similar subject.
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1. INTRODUCTION

The Fibonacci numbers have many interesting properties in accordance with their
nature and the recursively definition. We shall be interested in their divisibility prop-
erties along the paper. We recall that

gcd.Fn;Fm/D Fgcd.n;m/

and
Fkn is a multiple of Fn:

An extension of these divisibility properties was given showing Matijasevich [4] as
that if n> 2; the Fibonacci number Fm is a multiple of F 2

n if and only ifm is multiple
of nFn: This fact and its detailed proof was also given in [2] (pp. 294) showning

Fkn � kFnF
k�1
nC1 and FknC1 � F

k
nC1

�
mod F2

n
�
:

The above fact and the following similar results can also be found in [1, 5] :
i) Fkn�1�F

k
n�1 is divisible by F 2

n (n;k D 1;2; : : :),
ii) Fkn�2� .�1/

kC1F k
n�2 is divisible by F 2

n (n;k D 1;2; : : :).
We mainly consider these two curious properties and then we generalize them to a

general second order linear recursion fUn .p/g ; or briefly Un; defined for n > 1 by

Un .p/D pUn�1 .p/CUn�2 .p/ ; (1.1)

with initials U0 .p/D 0 and U1 .p/D 1:
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The generalized Lucas sequence fVn .p/g ; or briefly Vn; is defined by

Vn .p/D pVn�1 .p/CVn�2 .p/ ;

with initials V0 .p/D 2; V1 .p/D p:

The Binet forms of them are

Un D
˛n�ˇn

˛�ˇ
and Vn D ˛

n
Cˇn;

where ˛;ˇ D
�
p˙

p
p2C4

�
=2:

Throughout the paper we consider the properties
a) Ukn�1�U

k
n�1 is divisible by U 2

n (n;k D 1;2; : : :),
b) pk�1Ukn�2� .�1/

kC1U k
n�2 is divisible by U 2

n (n;k D 1;2; : : :).
Matijasevich and Cavachi proved the properties (i) and (ii) in [2, 5] but the quo-

tients
Fkn�1�F

k
n�1

F 2
n

and
Fkn�2� .�1/

kC1F k
n�2

F 2
n

were not considered. It seems that to find the quotients are not easy.
However, we shall focus on quotients arising from (a) and (b) :

Ukn�1�U
k
n�1

U 2
n

and
pk�1Ukn�2� .�1/

kC1U k
n�2

U 2
n

for all n and k such that n;k � 1:
Matrix methods are essential tools for solving problems arising from number the-

ory, for more details see [3].
Our approach is to use matrix methods for deriving these quotients explicitly. We

first look at values of the quotients for fixed n and increasing values of k starting
from 1 and then find a generating matrix for these values for fixed n and increasing
values of k: After we find the generating matrices for these quotients, we will give
two explicit statements for them. Using these two explicit statements, we obtain
two new recursive identities for the general second order linear recurrences. Finally
by considering and extending these two recursive identities, we find new recursive
identities for the general second order linear recursions. In order to guarantee the
accuracy of matrix computations, all the equalities appearing in this paper have been
verified through “Maple” commands.

2. GENERAL CASES

We start with the first quotient with the case p D 1; Un D Fn (nth Fibonacci
numbers) and its values for some n and k are shown in Table 1.

We will see that the entries of each row in Table 1 have a generating matrix. For
example, the entries of the third row of Table 1, f1,5,22,94,399,1691, . . . g, could be
generated by powers of a matrix. Continuing this process each row entries in each
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TABLE 1.�
Fkn�1�F

k
n�1

�
=F 2

n

nnk 1 2 3 4 5 6 7 . . .
1 0 1 1 2 3 5 8 . . .
2 0 1 4 12 33 88 232 . . .
3 0 1 5 22 94 399 1691 . . .

table can be obtained from the quotients for all n;k and p. We will state this fact in
general by matrix methods.

Before this process, we need some auxiliary results and definitions.
Define a second order linear sequence fAn .p/g ; or briefly An; for n > 1 as

An D pAn�1CAn�2

with initials A0 D p and A1 D p
2C3:

From the definitions of sequences fUng and fAng ; we have that

An D UnC2CUn D VnCUn�1:

Denote the first quotient by s .n;k;p/ ; or briefly s .k;p/ W

s .n;k/D
�
Ukn�1�U

k
n�1

�
=U 2

n :

Define two matricesH .n;p/ ; or brieflyH .n/; andG .n;k;p/ ; or brieflyG .n;k/ ;
of order 3 as shown:

H .n/D

24 An�1 �Un�1VnC .�1/
nC1 .�1/nUn�1

1 0 0

0 1 0

35
and

G .n;k/D

24 s .n;kC2/ t .n;kC2/ .�1/nUn�1s .n;kC1/

s .n;kC1/ t .n;kC1/ .�1/nUn�1s .n;k/

s .n;k/ t .n;k/ .�1/nUn�1s .n;k�1/

35 ;
where

t .n;k/D
UknU

2
n�1�U.k�2/n�U2nU

k
n�1

U 3
n

:

Lemma 1. For n� 1; the eigenvalues of the matrix H .n/ are ˛n;ˇn and Un�1:

Proof. The characteristic polynomial of H .n/ is

x3
�An�1x

2
Cx

�
Un�1VnC .�1/

n
�
� .�1/nUn�1

and it is factorized as .x�˛n/.x�ˇn/.x�Un�1/ ; as claimed. �

Now we state one of our main two results:
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Theorem 1. For n� 1;

H .n/k DG .n;k/ :

Proof. To prove the claim, it is sufficient to verify the followings:

s .n;kC1/An�1C t .n;k/D s .n;kC2/

and

s .n;kC1/
�
�Un�1VnC .�1/

nC1
�
C .�1/nUn�1s .n;k/D t .n;kC2/ :

For proving them, it is enough to consider the definitions of s .n;k/ and t .n;k/. The
above equations give us the following matrix equation:

G .n;k�1/H .n/DG .n;k/ :

Since G .n;1/DH .n/; we deduce that G .n;k/DH .n/k ; as claimed. �

We see that the powers of matrix H .n/ generate the first quotient and since the
matrix has integer entries, it is clear that the first quotient are integers.

Since all eigenvalues of H .n/ are different from each other, we diagonalize it.
H .n/ is a companion matrix so that it is diagonalized with the Vandermonde matrix

V D

24 ˛2n ˇ2n U 2
n�1

˛n ˇn Un�1

1 1 1

35 ;
as V �1H .n/V DD; whereD is the diagonal matrixDDdiag.˛n;ˇn;Un�1/ : Thus
we obtain

V �1H .n/k V DDk or V �1G .n;k/V DDk;

and so
G .n;k/D VDkV �1:

Consequently, after required computations, we get the following result:

Theorem 2. For n;k > 0

.G .n;k//2;1 D s .n;k/

D
.�1/nUn.k�1/CU

k
n�1Un�UknUn�1

U 3
n

:

From the definition of s .n;k/ and the above result, we have the following result:

Corollary 1. For n;k > 0

Un�1Ukn D UnUkn�1C .�1/
nUn.k�1/:
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Now we shall focus on the second quotient

pk�1Ukn�2� .�1/
kC1U k

n�2

U 2
n

and we will seek an explicit formula for that.
Similar to the process for the first quotient, we need some preliminary results and

definition. First we define a second order recurrence fBn .p/g ; or briefly Bn; for
n > 1 as

Bn D pBn�1CBn�2

with initials B0 D p
2�1 and B1 D p

3C2p:

For shortness, we denote the second quotient by y .n;k/ W

y .n;k/D
pk�1Ukn�2� .�1/

kC1U k
n�2

U 2
n

:

Define two matrices T .n/ and Q.n;k/ of order 3 as shown:

T .n/D

24 Bn�1 C .n/ .�1/nC1p2Un�2

1 0 0

0 1 0

35
and

Q.n;k/D

24 y .n;kC2/ h.n;kC2/ .�1/nC1p2Un�2y .n;kC1/

y .n;kC1/ h.n;kC1/ .�1/nC1p2Un�2y .n;k/

y .n;k/ h.n;k/ .�1/nC1p2Un�2y .n;k�1/

35 ;
where C .n/D p2

�
DnC2.�1/

n
�
; Dn is defined as for n > 1

Dn D
�
p2
C2

�
Dn�1�Dn�2

with initials D0 D 0 and D1 D 1; and, h.n;k/ is given by

h.n;k/D
pk�1U 2

n�2Ukn�p
kC1Un.k�2/�p .�1/

kU k
n�2U2n

U 3
n

:

Lemma 2. For n� 1; the eigenvalues of T .n/ are p˛n;pˇn and �Un�2:

Proof. The characteristic polynomial of T .n/ is x3�Bn�1x
2�C .n/xC.�1/np2Un�2

and it is factorized as .x�p˛n/.x�pˇn/.xCUn�2/ ; as claimed. �

We state our second main result:

Theorem 3. For n� 1;
T .n/k DQ.n;k/ :
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Proof. To prove the claim, it is sufficient to verify the followings:

y .n;kC1/Bn�1Ch.n;kC1/D y .n;kC2/

and
y .n;kC1/C .n/C .�1/nC1p2Un�2y .n;k/D h.n;kC2/ :

For proving them, one can consider the definitions of y .n;k/ and h.n;k/. The above
two equations give us the following matrix equation:

Q.n;k�1/T .n/DQ.n;k/ :

Since Q.n;1/D T .n/ ; we deduce that Q.n;k/D T .n/k : �

Since all the eigenvalues of T .n/ are different from each other, it is diagonalized
as

V �1
1 T .n/V1 DD1;

where

V1 D

24 p2˛2n p2ˇ2n U 2
n�2

p˛n pˇn �Un�2

1 1 1

35 :
and D1 is the diagonal matrix D1 Ddiag.˛n;ˇn;�Un�2/ : Thus we obtain

V �1
1 T .n/k V1 DD

k
1 or V �1

1 Q.n;k/V1 DD
k
1 ;

and so
Q.n;k/D V1D

k
1V
�1

1 :

Therefore, by considering .Q.n;k//2;1 D y .n;k/ ; we get the following result:

Theorem 4. For n;k > 0

y .n;k/D
pkC1 .�1/nUknC .�1/

kC1U kC1
n�2 UnCp

kUn�2Un.kC1/

U 3
n

From the definition of y .n;k/ and the above result, we have the following result:

Corollary 2. For n;k > 0

Un�2Unk D Unk�2Un�p .�1/
nUkn�n

3. NEW RECURSIVE IDENTITIES

While extending two curious properties in the previous section, we found the fol-
lowing two new identities for general second order recursions:

i/ Un�1Ukn D UnUkn�1C .�1/
nUkn�n;

i i/ Un�2Unk D UnUkn�2�p .�1/
nUkn�n:

The above recursions suggest us that they could be more generalized. Thus we
give our third main result:
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Theorem 5. For all integers r;k and n;

Un�r .p/Ukn .p/D Un .p/Ukn�r .p/� .�1/
rCnUr .p/Ukn�n .p/

and

Un�r .p/Vkn .p/D Un .p/Vkn�r .p/� .�1/
rCnUr .p/Vkn�n .p/

Proof. For the first identity consider

Un .p/Ukn�r .p/� .�1/
rCnUr .p/Ukn�n .p/

D
˛n�ˇn

˛�ˇ

˛kn�r �ˇkn�r

˛�ˇ
� .�1/rCn ˛

r �ˇr

˛�ˇ

˛kn�n�ˇkn�n

˛�ˇ

D .˛knCn�r
� .�1/nˇkn�n�r

� .�1/n˛kn�n�r
CˇknCn�r

� .�1/n�r ˛kn�nCr

C .�1/nˇkn�n�r
C .�1/n˛kn�n�r

� .�1/n�r ˇkn�nCr/=.˛�ˇ/2

D .˛knCn�r
CˇknCn�r

� .�1/n�r ˛kn�nCr
� .�1/n�r ˇkn�nCr/=.˛�ˇ/2

D
�
˛n�r

�ˇn�r
��
˛kn
�ˇkn

�
/=.˛�ˇ/2

D Un�r .p/Ukn .p/ ;

as claimed. By the Binet formula, the second claim could be similarly proved. �

Our last conclusion is that the last recursive identities are new for general second
order linear recurrences fUng and fVng according to our literature knowledge.

For the Fibonacci and Lucas cases, we have that

i/ Fn�rFkn D FnFkn�r � .�1/
nCr FrFkn�n;

i i/ Fn�rLkn D FnLkn�r � .�1/
nCr FrLkn�n:

4. GENERALIZATION OF THE DIVISIBILITY PROPERTIES

We consider two divisibility properties and then generalize them for the general
second order linear recurrence fUng : Now we are ready to present more general case
of these properties. We state this general case with the following corollary without
proof:

Corollary 3. For all integers r;

U k�1
r Ukn�r � .�1/

.r�1/.kC1/U k
n�r is divisible by U 2

n .n;k D 1;2; : : :/:

This corollary gives us all the divisibility properties mentioned in this paper.
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