Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 559-569

A note on (σ, τ)-derivations of rings with involution

Emine Koç and Öznur Gölbaşi

A NOTE ON (σ, τ)-DERIVATIONS OF RINGS WITH INVOLUTION

EMINE KOÇ AND ÖZNUR GÖLBAŞI

Received 21 February, 2012

Abstract

Let R be a $2-$ torsion free simple ${ }^{*}$-ring and $D: R \rightarrow R$ be an additive mapping satisfiying $D\left(x x^{*}\right)=D(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right)$, for all $x \in R$. Then D is a $(\sigma, \tau)-$ derivation of R or R is S_{4} ring. Also, if R is a 2 -torsion free semiprime ring and $G: R \rightarrow R$ is an additive mapping related with some (σ, τ)-derivation D of R such that $G\left(x x^{*}\right)=G(x) \sigma\left(x^{*}\right)+$ $\tau(x) D\left(x^{*}\right)$, for all $x \in R$, then G is generalized ($\left.\sigma, \tau\right)-$ derivation of R.

2010 Mathematics Subject Classification: 16W25; 16N60; 16U80
Keywords: semiprime rings, prime rings, derivations, (σ, τ)-derivations, generalized derivations, rings with involution

1. Introduction

Let R be an associative ring with center Z. Recall that a ring R is prime if $x R y=$ $\{0\}$ implies $x=0$ or $y=0$. A ring R is semiprime if $x R x=\{0\}$ implies $x=0$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. A left (right) centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T(x y)=T(x) y(T(x y)=x T(y))$ for all $x, y \in R$. If $a \in R$, then $L_{a}(x)=a x$ is a left centralizer and $R_{a}(x)=x a$ is a right centralizer. Inspired by the definition derivation and left (right) centralizer, the notion of (σ, τ)-derivation and σ-centralizer were extended as follow:

Let σ and τ be any two functions of R. An additive mapping $d: R \rightarrow R$ is called a (σ, τ)-derivation if $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ holds for all $x, y \in R$. A left (right) σ-centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T(x y)=$ $T(x) \sigma(y)(T(x y)=\sigma(x) T(y))$ for all $x, y \in R$. Of course a $(1,1)-$ derivation where 1 is the identity map on R is a derivation and a left (right) 1 -centralizer is a left (right) centralizer. An additive mapping $x \rightarrow x^{*}$ on a ring R is called an involution if $\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$ holds for all $x, y \in R$. A ring equipped with an involution is called a ring with involution, or a ${ }^{*}$-ring. Let $S=\left\{x \in R \mid x^{*}=x\right\}$ be the set of symmetric elements of R and $K=\left\{x \in R \mid x^{*}=-x\right\}$ the set of skew elements of R. If A and B are nonempty subsets of R, then $A B$ and $[A, B]$ will be additive subgroups of R generated respectively by $a b$ and $[a, b]=a b-b a$ for all $a \in A, b \in B$.

It is well known that a prime ring R satisfies the standard identity

$$
S_{2 n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=\sum_{\sigma \in S_{2 n}}(-1)^{\sigma} x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(2 n)}
$$

if and only if R is an order in a simple algebra of dimension at most n^{2} over its center. Since such a condition appears from time to time in what follows, we shall say that " R satisfies $S_{2 n}$ " for simplicity. Otherwise, as in Lanski [13], R will be called $S_{2 n}$-free.

Recently, in [4], Bresar introduced the following definition: An additive mapping $f: R \rightarrow R$ is called a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that

$$
f(x y)=f(x) y+x d(y), \text { for all } x, y \in R
$$

One may observe that the concept of generalized derivation includes the concept of derivations and the left centralizers when $d=0$. The main examples are the derivations and generalized inner derivations a functions $f_{a, b}: R \rightarrow R$, the type $f_{a, b}(x)=a x+x b$ for some fixed $a, b \in R$. Given an arbitrary mapping $f: R \rightarrow$ R and additive mapping $d: R \rightarrow R$ of a semiprime (or prime) ring R such that $f(x y)=f(x) y+x d(y)$, for all $x, y \in R$, we note that f is uniquely defined by d, which should be a derivation by [4, Remark 2]. The notion of generalized derivation was extended as follows: Let σ, τ two functions of R. An additive mapping $f: R \rightarrow R$ is called a generalized (σ, τ)-derivation on R if there exists a (σ, τ)-derivation $d: R \rightarrow R$ such that

$$
f(x y)=f(x) \sigma(y)+\tau(x) d(y), \text { for all } x, y \in R .
$$

On the other hand, an additive mapping $d: R \rightarrow R$ is called a Jordan derivation if $d\left(x^{2}\right)=d(x) x+x d(x)$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is false in general. Herstein's result [8] states that each Jordan derivation of a prime 2-torsion free ring is a derivation. M. Bresar extended this result to the case of Jordan derivations of a semiprime 2-torsion free rings in [5]. In [6], under same conditions it was shown that each of Jordan (σ, τ)-derivation of a prime 2-torsion free ring is a (σ, τ)-derivation. C. Lanski showed the same theorem for semiprime rings in [14]. Following [2], M. Ashraf and N. Rehman proved it for a generalized derivation of a prime 2-torsion free ring.
I. N. Herstein proved that if R is a simple ${ }^{*}$-ring with characteristic different from two, $\operatorname{dim}_{Z} R>4$ and an additive mapping $D: R \rightarrow R$ such that $D\left(x x^{*}\right)=$ $D(x) x^{*}+x D\left(x^{*}\right)$, for all $x \in R$, then D must be a derivation in [10, Theorem 4.1.3]. M. N. Daif and M. S. Tammam El-Sayiad extended this result for additive mapping $G: R \rightarrow R$ related with some derivation D of R such that $G\left(x x^{*}\right)=G(x) x^{*}+$ $x D\left(x^{*}\right)$, for all x in a 2 -torsion free semiprime ${ }^{*}$-ring R in [7]. They showed that G is a Jordan derivation of R. Also, in [15], Vukman and Kosi-Ulbl proved that R is a $2-$ torsion free semiprime ${ }^{*}$-ring and an additive mapping $T: R \rightarrow R$ is an additive mapping such that $T\left(x x^{*}\right)=T(x) x^{*}\left(T\left(x^{*} x\right)=x^{*} T(x)\right)$ is fulfilled for all
$x \in R$, then T is a left (right) centralizer. This result was extended for a left (right) σ-centralizer of R in [1].

The first purpose of this paper is to prove the theorem in [10, Theorem 4.1.3] for (σ, τ)-derivation of R. The second aim is to show the theorem in [7, Theorem 2.1] for generalized (σ, τ)-derivation of R.

2. Results

Throughout the present paper, σ and τ are automorphisms of R. In order to prove the theorems, we shall require the following lemmas.

Lemma 1 ([15], Lemma 1). Let R be a semiprime *-ring. Suppose there exists an element $a \in R$ such that $a x^{*}=$ ax for all $x \in R$. In this case $a \in Z$.

Lemma 2 ([9], Theorem 1.3). Let R be a simple ring of characteristic differrent from two and U be a Lie ideal of R. Then either $U \subset Z$ or $[R, R] \subset U$.

Lemma 3 ([9], Corollary, p.6). If R is a noncommutative simple ring of characteristic differrent from two. Then the subring generated by $[R, R]$ in R.

Lemma 4 ([9], Lemma 2.1). Let R be any ring with involution $R=S+K$, then K^{2} is a Lie ideal of R.

Lemma 5 ([10], Theorem 2.1.2). Let R be a 2 -torsion free semiprime ring and suppose that A is both a subring of R and a Lie ideal of R. Then $A \subset Z$ or A contains a nonzero ideal of R.

Lemma 6 ([12], Lemma 2). Let R be any semiprime ring with involution. If $\left[K^{2}, K^{2}\right]=(0)$, then R satisfies S_{4}.

Lemma 7 ([14], Theorem 2). Let R be a 2-torsion free semiprime ring and d a Jordan (ϕ, θ)-derivation with ϕ or θ an automorphism of R. Then d is $a(\phi, \theta)-$ derivation of R.

Lemma 8 ([1], Theorem 2.2). Let R be a 2 -torsion free semiprime ring and α be an automorphism of R. If $T: R \rightarrow R$ is an additive mapping such that $T\left(x^{2}\right)=$ $T(x) \sigma(x)$ for all $x \in R$, then T is a left $\alpha-$ centralizer.

Lemma 9 ([3], Lemma 4). Let R be a 2-torsion free prime ring, U is a Lie ideal of R and $a, b \in R$. If $a U b=(0)$, then $a=0$ or $b=0$ or $U \subset Z$.

Lemma 10 ([11], 1.1 Lemma). Let R be a prime ring with characteristic not two and U a nonzero Lie ideal of R. If d is a nonzero (σ, τ)-derivation of R such that $d(U)=0$, then $U \subseteq Z$.

The following theorem gives a generalization of [10, Theorem 4.1.3] for $(\sigma, \tau)-$ derivation of R.

Theorem 1. Let R be a 2 -torsion free simple ${ }^{*}$-ring. Suppose there exists an additive mapping $D: R \rightarrow R$ such that

$$
\begin{equation*}
D\left(x x^{*}\right)=D(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R . \tag{2.1}
\end{equation*}
$$

Then D is (σ, τ)-derivation of R or R is S_{4} ring.
Proof. Assume that R is S_{4} free. A linearization of (2.1) yields that

$$
\begin{aligned}
D\left(x x^{*}+x y^{*}+y x^{*}+y y^{*}\right)= & D(x) \sigma\left(x^{*}\right)+D(x) \sigma\left(y^{*}\right)+D(y) \sigma\left(x^{*}\right) \\
& +D(y) \sigma\left(y^{*}\right)+\tau(x) D\left(x^{*}\right)+\tau(y) D\left(x^{*}\right) \\
& +\tau(x) D\left(y^{*}\right)+\tau(y) D\left(y^{*}\right), \text { for all } x, y \in R .
\end{aligned}
$$

Using D is an additive mapping and (2.1), we arrive at

$$
\begin{equation*}
D\left(x y^{*}+y x^{*}\right)=D(x) \sigma\left(y^{*}\right)+D(y) \sigma\left(x^{*}\right)+\tau(y) D\left(x^{*}\right)+\tau(x) D\left(y^{*}\right) \tag{2.2}
\end{equation*}
$$

Taking x^{*} instead of y in (2.2), we get

$$
D\left(x^{2}+\left(x^{*}\right)^{2}\right)=D(x) \sigma(x)+D\left(x^{*}\right) \sigma\left(x^{*}\right)+\tau\left(x^{*}\right) D\left(x^{*}\right)+\tau(x) D(x)
$$

and so

$$
D\left(x^{2}\right)-D(x) \sigma(x)-\tau(x) D(x)+D\left(\left(x^{*}\right)^{2}\right)-D\left(x^{*}\right) \sigma\left(x^{*}\right)-\tau\left(x^{*}\right) D\left(x^{*}\right)=0
$$

This relation reduces to

$$
A(x)+A\left(x^{*}\right)=0, \text { for all } x \in R
$$

where $A(x)$ stands for $A(x)=D\left(x^{2}\right)-D(x) \sigma(x)-\tau(x) D(x)$. Replacing y by $x y^{*}+y x^{*}$ in (2.2), we obtain that

$$
\begin{aligned}
& D\left(x\left(x y^{*}+y x^{*}\right)^{*}+\left(x y^{*}+y x^{*}\right) x^{*}\right)=D(x) \sigma\left(\left(x y^{*}+y x^{*}\right)^{*}\right) \\
& \quad+\tau(x) D\left(\left(x y^{*}+y x^{*}\right)^{*}\right)+D\left(x y^{*}+y x^{*}\right) \sigma\left(x^{*}\right)+\tau\left(x y^{*}+y x^{*}\right) D\left(x^{*}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& D\left(x y x^{*}+x^{2} y^{*}+x y^{*} x^{*}+y\left(x^{*}\right)^{2}\right)=D(x) \sigma\left(y x^{*}\right)+D(x) \sigma\left(x y^{*}\right) \\
& \quad+\tau(x) D\left(y x^{*}+x y^{*}\right)+D\left(x y^{*}+y x^{*}\right) \sigma\left(x^{*}\right)+\tau\left(x y^{*}\right) D\left(x^{*}\right)+\tau\left(y x^{*}\right) D\left(x^{*}\right)
\end{aligned}
$$

Using (2.2), we have

$$
\begin{aligned}
D\left(x\left(y+y^{*}\right) x^{*}\right)+D\left(x^{2} y^{*}+y\left(x^{*}\right)^{2}\right)= & D(y) \sigma\left(x^{*}\right) \sigma\left(x^{*}\right)+D(x) \sigma\left(y^{*}\right) \sigma\left(x^{*}\right) \\
& +\tau(y) D\left(x^{*}\right) \sigma\left(x^{*}\right)+\tau(x) D\left(y^{*}\right) \sigma\left(x^{*}\right) \\
& +D(x) \sigma\left(y x^{*}\right)+D(x) \sigma\left(x y^{*}\right) \\
& +\tau\left(x y^{*}\right) D\left(x^{*}\right)+\tau\left(y x^{*}\right) D\left(x^{*}\right) \\
& +\tau(x) D(y) \sigma\left(x^{*}\right)+\tau(x) D(x) \sigma\left(y^{*}\right) \\
& +\tau(x y) D(x)+\tau\left(x^{2}\right) D\left(y^{*}\right) .
\end{aligned}
$$

Now the relation (2.2) reduces to $D\left(x^{2} y^{*}+y\left(x^{2}\right)^{*}\right)=D(y) \sigma\left(x^{2}\right)^{*}+D\left(x^{2}\right) \sigma\left(y^{*}\right)$ $+\tau(y) D\left(\left(x^{*}\right)^{2}\right)+\tau\left(x^{2}\right) D\left(y^{*}\right)$. Using this in the last equation, we arrive at

$$
\begin{aligned}
D\left(x\left(y+y^{*}\right) x^{*}\right)= & -A(x) \sigma\left(y^{*}\right)-\tau(y) A\left(x^{*}\right)+D(x) \sigma(y) \sigma\left(x^{*}\right) \\
& +D(x) \sigma\left(y^{*}\right) \sigma\left(x^{*}\right)+\tau(x) D\left(y^{*}\right) \sigma\left(x^{*}\right)+\tau(x) \tau\left(y^{*}\right) D\left(x^{*}\right) \\
& +\tau(x) D(y) \sigma\left(x^{*}\right)+\tau(x) \tau(y) D\left(x^{*}\right) .
\end{aligned}
$$

We can write the last equation such as

$$
\begin{align*}
D\left(x\left(y+y^{*}\right) x^{*}\right)= & -A(x) \sigma\left(y^{*}\right)-\tau(y) A\left(x^{*}\right)+D(x) \sigma\left(y+y^{*}\right) \sigma\left(x^{*}\right) \\
& +\tau(x) \tau\left(y+y^{*}\right) D\left(x^{*}\right)+\tau(x) D\left(y+y^{*}\right) \sigma\left(x^{*}\right) \tag{2.3}
\end{align*}
$$

Replacing $y-y^{*}$ by y in (2.3), we get

$$
-A(x) \sigma\left(y^{*}-y\right)-\tau\left(y-y^{*}\right) A\left(x^{*}\right)=0
$$

and so

$$
A(x) \sigma\left(y^{*}\right)-A(x) \sigma(y)+\tau(y) A\left(x^{*}\right)-\tau\left(y^{*}\right) A\left(x^{*}\right)=0
$$

Using $A(x)+A\left(x^{*}\right)=0$, for all $x \in R$ in the last equation, we arrive at

$$
\begin{equation*}
A(x) \sigma\left(y^{*}\right)+\tau\left(y^{*}\right) A(x)=A(x) \sigma(y)+\tau(y) A(x), \text { for all } x, y \in R \tag{2.4}
\end{equation*}
$$

Now, writting $k \in K$ by y in (2.4), we have

$$
-A(x) \sigma(k)-\tau(k) A(x)=A(x) \sigma(k)+\tau(k) A(x)
$$

and so

$$
2(A(x) \sigma(k)+\tau(k) A(x))=0
$$

Since R is $2-$ torsion free ring, we get

$$
\begin{equation*}
A(x) \sigma(k)+\tau(k) A(x)=0, \text { for all } k \in K, x \in R . \tag{2.5}
\end{equation*}
$$

Multipliying (2.5) from the right by $\sigma(t), t \in K$ and using (2.5), we obtain that

$$
[A(x), k t]_{\sigma, \tau}=0
$$

and so

$$
\begin{equation*}
\left[A(x), K^{2}\right]_{\sigma, \tau}=0 \tag{2.6}
\end{equation*}
$$

We know that K^{2} is a Lie ideal of R by Lemma 4. So, in view of Lemma 2, we have either $K^{2} \subset Z$ or $[R, R] \subset K^{2}$. If $K^{2} \subset Z$, then R is S_{4} ring by Lemma 6 . Since R is S_{4} free, we have $[R, R] \subset K^{2}$. Also, by Lemma 3 and (2.6), we conclude that

$$
[A(x), R]_{\sigma, \tau}=(0)
$$

Hence we obtain that $A(x) \in C_{\sigma, \tau}$, for all $x \in R$. Returning (2.5) and using $A(x) \in$ $C_{\sigma, \tau}$, we arrive at

$$
2 A(x) \sigma(k)=0, \text { for all } k \in K, x \in R
$$

and so

$$
\sigma^{-1}(A(x)) K^{2}=(0), \text { for all } x \in R
$$

Using $[R, R] \subset K^{2}$ and Lemma 3, we have $\sigma^{-1}(A(x)) R=(0)$, and so $A(x)=(0)$, for all $x \in R$ by the semiprimeness of R.

$$
D\left(x^{2}\right)=D(x) \sigma(x)+\tau(x) D(x), \text { for all } x \in R
$$

Thus we obtain that D is a Jordan $(\sigma, \tau)-$ derivation of R, and so D is $(\sigma, \tau)-$ derivation of R by Lemma 7.

Theorem 2. Let R be a 2 -torsion free prime ${ }^{*}$-ring. Suppose there exists an additive mapping $D: R \rightarrow R$ such that

$$
D\left(x x^{*}\right)=D(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R
$$

Then D is a $(\sigma, \tau)-$ derivation of R or R is S_{4} ring.
Proof. Using the same methods in the proof of Theorem 1, we have

$$
\begin{equation*}
A(x) \sigma(k)+\tau(k) A(x)=0, \text { for all } k \in K, x \in R . \tag{2.7}
\end{equation*}
$$

Multipliying (2.7) from the right by $\sigma(t), t \in K$ and using (2.5), we obtain that

$$
[A(x), k t]_{\sigma, \tau}=0
$$

and so

$$
\left[A(x), K^{2}\right]_{\sigma, \tau}=(0)
$$

This yields that $d_{A(x)}\left(K^{2}\right)=(0)$, where $d_{A(x)}: R \rightarrow R, d_{A(x)}(y)=[A(x), y]_{\sigma, \tau}$ is an inner $(\sigma, \tau)-$ derivation of R. Since K^{2} is a Lie ideal of R, we have $K^{2} \subset Z$ or $d_{A(x)}=0$, for all $x \in R$ by Lemma 10. In the first case, R is S_{4} ring by Lemma 6. So, we get $d_{A(x)}=0$, for all $x \in R$. Hence we obtain that $A(x) \in C_{\sigma, \tau}$, for all $x \in R$. Returning (2.7) and using $A(x) \in C_{\sigma, \tau}$, we get $2 A(x) \sigma(k)=0$, and so $A(x) \sigma(k t w)=0$, for all $k, t, w \in K, x \in R$. Hence $\sigma^{-1}(A(x)) K^{2} \sigma^{-1}(w)=0$, for all $w \in K, x \in R$. By Lemma 9, we have $A(x)=0$, for all $x \in R$ or $K=(0)$. If $K=(0)$, then $K^{2} \subset Z$, and so R is S_{4} ring by Lemma 6 . So, we get $A(x)=0$, for all $x \in R$. That is

$$
D\left(x^{2}\right)=D(x) \sigma(x)+\tau(x) D(x), \text { for all } x \in R
$$

Thus we obtain that D is a Jordan $(\sigma, \tau)-$ derivation of R, and so D is (σ, τ)-derivation of R by Lemma 7 .

The following theorem extends [7, Theorem 2.1] to generalized (σ, τ)-derivations of R.

Theorem 3. Let R be a semiprime $2-$ torsion free $*-$ ring. Suppose there exists an additive mapping $G: R \rightarrow R$ related with some (σ, τ)-derivation D such that

$$
\begin{equation*}
G\left(x x^{*}\right)=G(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R . \tag{2.8}
\end{equation*}
$$

Then G is generalized (σ, τ)-derivation of R.

Proof. A linearization of (2.8) yields that

$$
G\left(x x^{*}+x y^{*}+y x^{*}+y y^{*}\right)=G(x+y) \sigma\left(x^{*}+y^{*}\right)+\tau(x+y) D\left(x^{*}+y^{*}\right)
$$

for all $x, y \in R$. Using G is an additive mapping and (2.8), we arrive at

$$
\begin{equation*}
G\left(x y^{*}+y x^{*}\right)=G(y) \sigma\left(x^{*}\right)+G(x) \sigma\left(y^{*}\right)+\tau(y) D\left(x^{*}\right)+\tau(x) D\left(y^{*}\right) \tag{2.9}
\end{equation*}
$$

Substituting x^{*} for y in (2.9), we get

$$
G\left(x^{2}+\left(x^{*}\right)^{2}\right)=G\left(x^{*}\right) \sigma\left(x^{*}\right)+G(x) \sigma(x)+\tau\left(x^{*}\right) D\left(x^{*}\right)+\tau(x) D(x)
$$

and so

$$
G\left(x^{2}\right)-G(x) \sigma(x)-\tau(x) D(x)+G\left(\left(x^{*}\right)^{2}\right)-G\left(x^{*}\right) \sigma\left(x^{*}\right)-\tau\left(x^{*}\right) D\left(x^{*}\right)=0 .
$$

This relation reduces to

$$
A(x)+A\left(x^{*}\right)=0, \text { for all } x \in R
$$

where $A(x)$ stands for $A(x)=G\left(x^{2}\right)-G(x) \sigma(x)-\tau(x) D(x)$. Replacing y by $x y^{*}+y x^{*}$ in (2.9), we obtain that

$$
\begin{aligned}
& G\left(x\left(x y^{*}+y x^{*}\right)^{*}+\left(x y^{*}+y x^{*}\right) x^{*}\right)=G(x) \sigma\left(\left(x y^{*}+y x^{*}\right)^{*}\right) \\
& \quad+G\left(x y^{*}+y x^{*}\right) \sigma\left(x^{*}\right)+\tau\left(x y^{*}+y x^{*}\right) D\left(x^{*}\right)+\tau(x) D\left(\left(x y^{*}+y x^{*}\right)^{*}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& G\left(x\left(y x^{*}+x y^{*}\right)+\left(x y^{*}+y x^{*}\right) x^{*}\right)=G\left(x y^{*}+y x^{*}\right) \sigma\left(x^{*}\right)+G(x) \sigma\left(y x^{*}+x y^{*}\right) \\
& \quad+\tau\left(x y^{*}+y x^{*}\right) D\left(x^{*}\right)+\tau(x) D\left(y x^{*}+x y^{*}\right)
\end{aligned}
$$

Using (2.9) and D is (σ, τ)-derivation of R, we have

$$
\begin{aligned}
G\left(x y x^{*}+x^{2} y^{*}+x y^{*} x^{*}+y\left(x^{*}\right)^{2}\right)= & \left(G(y) \sigma\left(x^{*}\right)+G(x) \sigma\left(y^{*}\right)+\tau(y) D\left(x^{*}\right)\right. \\
& \left.+\tau(x) D\left(y^{*}\right)\right) \sigma\left(x^{*}\right)+G(x) \sigma\left(y x^{*}+x y^{*}\right) \\
& +\tau\left(x y^{*}+y x^{*}\right) D\left(x^{*}\right)+\tau(x)\left(D(y) \sigma\left(x^{*}\right)\right. \\
& +\tau(y) D\left(x^{*}\right)+D(x) \sigma\left(y^{*}\right)+\tau(x) D\left(y^{*}\right)
\end{aligned}
$$

Again using

$$
G\left(x^{2} y^{*}+y\left(x^{2}\right)^{*}\right)=G(y) \sigma\left(x^{2}\right)^{*}+G\left(x^{2}\right) \sigma\left(y^{*}\right)+\tau(y) D\left(\left(x^{*}\right)^{2}\right)+\tau\left(x^{2}\right) D\left(y^{*}\right)
$$

in the last equation, we arrive at

$$
\begin{aligned}
G\left(x\left(y+y^{*}\right) x^{*}\right)= & -G\left(x^{2}\right) \sigma\left(y^{*}\right)+G(x) \sigma\left(y^{*}\right) \sigma\left(x^{*}\right)+\tau(x) D\left(y^{*}\right) \sigma\left(x^{*}\right) \\
& +G(x) \sigma(y) \sigma\left(x^{*}\right)+G(x) \sigma(x) \sigma\left(y^{*}\right)+\tau(x) \tau\left(y^{*}\right) D\left(x^{*}\right) \\
& +\tau(x) D(y) \sigma\left(x^{*}\right)+\tau(x) \tau(y) D\left(x^{*}\right)+\tau(x) D(x) \sigma\left(y^{*}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
G\left(x\left(y+y^{*}\right) x^{*}\right)=-A(x) \sigma\left(y^{*}\right)+G(x) \sigma\left(y+y^{*}\right) \sigma\left(x^{*}\right)+\tau(x) D\left(\left(y+y^{*}\right) x^{*}\right) \tag{2.10}
\end{equation*}
$$

Replacing $y-y^{*}$ by y in (2.10), we get

$$
A(x) \sigma(y)=A(x) \sigma\left(y^{*}\right)
$$

and so

$$
\sigma^{-1}(A(x)) y=\sigma^{-1}(A(x)) y^{*}, \text { for all } x, y \in R
$$

By Lemma 1 and σ is an automorphism of R, we have $A(x) \in Z$, for all $x \in R$.
Now, writing y^{*} by y in (2.9), we have

$$
\begin{equation*}
G\left(x y+y^{*} x^{*}\right)=G\left(y^{*}\right) \sigma\left(x^{*}\right)+G(x) \sigma(y)+\tau\left(y^{*}\right) D\left(x^{*}\right)+\tau(x) D(y) . \tag{2.11}
\end{equation*}
$$

Taking $x y$ instead of y in (2.11), we conclude that

$$
\begin{align*}
G\left(x^{2} y+y^{*}\left(x^{*}\right)^{2}\right)= & G\left(y^{*} x^{*}\right) \sigma\left(x^{*}\right)+G(x) \sigma(x) \sigma(y)+\tau\left(y^{*}\right) \tau\left(x^{*}\right) D\left(x^{*}\right) \\
& +\tau(x) D(x) \sigma(y)+\tau(x) \tau(x) D(y) \tag{2.12}
\end{align*}
$$

Replacing x^{2} by x in (2.11), we get

$$
\begin{align*}
G\left(x^{2} y+y^{*}\left(x^{*}\right)^{2}\right)= & G\left(y^{*}\right) \sigma\left(\left(x^{*}\right)^{2}\right)+G\left(x^{2}\right) \sigma(y)+\tau\left(y^{*}\right) D\left(x^{*}\right) \sigma\left(x^{*}\right) \\
& +\tau\left(y^{*}\right) \tau\left(x^{*}\right) D\left(x^{*}\right)+\tau(x) \tau(x) D(y) \tag{2.13}
\end{align*}
$$

Comparing (2.12) and (2.13), we obtain that

$$
A(x) \sigma(y)+\left(G\left(y^{*}\right) \sigma\left(x^{*}\right)+\tau\left(y^{*}\right) D\left(x^{*}\right)-G\left(y^{*} x^{*}\right) \sigma\left(x^{*}\right)\right)=0
$$

Replacing y by x in this equation, we get

$$
A(x) \sigma(x)+\left(G\left(x^{*}\right) \sigma\left(x^{*}\right)+\tau\left(x^{*}\right) D\left(x^{*}\right)-G\left(x^{*} x^{*}\right) \sigma\left(x^{*}\right)\right)=0
$$

and so

$$
A(x) \sigma(x)-A\left(x^{*}\right) \sigma\left(x^{*}\right)=0
$$

Using $A(x)+A\left(x^{*}\right)=0$, we arrive at

$$
\begin{equation*}
A(x) \sigma\left(x+x^{*}\right)=0 \tag{2.14}
\end{equation*}
$$

Returning $A(x) \sigma(y)=A(x) \sigma\left(y^{*}\right)$ and writing x by y in this equation, we have

$$
\begin{equation*}
A(x) \sigma\left(x-x^{*}\right)=0 \tag{2.15}
\end{equation*}
$$

Combining (2.14) and (2.15), we arrive at $A(x) \sigma(x)=0$, and so $\sigma(x) A(x)=0$. A linearization of this equation yields that

$$
A(x+y) \sigma(x+y)=0
$$

and so

$$
\begin{aligned}
&\left(G\left(x^{2}\right)-G(x) \sigma(x)-\tau(x) D(x)+G(x y+y x)-G(x) \sigma(y)-G(y) \sigma(x)\right. \\
&\left.+G\left(y^{2}\right)-G(y) \sigma(y)-\tau(y) D(y)-\tau(x) D(y)-\tau(y) D(x)\right) \sigma(x+y)=0
\end{aligned}
$$

Defining $B(x, y)=G(x y+y x)-G(x) \sigma(y)-G(y) \sigma(x)-\tau(x) D(y)-\tau(y) D(x)$, we arrive at

$$
(A(x)+B(x, y)+A(y)) \sigma(x+y)=0
$$

Expanding this equation and using $A(x) \sigma(x)=0$, we have

$$
\begin{equation*}
B(x, y) \sigma(x)+A(y) \sigma(x)+A(x) \sigma(y)+B(x, y) \sigma(y)=0 . \tag{2.16}
\end{equation*}
$$

Taking $-x$ instead of x in (2.16) and using $A(-x)=A(x), B(-x, y)=-B(x, y)$, we conclude that

$$
\begin{equation*}
B(x, y) \sigma(x)-A(y) \sigma(x)+A(x) \sigma(y)-B(x, y) \sigma(y)=0 . \tag{2.17}
\end{equation*}
$$

Adding (2.16) and (2.17), we obtain that

$$
2 B(x, y) \sigma(x)+2 A(x) \sigma(y)=0
$$

Since R is 2-torsion free ring, we get $B(x, y) \sigma(x)+A(x) \sigma(y)=0$, for all $x, y \in R$. Multipliying this equation with $A(x)$ from the right and using $\sigma(x) A(x)=0$, we find that

$$
A(x) \sigma(y) A(x)=0, \text { for all } x, y \in R .
$$

Since R is semiprime ring, we have $A(x)=0$, and so

$$
G\left(x^{2}\right)=G(x) \sigma(x)+\tau(x) D(x), \text { for all } x \in R
$$

Hence G is a generalized $(\sigma, \tau)-$ Jordan derivation of R.
Now, let assume $T=G-D$. We get

$$
\begin{aligned}
T\left(x^{2}\right)=(G-D)\left(x^{2}\right) & =G(x) \sigma(x)+\tau(x) D(x)-D(x) \sigma(x)-\tau(x) D(x) \\
& =G(x) \sigma(x)-D(x) \sigma(x) \\
& =(G-D)(x) \sigma(x)=T(x) \sigma(x) .
\end{aligned}
$$

Hence we find that T is a Jordan σ-centralizer. In view of Lemma $8, T$ is left σ-centralizer. On the other hand, since $G=D+T$, we have

$$
\begin{aligned}
G(x y) & =(D+T)(x y)=D(x) \sigma(y)+\tau(x) D(y)+T(x) \sigma(y) \\
& =(D+T)(x) \sigma(y)+\tau(x) D(y),
\end{aligned}
$$

and so

$$
G(x y)=G(x) \sigma(y)+\tau(x) D(y), \text { for all } x, y \in R
$$

Hence we obtain that G is generalized (σ, τ)-derivation of R.
Corollary 1. Let R be a 2 -torsion free simple *-ring. Suppose there exists an additive mapping $G: R \rightarrow R$ related with some additive mapping D such that

$$
D\left(x x^{*}\right)=D(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R
$$

and

$$
G\left(x x^{*}\right)=G(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R .
$$

Then G is generalized (σ, τ)-derivation of R or R is S_{4} ring.
Proof. By Theorem 1, we find that D is a (σ, τ) -derivation of R or R is S_{4} ring. Hence G is generalized (σ, τ)-derivation of R by Theorem 3 .

Corollary 2. Let R be a $2-$ torsion free prime *-ring. Suppose there exists an additive mapping $G: R \rightarrow R$ related with some additive mapping D such that

$$
D\left(x x^{*}\right)=D(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R
$$

and

$$
G\left(x x^{*}\right)=G(x) \sigma\left(x^{*}\right)+\tau(x) D\left(x^{*}\right), \text { for all } x \in R .
$$

Then G is generalized (σ, τ)-derivation of R or R is S_{4} ring.
In particular, if we take $D=0$ in Theorem 3, we have the following corollary which is in [15].

Corollary 3. Let R be a 2 -torsion free semiprime *-ring. Suppose there exists an additive mapping $T: R \rightarrow R$ an additive mapping such that

$$
T\left(x x^{*}\right)=T(x) \sigma\left(x^{*}\right), \text { for all } x \in R .
$$

Then T is left σ-centralizer.

REFERENCES

[1] S. Ali and C. Haetinger, "Jordan α-centralizers in rings and some applications," Bol. Soc. Parana. Mat. (3), vol. 26, no. 1-2, pp. 71-80, 2008.
[2] M. Ashraf, Nadeem-ur-Rehman, and S. Ali, "On Lie ideals and Jordan generalized derivations of prime rings," Indian J. Pure Appl. Math., vol. 34, no. 2, pp. 291-294, 2003.
[3] J. Bergen, I. Herstein, and J. W. Kerr, "Lie ideals and derivations of prime rings," J. Algebra, vol. 71, pp. 259-267, 1981.
[4] M. Bres̆ar, "On the distance of the composition of two derivations to the generalized derivations," Glasg. Math. J., vol. 33, no. 1, pp. 89-93, 1991.
[5] M. Brešar, "Jordan derivations on semiprime rings." Proc. Am. Math. Soc., vol. 104, no. 4, pp. 1003-1006, 1988.
[6] M. Brešar and J. Vukman, "Jordan (θ, φ)-derivations," Glas. Mat., III. Ser., vol. 26, no. 1-2, pp. 13-17, 1991.
[7] M. Daif and M. Tammam El-Sayiad, "On generalized derivations of semiprime rings with involution," Int. J. Algebra, vol. 1, no. 9-12, pp. 551-555, 2007.
[8] I. Herstein, "Jordan derivations of prime rings," Proc. Am. Math. Soc., vol. 8, pp. 1104-1110, 1958.
[9] I. Herstein, Topics in ring theory, ser. Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press, 1969.
[10] I. Herstein, Rings with involution, ser. Chicago Lectures in Mathematics. Chicago - London: The University of Chicago Press, 1976.
[11] H. Kandamar and K. Kaya, "Lie ideals and (σ, τ)-derivation in prime rings," Hacet. Bull. Nat. Sci. Eng., Ser. B, vol. 21, pp. 29-33, 1992.
[12] C. Lanski, "Lie structure in semi-prime rings with involution," Commun. Algebra, vol. 4, pp. 731-746, 1976.
[13] C. Lanski, "Lie structure in semi-prime rings with involution. II," Commun. Algebra, vol. 6, pp. 1755-1775, 1978.
[14] C. Lanski, "Generalized derivations and nth power maps in rings," Commun. Algebra, vol. 35, no. 11, pp. 3660-3672, 2007.
[15] J. Vukman and I. Kosi-Ulbl, "On centralizers of semiprime rings with involution," Stud. Sci. Math. Hung., vol. 43, no. 1, pp. 61-67, 2006.

Authors' addresses

Emine Koç

Cumhuriyet University, Department of Mathematics, Sivas, TURKEY
E-mail address: eminekoc@cumhuriyet.edu.tr
Öznur Gölbaşı
Cumhuriyet University, Department of Mathematics, Sivas, TURKEY
E-mail address: ogolbasi@cumhuriyet.edu.trt

