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Abstract. Several inequalities for a companion of Ostrowski inequality for absolutely continu-
ous mappings whose first derivatives absolute value are convex (resp. concave) are established.
Applications to a composite quadrature rule, to p.d.f.’s, and to special means are provided.
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1. INTRODUCTION

In 1938, Ostrowski established a very interesting inequality for differentiable map-
pings with bounded derivatives, as follows [8]:

Theorem 1. Let f : I C R — R be a differentiable mapping on 1°, interior of the
interval 1, such that f' € Lla,b], where a,b € I witha <b. If | f'(x)| < M, then
the following inequality,

<M (b-a) 1.,.&

b
‘f(x)—ﬁ/ f ) du TR T

holds for all x € [a,b]. The constant % is the best possible in the sense that it cannot
be replaced by a smaller constant.

For recent results concerning Ostrowski inequality see [1], [2] and [3]. Also, the
reader may be refer to the monograph [8] where various inequalities of Ostrowski
type are discussed.

In [9], Guessab and Schmeisser have proved among others, the following compan-
ion of Ostrowski inequality:
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Theorem 2. Let f : [a,b] — R satisfy the Lipschitz condition, i.e., | f (1) — f (s)| <
M |t —s|. Then for each x € |a, “erb], we have the inequality,

_3a+b

2
f(x)+f2(“+b_x)_ﬁfabf(t)dt‘ < |:%.|_2(x 4 ) ](b—a)M. (1.1)

The constant 1/8 is the best possible in the sense that it cannot be replaced by a
smaller constant.

We may also note that the best inequality in (1.1) is obtained for x = 3“:rb , giving
the trapezoid type inequality,
f 3a+b + f a+3b 1 b b
( ! ) ( ! )— / ryar| <=9y (12)
2 b—a/, 8

The constant 1/8 is sharp in (1.2) in the sense mentioned above.

Companions of Ostrowski integral inequality for absolutely continuous functions
was considered by Dragomir in [6], pp.228, as follows :

Theorem 3. Let f : I C R — R be an absolutely continuous function on [a,b].
Then we have the inequalities,

‘f(x)—l—f(a—l—b—x)_ (1.3)

b
> bia/ f@)de

a-+b 2
[%H(";_f) }(b—a)llf’lloo, F'€ Loo[a.b]

1/a i g+1 1/q
— +1 —
(%1) {(ﬁ)q +(—;,_a") } b= f b, -

p>1,%+é=1,andf’eLp[a,b]

IA

(_3a+b
[% E H Ty

a+b]
5 -

forall x € [a,

In [7], the following theorem which was obtained by Dragomir and Agarwal con-
tains the Hermite-Hadamard type integral inequality:
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Theorem 4. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with
a <b. If| f'| is convex on [a,b], then the following inequality holds:

‘f(a)Jrf(b)_ b-a) (S @]+ BOD

=

1 b
7 b—a/a f(u)du 2 (1.4)
In [5], S.S. Dragomir established some inequalities for this companion for map-
pings of bounded variation. Also, Z. Liu introduced some companions of an Os-
trowski type integral inequality for functions whose derivatives are absolutely con-
tinuous in [10]. Recently, N.S. Barnett et al. have proved some companions for the
Ostrowski inequality and the generalized trapezoid inequality in [4].

The aim of this paper is to study a companion of Ostrowski inequality Theorem
2 for the class of functions whose derivatives in absolute value are convex (concave)
functions.

2. RESULTS

In order to prove our results, we need the following lemma (see [6]):

Lemma 1. Let f : I C R — R be an absolutely continuous mapping on 1°, where
a,b € I witha < b, such that f’ € Ly[a,b]. Then, the following equality holds

S+ flatb—x)
2

1 b 1 b /
[ rwa=2 [ o

where
t—a, te€la,x]

p(x,t)= t—”‘zH’, te(x,a+b—x] .,

t—>b, te(a+b—x,b]
forall x € [a, #].
A simple proof of the equality can be done by performing integration by parts.

The details are left to the interested reader (see [0]).
Let us begin with the following result:

Theorem 5. Let f : I C R — R be an absolutely continuous mapping on 1°,
where a,b € I with a < b, such that ' € Ly[a,b]. If | f’| is convex on [a,b], then
we have the following inequality:

f(xX)+ fa+b—x) 1 b

2.1
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_-a)?
S (lf @]+ ®))

8(x a) +3(a+b—2x)2
24(b—a)

(/" @[ +]f" (@+b=x)])
forall x € [a,#].

Proof. Using Lemma 1 and the modulus, we have

S@+fat+b—x) 1 (°
‘ : o e IACLL

<5 [ Ipenl] ol

a+b—x
=b—[/ lp G| f (t)ldt+/ Ip(x,0)| | £ ()| dt

b
[ peolls (r)\dz}

Since | f'| is convex on [a,b] = [a,x]U (x,a +b — x] U (a + b — x, b], therefore we
have

\f’(f)lSt_—alf’(x)HxT_;\f/(a)\, (el

+b—x—t, ,
£ (0) < +b —|f'@+b- x)|+a+szx|f )|, re@a+b—x]
and
b
()] < “—“\f(b)\+—\f(a+b )|, te(a+b—x.b]
which follows that,
b
S
al[t_a ]dt
X —d

1 a+b—x a+b t
+b—a/x t— 5 |:a+b P }f (a+b— x)|
at+b—x—-t,
ey Ll

b b
= |z—b|[—“ ol 2 arn - x>\]
a+b—x X
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==@t;%;:5@f“”“x _+V()“X¢n}
+(b_a)(a1+b—2x)(a+b8_ZX) [|f/@+b—x)]+|f @]
+m[»f’<b>\(’“ IS @ b—0| 5 a)}
- Sl @l 2 @] 21 b+ | )]
(“;f(’;—h)[\f (@+b—x)|+|f ]
gb”)ﬂf(>rwf(MD

8(x—a)’+3(a+b—2x)2
24(b—a)

(| |+ |f (@a+b-x)]).
where

f;z—i-b *(f — x)‘t “+”|dt fa—i-b *(a+b—x— t)‘t a—i—b‘dt (a+b 2x)

which completes the proof. O
An Ostrowski type inequality may be deduced as follows:

Corollary 1. Let f as in Theorem 5. Additionally, if f is symmetric about the
x-axis, i.e., f (a+b—x)= f (x), we have

b
'fuo——}—/ f@0yde

(x
-ab 0f()wwf<m}
8(x a) +3(a+b—2x)> , ,
24(b—a) (|f (x)|+‘f (a—i—b—x)‘)

forall x € [a, “erb].

Remark 1. In Theorem 5, if we choose x = a, then we get

f@+fb)
2

which is the inequality in (1.4).
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Corollary 2. In Theorem 5, if we choose

(1) x= %, then we get

1 3a+b a—+3b 1 b
(522 (2] o

b— b b
<! “)ﬁf<>|+5‘ (”j’)'+sﬁﬂ(“ﬁf N+ﬂf%mﬂ

2.2)

2) x= “;b, then we get

b -
£ (452) = e S f | = G217 @1+ 4] 7 (252) |+ 17 @] @3
Another result may be considered using the Holder inequality, as follows:

Theorem 6. Let f : I C R — R be an absolutely continuous mapping on I°,
where a,b € I witha < b, such that f' € Ly[a,b]. If| f'|, ¢ > 1 is convex on [a,b],
then we have the following inequality:

f(xX)+ fa+b—x) 1 b
‘ 2 _b—a/a AOLL

2.4)

1
= o0a - a)(p+1)1/1’{ O [|f @[+ |7 @]

+M[‘f (x )“14_‘]( (a+b— x)| ]
+—a?[|f @tb—n)|"+ |1 )]}

forall x € [a, “+b] where L —I———l

Proof. Using Lemma 1 and the Holder inequality, we have

f(x)+ f(a+b—x) 1 b
‘ — _a/ f(@)dt 2.5)

2

=5 [ Ipenl] ol

a+b—x
—%[/ﬂ |t—a|\f’(t)|dt+/x t—

b
+ /a+b_x|t—b| |/ (t)‘dt:|




ON COMPANION OF OSTROWSKI INEQUALITY 239

s [([ o) ([rore)”
+ (/xa+b—x . pdz) 1/p (/:er_x{f’([)}q d[)l/q
;- )

Since | f/| is convex on [a,b] = [a,x] U (x,a + b —x]U (a + b — x, b], therefore we
have

a+b

|f (z)}q }f )]+ If @]’ t €fa,x];

q_ n a+b xX—t q :
|f ()‘ +b x }f (a+b )C)| w|f (X)| ,fE(x,Cl‘i‘b—X],
and

TGO %{f B+ |f (@+b—x)|? t €(@+b—x.bl;

which follows that,

f(x)+ f(a+b—x) 1 b
> _b—a[a f(@)dt

el ([emera) ([ [

p 1/p
(s

a+b—x _ v 1/q
x< [ r—x \f’(a+b—x)\q+w\f/(x)\q]dl)

1/q
| V& (a)\q] dt)

a+b—2x a+b—2x

b 1/p
/ |t—b|pdl)
at+b—x

b 1/q
x(/ [M‘f(b)’q—i-—‘f(a-i-b x)}i| ) :|
a+b—x X

N\ /
=bia [(%?1) ) (xza)lq(}f’(a>|q+|f’(x)|q)lq
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2 a+b prr\ VP
+((p+1)(T_x) ) '

b\ /
(‘“; —x) (Ir' @)+ \f/(a+b—x)|‘1)1 !

_pt\VY? / /
+(("(pi)l)) (xza)lq(f’(a+b_x)q+}f’(b)q)lq}

= ! _ 2 / q , q\1/4
2 b—a)(pt 1) [(x (|1 @l + 11 )

2
+w(!f’(X)|q+‘f’(a—{—b—x)}q)l/q

+(x—a)2(\f’(a+b—x)}q+ |f’(b)}q)1/q]

since % + é =1, g > 1, which completes the proof. (]

Corollary 3. Let f as in Theorem 6. Additionally, if f is symmetric about the
x-axis, i.e., f (a+b—x)= f (x), we have

1
'f()——/ fd ‘ IS
x{e=a?[|f @]+ @[]V
(a-l—b—2x)[}f (x )}q+|f (a+b— x)\ ]
+(x—a)? [|f/(a+b—x)\‘1+\f/(b)\] }

forall x € [a, #].

Corollary 4. In Theorem 6, if we choose

(1) x = a, then we get

|f(a)42rf(b) L f([)dt‘_%(|f/(a)|q+|f’(b)|q)l/q. (2.6)

1+ /P

2) x= 3“:rb, then we get

%[f(i%a:—b)_i_f(a—l—%)] / £t

2.7
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b— b7\
. {(}f’(a)ru ()

= I
a1+ p)?
q~ /4

+2(f,(3a:—b) +f,(a—23b) )

b\ |4 1/q
_l_(f/((l—l:‘-fi ) +|f/(b)}q) }
(3)x=“;rb,thenweget

a+b 1 b

H(50) -5 [ roar
(b—a)

< / q / ﬂ
- 22+3(1+p)1/p |:(|f (a)| +/ ( 2 )

(3 o)

The following result holds for concave mappings.

q

t])l/l]

Theorem 7. Let f : I C R — R be an absolutely continuous mapping on 1°,
where a,b € I with a < b, such that ' € Lyla,b]. If |f'|1, ¢ > 1 is concave on
[a,b], then we have the following inequality:

fx)+ fa+b—x) 1 b
5 —b_aL f(t)dt

- 1
T (b-a)(1+p)t'P

o (59

,(2b+a—x
f ( .
a+b

1,1 _
forall x € [a, *57], where;—l—a—l.

(2.8)

(a+b—2x)?
)+ 2

()]

Proof. From Lemma 1, and by (2.5), we have
‘f(x)—l—f(a—i—b—x) -

b
2 bia/ f(t)dt

(/-] ([ ora)

=

1
b—a
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a+b—x p /p a+b—x 1/q
+(/ dz) (/ \f’(z)|th)
b 1/p b 1/q
_H|P / q
+(fa+b_x |t —b] dt) (/[l+b_x|f ()| dt) :|

Now, let us write,

a+b
l‘_

X 1
/ \f/(z)|qdr=(x—a)/o | Ax+(1=Va)|"dA,

a+b—x 1
f £ 0)|"dt = (a+b—2x)[ | Qa+b—x)+1-2)x)|?dA,
X 0

and
b 1
/ £ o) dt = (x—a)/ | Ab+(1=1)(a+b—x))|"dA
a+b—x 0

Since | f'|7, ¢ > 1 is concave on [a,b] = [a,x]U (x,a +b—x]U (a +b —x,b], we
can use the Jensen integral inequality to obtain

1
(x—a)/o £ Ox+ (1 =1 a)|?dr

=(x—a)/Ol)LO|f’()&x+(1—k)a)‘qdk

1 1 1
<(x a)(/o A dx) f (JOIMM/O (Ax + (1 )L)a)d/\)

S x+a)|?
r(5)

(a—i—b—Z)c)/1 |/ (A(a +b—x)+(1—/1)x)‘qdk§(a+b—2x)
0

q

=(x—a)

and analogously

q

’

)

(2b+a—x\|?
(75

1
(x—a)/o }f’(kb—i—(l—/\)(a—l—b—x))‘qdk <(x—a)

Combining all above inequalities, we get

f(xX)+ fa+b—x) 1 b
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1 (x —a)PT! t/p Vgl o (Xx+a
= —a {( P+ ) (x—a) qf(T)'

2 fa+b N\ gl o (a+b
+((p+1>( ;) ) @rb-20"](“37)

1/
N ((x—a)p+1) P(x_a)l/q f,(2b+2a—x)
T -a)(1+p)7?

(p+1)
x[@f—af( () (=) )+ 2 (452) |

1
] where 1 —i— = =1, g > 1, which is required. O
Therefore, we may state the following Ostrowski type inequality:

Corollary 5. Let f as in Theorem 7. Additionally, if f is symmetric about the
x-axis, i.e., f (a+b—x)= f(x), we have

(x)——[ £ (0)di

“b-a +p)1“’

e-or (252

a+b]

,(2b+a—x
(%57

Corollary 6. In Theorem 7, if we choose

)+ 3

,fa+b
2 9
forall x € [a,

(1) x = a, then we get

‘f(a)+f(b) /f( i < =@

2(1+p)l/?

<

,(a+b
f( . )‘ 2.9)

2) x= #, then we get

1 3a+b a+3b 1 b
sl () e (50| pma [y o
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oo [l (5 )] e

T 16(1+p)Y/P
)——f fwdi|= s [ (242) |+ (<))

3) x= a+b , then we get
3. A COMPOSITE QUADRATURE FORMULA

(=5

Let I :a = x9 < Xx1 << X, =b be a division of the interval [a,b] and
hi =xj+1—x;, (@ =0,1,2,--- ,n—1).

Consider the general quadrature formula
VAT, (3xi +xi X + 3x;
On(In f)i=5 ) [f (’T’“) +f (‘T’“)]hi. 3.1)
i=0
The following result holds.

Theorem 8. Let f : I C R — R be an absolutely continuous mapping on 1°,
where a,b € I with a < b, such that ' € Ly[a,b). If | f| is convex on [a,b]. Then,
we have

b
/ f(t)dt:Qn(ln’f)'i‘Rn(In,f)- (3.2)

where, Oy (In, f) is defined by formula (3.1), and the remainder term R, (I, f)
satisfies the error estimates

[Rn (I 1] <—Zh2[}f (xl>|+s‘f (M)‘

—96
o Xi +3Xi+1
)

Proof. Applying inequality (3.1) and (3.2) on the intervals [x;, x; 1], we may state
that

Rt = [ o= (B g () [

Summing the above inequality over i from 0 to n — 1, we get

+5

; \f/(xz'+1)\]-

n—1 n—1

Bt ) =3 [ prai= g S| (B Y p () ),

i=0YXi i=0

b 1 3x;i + Xi41 Xi +3Xi+1
= [ roa— g D (B () o
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which follows from (2.2), that

b ln_1 3xi + Xi4+1 Xi +3xi+1
Rl 1)1 =| [ f(f)dl—iigo[f(T)'i‘f(T)}hi
l « 3xi + x;
Ll ()
+5‘f’()ﬁﬂ)'+{f/(xi+l)l].
which completes the proof. O

Remark 2. One may state more inequalities, using (2.7) and (2.10). We shall omit
the details.

4. APPLICATIONS FOR P.D.F.’s

Let X be a random variable taking values in the finite interval [a, b], with the prob-
ability density function f : [a,b] — [0, 1] with the cumulative distribution function
F(x)=Pr(X <x)= [’ f(t)dr.

Theorem 9. With the assumptions of Theorem 5, we have the inequality

1 b—E(X
—[F(x)—i—F(a—i—b—x)]—Ti)

N a)®
< S (P @]+ @)

8(x—a) +3(a+b—2x)*
24(b—a)
a+b

>~ |, where E(X) is the expectation of X.

(‘F/(x)‘ + |F’(a+b—x)‘)

forall x € [a,

Proof. In the proof of Theorem 5, let f = F, and taking into account that

b b
E(X):/ tdF (t)=b— | F(r)dt.

We left the details to the interested reader. O

Corollary 7. In Theorem 9, if we choose x = 3a+b

1 3a+b a+3b b—E(X)
E|:F( 4 )+F( 4 )]_ b—a

< (b;6a) [|F’(a)\+5‘F/(3a:b)‘+5 F' (“23b)'+|F/(b)|].

, then we get
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Corollary 8. In Theorem 9, if F is symmetric about the x-axis, i.e., F (a +b—x) =
F (x), we have

F(x)——b_bleZX)

<= 7 (x —

< S @] + P o)
8(x—a) +3(a+b—2x)?

46— (|[F')|+|F'(a+b—x)|)
forall x € [a,#].

Remark 3. One may state more inequalities, using Theorem 6 and Theorem 7. We
shall omit the details.

5. APPLICATIONS FOR SPECIAL MEANS
Recall the following means which could be considered extensions of arithmetic,
logarithmic and generalized logarithmic for positive real numbers.
(1) The arithmetic mean:
a+b

A= A(a,b) = ca,beRt
(2) The logarithmic mean:
b—
Lab)y=———% . \a|#|b|, a,b e RY

In|b[—Inla|

(3) The generalized logarithmic mean:
prt+1 _ g+l
Ly(ab)=|———
n(a.) [@—axn+u

(4) The identric mean:

];nezn—umaﬁemﬂa¢b
bb h%
L&) a#b

a ,a=>b

I(a,b)= a,beRT.

Now using our results, we give some applications to special means for positive
real numbers.

Proposition 1. Let a,b € R, a < b. Then, we have
4 -1 (b a) 24 p2 1 1
)A (3a+b a+3b) (@, b)‘ = [aazbz +80((3a+b)2 T (a+3b)2)]'

Proof. The assertion was obtained by the inequality in (2.2) applied to the convex
mapping f :[a,b] > R, f (x) = % (]
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Proposition 2. Leta,b € R™,a <b,and p € Z, |p| > 2.Then,

|A? (a,b) — LE(a.b)]| < % [a?~! + 4477 (a,b) +bP71].

Proof. The assertion was obtained by the inequality in (2.3) applied to the convex
mapping f :[a,b] = R, f (x) = xP. g

Proposition 3. Let a,b € R, a < b. Then, we have

1
(b—a) 1 1\«
In/ —A(na,Inb)| < —— a—q+b—q .

Proof. The assertion was obtained by the inequality in (2.6) applied to the convex
mapping f : [a,b] = [0,00), f (x) = —Inx. O
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