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Abstract. This study deals with basic prediction/estimation issues involving a constrained mul-
tivariate linear model (CMLM) and some related reduced models. By reparameterizing these
models, the authors create unconstrained multivariate linear models (UMLMs). After that, the
authors use some quadratic matrix optimization methods to derive analytical formulas for com-
puting the best linear unbiased predictors/estimators (BLUPs/BLUEs) of all unknown parameter
matrices. This provides a broad perspective on BLUPs.
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1. INTRODUCTION

As follows, we introduce the notations that will be used throughout this study. We
will write Γ ∈ Rk,t if Γ is a k× t real matrix, Γ ∈ Rs

k if Γ ∈ Rk,k and is symmetric,
and Γ ∈ R≽

k if Γ ∈ Rs
k and is positive semi-definite. We will use Γ

′, C (Γ), and r(Γ)
as symbols to present the transpose, the column space, and the rank of Γ ∈ Rk,t ,
respectively. Γ

⊥ = Ik − ΓΓ
+ and FΓ = It − Γ

+
Γ stand for orthogonal projectors,

where Ik ∈ Rs
k and It ∈ Rs

t are the identity matrices and Γ
+ is the Moore–Penrose

generalized inverse of Γ ∈ Rk,t . The symbol i+(Γ) represents positive inertia of Γ ∈
Rs

k. The vectorization operation (vec operation) of a matrix Γ =
[
γ1, . . . ,γt

]
is defined

to be
−→
Γ =

[
γ′1, . . . ,γ

′
t
]′, where γ1, . . . ,γt are the columns of Γ ∈ Rk,t . A well-known

property on the vec operation of a triple matrix product is
−−−−→
Γ1ΛΓ2 = (Γ′

2 ⊗Γ1)
−→
Λ for

matrices Λ, Γ1, and Γ2.
One of the most frequently used essential statistical tools, both in theory and in

practice, is linear models (LMs). The multivariate LM (MLM) is a generalization
of the univariate LM, which normally means that a response variable on a given set
of regressors is regressed to several response variables on regressors. There may be
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certain restrictions on unknown parameters that are often added to model assumptions
in statistical theory and its applications. Such restrictions arise in some cases, such as
linear hypothesis testing on parameters. In such cases, MLM becomes a constrained
MLM (CMLM).

In the present study, we consider a CMLM, formulated by

M : Y = XΘ+Ψ = X1Θ1 +X2Θ2 +Ψ, CΘ = C1Θ1 +C2Θ2 = D, (1.1)

where Y ∈Rn,m is a matrix of observable dependent variables, X =
[
X1, X2

]
∈Rn,p

with Xi ∈ Rn,pi , C =
[
C1, C2

]
∈ Rs,p with Ci ∈ Rs,pi , and D ∈ Rs,m are known

matrices of arbitrary ranks, Θ =
[
Θ

′
1, Θ

′
2
]′ ∈ Rp,m with Θi ∈ Rpi,m is a matrix of

fixed but unknown parameters, i= 1,2, p1+ p2 = p, Ψ∈Rn,m is a matrix of randomly
distributed error terms with mean matrix E(Ψ) = 0 and dispersion matrix D(

−→
Ψ) =

σ2(Σ2 ⊗ Σ1), where Σ1 = (σ1i j) ∈ R≽
n , Σ2 = (σ2i j) ∈ R≽

m , and σ2 is an unknown
positive number. Further, Σ2 ⊗Σ1 means that

−→
Ψ has a Kronecker product structured

covariance matrix.
A CMLM in partitioned form is usually considered for statistical inferences of

partial parameters in regression analysis. Model transformations are a common oc-
currence, and we utilize them to extrapolate and infer the model’s parameter space.
One of the simplest transformations is a linear transformation, which is achieved by
premultiplying both sides of (1.1) by two matrices X⊥

1 and X⊥
2 to yield the following

pair of transformed CMLMs:

M1 : X⊥
2 Y = X⊥

2 X1Θ1 +X⊥
2 Ψ, C1Θ1 = D,

E(X⊥
2 Ψ) = 0, D(X⊥

2 Ψ) = σ
2(Σ2 ⊗X⊥

2 Σ1X⊥
2 )

(1.2)

and

M2 : X⊥
1 Y = X⊥

1 X2Θ2 +X⊥
1 Ψ,C2Θ2 = D,

E(X⊥
1 Ψ) = 0, D(X⊥

1 Ψ) = σ
2(Σ2 ⊗X⊥

1 Σ1X⊥
1 ),

(1.3)

which are frequently referred to as correctly-reduced versions of M in (1.1); for the
related expositions, see, [14]. Each of the model equations in M1 and M2 is not
equal to the whole model equation in M due to the two linear transformations X⊥

1 Y
and X⊥

2 Y are unique. It is advantageous to formulate M1 and M2 since they do not
contain the partial parameter matrices Θ1 and Θ2 found in M . As a result, using M1
and M2, we may estimate Θ1 and Θ2 in M separately.

In many cases, we are forced to use these derived models in the hopes that the in-
ference outcomes obtained from M1 and M2 are equal to those that would correspond
to M . The linear sufficiency problem, initially stated by [2] and taken into consid-
eration in the statistical literature, is the search for relationships between estimators
under original models and their reduced models.
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We can take the following matrix into consideration in order to develop some
results on predictors of all unknown matrices under M .

Φ = HΘ+JΨ = H1Θ1 +H2Θ2 +JΨ, or,
−→
Φ = (Im ⊗H)

−→
Θ +(Im ⊗J)

−→
Ψ

= (Im ⊗H1)
−→
Θ1 +(Im ⊗H2)

−→
Θ2 +(Im ⊗J)

−→
Ψ ,

(1.4)

in accordance with the partition considered in (1.1) for given matrices H=
[
H1, H2

]
∈

Rk,p with Hi ∈ Rk,pi , Θ =
[
Θ1, Θ2

]
∈ Rp,m with Θi ∈ Rpi,m, i = 1,2, p1 + p2 = p,

and J ∈ Rk,n.
For statistical inference under the CMLM and its two reduced models, in addition

to (1.4), we are also able to create the next three matrices linked to the constrained
reduced models Mi, i = 1,2, respectively.

Φ1 = H1Θ1 +JΨ =
[
H1, 0

]
Θ+JΨ, or,

−→
Φ 1 = (Im ⊗H1)

−→
Θ1 +(Im ⊗J)

−→
Ψ ,

(1.5)

and

Φ2 = H2Θ2 +JΨ =
[
0, H2

]
Θ+JΨ, or,

−→
Φ 2 = (Im ⊗H2)

−→
Θ2 +(Im ⊗J)

−→
Ψ .

(1.6)

Then, we obtain

E(Φ) = HΘ, D(
−→
Φ ) = σ

2(Im ⊗J)(Σ2 ⊗Σ1)(Im ⊗J)′,

cov(
−→
Φ ,

−→
Y ) = cov(

−→
Φ1,

−→
Y ) = cov(

−→
Φ2,

−→
Y ) = σ

2(Im ⊗J)(Σ2 ⊗Σ1), (1.7)

E(Φ1) = H1Θ1, D(
−→
Φ1) = σ

2(Im ⊗J)(Σ2 ⊗Σ1)(Im ⊗J)′,

cov(
−→
Φ1,

−−→
X⊥

1 Y) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

1 Σ1X⊥
1 ), (1.8)

cov(
−→
Φ1,

−−→
X⊥

2 Y) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

2 Σ1X⊥
2 ),

and

E(Φ2) = H2Θ2, D(
−→
Φ2) = σ

2(Im ⊗J)(Σ2 ⊗Σ1)(Im ⊗J)′,

cov(
−→
Φ2,

−−→
X⊥

1 Y) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

1 Σ1X⊥
1 ),

cov(
−→
Φ2,

−−→
X⊥

2 Y) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

2 Σ1X⊥
2 ).

(1.9)

Note that the linear restriction equations CΘ=D and CiΘi =D in M and Mi, i= 1,2
are consistent, respectively. The general solutions of these matrix equations can be
written as Θ=C+D+FCΩ and Θi =C+

i D+FCiΩi, respectively, where Ω∈Rp,m and
Ωi ∈ Rpi,m are reparameterized but arbitrary matrices. Substituting these solutions
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into the model equations in M and Mi, i = 1,2, yields the following reparameterized
MLMs:

R : ϒ = XFCΩ+Ψ, (1.10)

R1 : X⊥
2 ϒ1 = X⊥

2 X1FC1Ω1 +X⊥
2 Ψ, (1.11)

R2 : X⊥
1 ϒ2 = X⊥

1 X2FC2Ω2 +X⊥
1 Ψ, (1.12)

where ϒ = Y−XC+D and ϒi = Y−XiCi
+D, i = 1,2, thus, predictions under M and

Mi can be derived from R and Ri, i = 1,2, respectively. Correspondingly, Φ in (1.4)
and Φi in (1.5)-(1.6) become the following reparameterized matrices:

∆ = HFCΩ+JΨ = H1FC1Ω1 +H2FC2Ω2 +JΨ, or,
−→
∆ = (Im ⊗HFC)

−→
Ω +(Im ⊗J)

−→
Ψ , (1.13)

= (Im ⊗H1FC1)
−→
Ω1 +(Im ⊗H2FC2)

−→
Ω2 +(Im ⊗J)

−→
Ψ ,

∆1 = H1FC1Ω1 +JΨ =
[
H1FC1 , 0

]
Ω+JΨ, or,

−→
∆1 = (Im ⊗H1FC1)

−→
Ω1 +(Im ⊗J)

−→
Ψ , (1.14)

and

∆2 = H2FC2Ω2 +JΨ =
[
0, H2FC2

]
Ω+JΨ, or,

−→
∆2 = (Im ⊗H2FC2)

−→
Ω2 +(Im ⊗J)

−→
Ψ ,

(1.15)

where ∆ = Φ−HC+D and ∆i = Φi −HiCi
+D, i = 1,2. Then, we obtain

E(∆) = HFCΩ, D(
−→
∆ ) = σ

2(Im ⊗J)(Σ2 ⊗Σ1)(Im ⊗J)′,

cov(
−→
∆ ,

−→
ϒ ) = cov(

−→
∆1,

−→
ϒ ) = cov(

−→
∆2,

−→
ϒ ) = σ

2(Im ⊗J)(Σ2 ⊗Σ1). (1.16)

E(∆1) = H1FC1Ω1, D(
−→
∆1) = σ

2(Im ⊗J)(Σ2 ⊗Σ1)(Im ⊗J)′,

cov(
−→
∆1,

−−−→
X⊥

2 ϒ1) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

2 Σ1X⊥
2 ), (1.17)

cov(
−→
∆1,

−−−→
X⊥

1 ϒ2) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

1 Σ1X⊥
1 ).

E(∆2) = H2FC2Ω2, D(
−→
∆2) = σ

2(Im ⊗J)(Σ2 ⊗Σ1)(Im ⊗J)′,

cov(
−→
∆2,

−−−→
X⊥

2 ϒ1) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

2 Σ1X⊥
2 ), (1.18)

cov(
−→
∆2,

−−−→
X⊥

1 ϒ2) = σ
2(Im ⊗J)(Σ2 ⊗X⊥

1 Σ1X⊥
1 ).

In the present study, we consider the CMLM in (1.1) and some related reduced
models in (1.2) and (1.3) with general assumptions. After reparameterizing these
models given as R and Ri, i = 1,2 in (1.10)-(1.12), we derive analytic formulas for
computing the best linear unbiased predictor/estimator (BLUP/BLUE).
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In the statistical literature, LMs with exact restrictions on unknown parameters
have been studied under various model assumptions, see e.g., [3, 5, 8–10, 12, 13, 18,
20, 23, 25]. We may refer to the studies [6, 7, 11, 19, 24], among others, in which
both an CMLM and unconstrained MLM (UMLM) on unknown parameters has been
considered from different perspectives.

2. PRELIMINARY

For the models that are taken into consideration in the work, consistency is given
the first definition; see [17]. In the second definition, predictability is given; see [1].
The last definition is related to the BLUP and the BLUE.

Definition 1. The model R is consistent ⇐⇒ ϒ ∈ C
[
XFC, Σ2 ⊗Σ1

]
holds with

probability (wp) 1.

For reduced models Ri, i = 1,2, it is possible to make the following consistency
assumptions in accordance with Definition 1.

(1) R1 is consistent ⇐⇒ X⊥
2 ϒ1 ∈ C

[
X⊥

2 X1FC1 , Σ2 ⊗X⊥
2 Σ1X⊥

2

]
holds wp 1.

(2) R2 is consistent ⇐⇒ X⊥
1 ϒ2 ∈ C

[
X⊥

1 X2FC2 , Σ2 ⊗X⊥
1 Σ1X⊥

1

]
holds wp 1.

We note that Ri are consistent under the assumption of consistency of R , i = 1,2.

Definition 2. The predictability requirement of matrix ∆ under R is described as
holding the inclusion C ((HFC)

′)⊆ C ((XFC)
′). This requirement also corresponds

to the estimability of HFCΩ under R . Further, the matrix Ψ is always predictable
under R .

For models R and Ri, i = 1,2, the following predictability/estimability require-
ments of ∆i and its special cases are given in accordance with Definition 2. Let
Ĥ1 =

[
H1FC1 , 0

]
and Ĥ2 =

[
0, H2FC2

]
. Then

(1) ∆1 is predictable by ϒ in R ⇐⇒ C (Ĥ′
1)⊆ C ((XFC)

′).
(2) ∆2 is predictable by ϒ in R ⇐⇒ C (Ĥ′

2)⊆ C ((XFC)
′).

(3) ∆1 is predictable by X⊥
2 ϒ1 in R1 ⇐⇒ C ((H1FC1)

′)⊆ C ((X⊥
2 X1FC1)

′).
(4) ∆2 is predictable by X⊥

1 ϒ2 in R2 ⇐⇒ C ((H2FC2)
′)⊆ C ((X⊥

1 X2FC2)
′).

We note that if ∆i is predictable under Ri, i = 1,2, then it is predictable under R .

Definition 3. If a matrix K ∈ Rk,n and K1 ∈ Rk,m, or K̂ ∈ Rkm,nm and K̂1 ∈ Rkm,1
exists with

D(
−−−−−−−−−→
KY+K1 −Φ) = min s.t. E(KY+K1 −Φ) = 0, or,

D(K̂
−→
Y + K̂1 −

−→
Φ ) = min s.t. E(K̂

−→
Y + K̂1 −

−→
Φ ) = 0

(2.1)

in the Löwner partial ordering (LPO), the linear statistic KY+K1 is said to be the
BLUP of Φ and is represented by KY+K1 = BLUPM (HΘ+ JΨ). If J = 0 in Φ,
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KY+K1 is the well-known the BLUE of HΘ, represented by BLUEM (HΘ), under
M .

Suppose that ∆ or
−→
∆ in (1.13) is predictable under R . Kϒ is defined to be the

BLUP of ∆ if there exists Kϒ such that

D(
−−−−→
Kϒ−∆) = min s.t. E(Kϒ−∆) = 0 (2.2)

holds in the LPO, and is represented by

Kϒ = BLUPR (∆) = BLUPR (HFCΩ+JΨ) .

If J = 0 in ∆, Kϒ corresponds the BLUE of HFCΩ, represented by BLUER (HFCΩ).
Further, if H = 0 and J = In in ∆, Kϒ corresponds the BLUP of Ψ, i.e., BLUPR (Ψ),
under R .

The following results are given in accordance with Definition 3. Let ∆1 or
−→
∆1 be

predictable under R and Ri, i = 1,2. Then

(1) BLUPR (∆1) = K1ϒ ⇐⇒ D(
−−−−−−→
K1ϒ−∆1) = min s.t. E(K1ϒ−∆1) = 0.

(2) BLUPR (∆2) = K2ϒ ⇐⇒ D(
−−−−−−→
K2ϒ−∆2) = min s.t. E(K2ϒ−∆2) = 0.

(3) BLUPR1(∆1) = G1X⊥
2 ϒ1

⇐⇒ D(
−−−−−−−−−→
G1X⊥

2 ϒ1 −∆1) = min s.t. E(G1X⊥
2 ϒ1 −∆1) = 0.

(4) BLUPR2(∆2) = G2X⊥
1 ϒ2

⇐⇒ D(
−−−−−−−−−→
G2X⊥

1 ϒ2 −∆2) = min s.t. E(G2X⊥
1 ϒ2 −∆2) = 0.

Finally, we give the following two lemmas, which are required in the sections that
follow. For the first lemma; see, [15], and for the last one; see, [20].

Lemma 1. The linear matrix equation HX=D is consistent ⇔ r
[
H, D

]
= r(H),

or equivalently, HH+D = D. Then, the general solution of this equation can be
written as X = H+D+(I−H+H)V, where V is an arbitrary matrix.

Lemma 2. Let B ∈ Rm,p, A ∈ Rn,p be given matrices, and let Q ∈ R≽
n . Suppose

that there exists X0 ∈ Rm,n such that X0B = A. Then the maximal positive inertia of
X0QX′

0 −XQX′ subject to all solutions of XB = A is

max
XB=A

i+(X0QX′
0 −XQX′) = r

[
X0Q
B′

]
− r(B) = r(X0QB⊥).

Hence a solution X0 of X0B = A exists such that X0QX′
0 ≼ XQX′ holds for all solu-

tions of XB = A ⇔ both the equations X0B = A and X0QB⊥ = 0 are satisfied by
X.

3. BLUPS/BLUES UNDER A CMLM WITH SOME RELATED REDUCED MODELS

The following theorems, respectively, are collections of the basic findings on
BLUP of ∆ and ∆i in (1.10)-(1.12) and its sub-cases. These theorems use a method
described in [4]. For different approaches; see, e.g., [16, 22].
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Theorem 1. Suppose that ∆ is predictable under R in (1.11). For ∆ under R ,
let Kϒ and Lϒ be unbiased linear predictors . Then the maximal positive inertia of
D(

−−−−→
Kϒ−∆)−D(

−−−−→
Lϒ−∆) subject to LXFC = HFC is

max
E(Lϒ−∆)=0

i+(D(
−−−−→
Kϒ−∆)−D(

−−−−→
Lϒ−∆))= r

([
K, −Ik

][In
J

]
cov(ϒ)

[
In
J

]′[XFC
HFC

]⊥)
.

(3.1)
Hence,

D(
−−−−→
Kϒ−∆) = min s.t.E(Kϒ−∆) = 0 ⇔ Kϒ = BLUPR (∆)

⇔ K
[
XFC, Σ1(XFC)

⊥]= [HFC, JΣ1(XFC)
⊥] . (3.2)

(3.2) is consistent and the BLUP of ∆ under R can be written as follows by con-
sidering the general solution of this equation:

Kϒ = BLUPR (∆)⇔ K
[
XFC, Σ1(XFC)

⊥]= [HFC, JΣ1(XFC)
⊥]

and the general solution of this consistent equation can be written as

BLUPR (∆) = Kϒ =
([

HFC, JΣ1(XFC)
⊥]W+

r +UrW⊥
r

)
ϒ,

−−−−−−−→
BLUPR (∆) = (Im ⊗K)

−→
ϒ (3.3)

=
(

Im ⊗
([

HFC, JΣ1(XFC)
⊥]W+

r +UrW⊥
r

))−→
ϒ ,

where Ur ∈Rk,n is an arbitrary matrix and Wr =
[
XFC, Σ1(XFC)

⊥]. In particular,

BLUER (HFCΩ) = Kϒ =
([

HFC, 0
]

W+
r +UrW⊥

r

)
ϒ,

−−−−−−−−−−−→
BLUER (HFCΩ) = (Im ⊗K)

−→
ϒ (3.4)

=
(

Im ⊗
([

HFC, 0
]

W+
r +UrW⊥

r

))−→
ϒ ,

and

BLUPR (Ψ) = Kϒ =
([

0, Σ1(XFC)
⊥]W+

r +UrW⊥
r

)
ϒ,

−−−−−−−→
BLUPR (Ψ) = (Im ⊗K)

−→
ϒ (3.5)

=
(

Im ⊗
([

0, Σ1(XFC)
⊥]W+

r +UrW⊥
r

))−→
ϒ .

Further, the matrix Wr satisfies

r(Wr) = r
[
XFC, Σ1

]
and C (Wr) = C

[
XFC, Σ1

]
. (3.6)

Also, the following equalities hold.

D
−−−−−−−−→
[BLUPR (∆)] = σ

2
Σ2 ⊗

[
HFC, JΣ1(XFC)

⊥]W+
r Σ1

×
([

HFC, JΣ1(XFC)
⊥]W+

r
)′
,
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cov{
−−−−−−−→
BLUPR (∆),

−→
∆ }= σ

2
Σ2 ⊗

[
HFC, JΣ1(XFC)

⊥]W+
r Σ1J′,

D[
−→
∆ −

−−−−−−−→
BLUPR (∆)] = σ

2
Σ2 ⊗

([
HFC, JΣ1(XFC)

⊥]W+
r −J

)
(3.7)

×Σ1
([

HFC, JΣ1(XFC)
⊥]W+

r −J
)′
.

Proof of Theorem 1. Suppose that Kϒ and Lϒ are two unbiased linear predictors
for ∆ in R . Then, the expected value and covariance matrix of Kϒ−∆ are written as

E(Kϒ−∆) = 0 ⇔ KXFC = HFC ⇔
[
K, −Ik

][XFC
HFC

]
= 0 (3.8)

and

D
−−−−−−→
(Kϒ−∆) = (Im ⊗ (K−J))cov(Ψ)(Im ⊗ (K−J))′

= σ
2 (Im ⊗ (K−J))(Σ2 ⊗Σ1)(Im ⊗ (K−J))′

= σ
2
Σ2 ⊗ (K−J)Σ1(K−J)′

= σ
2
Σ2 ⊗

[
K, −Ik

][In
J

]
Σ1

[
In
J

]′ [
K, −Ik

]′ := Σ2 ⊗ f (K),

(3.9)

where

f (K) =
[
K, −Ik

][In
J

]
Σ1

[
In
J

]′ [
K, −Ik

]′
.

By using L in place of K, the equivalent formulas as in (3.8) and (3.9) may also be
given for the other unbiased linear predictor Lϒ for ∆ under R . In order to obtain
solution K of the consistent linear matrix equation KXFC = HFC, the matrix minim-
ization problem described in Definition 3 for finding the BLUP of ∆ under R can be
expressed such that

Σ2 ⊗ f (K)≼ Σ2 ⊗ f (L) s.t. LXFC = HFC (3.10)

or equivalently,
f (K)≼ f (L) s.t. LXFC = HFC

because Σ2 is a non-null matrix. According to Lemma 2, (3.10) is a typical con-
strained quadratic matrix-valued function optimization problem in the LPO. Lemma 2
gives us the basic formula for the BLUP of ∆ in (3.2), and Lemma 1 gives us the ex-
pression for the BLUP of ∆ under R in (3.3). Setting J = 0, and H = 0 and J = In
at (3.3) yields (3.4) and (3.5), respectively. The expressions in (3.6) are well-known
results; see also [21, Lemma 2.1(a)]. From (1.17) and (3.3),

D[
−−−−−−−→
BLUPR (∆)] = (Im ⊗K)cov(Ψ)(Im ⊗K)′ = σ

2 (Im ⊗K)(Σ2 ⊗Σ1)(Im ⊗K)′

= σ
2
Σ2 ⊗KΣ1K′

= σ
2
Σ2 ⊗

([
HFC, JΣ1(XFC)

⊥]W+
r +UrW⊥

r

)
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×Σ1

([
HFC, JΣ1(XFC)

⊥]W+
r +UrW⊥

r

)′
= σ

2
Σ2 ⊗

[
HFC, JΣ1(XFC)

⊥]W+
r

×Σ1
([

HFC, JΣ1(XFC)
⊥]W+

r
)′
,

cov{
−−−−−−−→
BLUPR (∆),

−→
∆ }= (Im ⊗K)cov(Ψ)(Im ⊗J)′

= σ
2 (Im ⊗K)(Σ2 ⊗Σ1)(Im ⊗J)′ = σ

2
Σ2 ⊗KΣ1J′

= σ
2
Σ2 ⊗

[
HFC, JΣ1(XFC)

⊥]W+
r Σ1J′,

D[
−→
∆ −

−−−−−−−→
BLUPR (∆)] = σ

2
Σ2 ⊗

([
HFC, JΣ1(XFC)

⊥]W+
r +UrW⊥

r −J
)

×Σ1

([
HFC, JΣ1(XFC)

⊥]W+
r +UrW⊥

r −J
)′

= σ
2
Σ2 ⊗

([
HFC, JΣ1(XFC)

⊥]W+
r −J

)
×Σ1

([
HFC, JΣ1(XFC)

⊥]W+
r −J

)′
.

Thus establishing equalities in (3.7). □

Theorem 2. Suppose that ∆i is predictable under Ri, i = 1,2 in (1.11)-(1.12) (also
predictable under R in (1.10)). Thus, the results that follow are provided.

(1)
−−−−−−−−→
BLUPR (∆1) =

(
Im ⊗

([
Ĥ1, JΣ1(XFC)

⊥
]

W+
r +P1W⊥

r
))−→

ϒ , where Ĥ1 =[
H1FC1 , 0

]
, Wr =

[
XFC, Σ1(XFC)

⊥] and P1 ∈ Rs,n is an arbitrary mat-
rix. Then,

D
−−−−−−−−−→
[BLUPR (∆1)] = σ

2
Σ2 ⊗

[
Ĥ1, JΣ1(XFC)

⊥
]

W+
r Σ1

×
([

Ĥ1, JΣ1(XFC)
⊥
]

W+
r
)′
, (3.11)

D[
−→
∆1 −

−−−−−−−−→
BLUPR (∆1)] = σ

2
Σ2 ⊗

([
Ĥ1, JΣ1(XFC)

⊥
]

W+
r −J

)
×Σ1

([
Ĥ1, JΣ1(XFC)

⊥
]

W+
r −J

)′
. (3.12)

(2)
−−−−−−−−→
BLUPR (∆2) =

(
Im ⊗

([
Ĥ2, JΣ1(XFC)

⊥
]

W+
r +P2W⊥

r
))−→

ϒ , where Ĥ2 =[
0, H2FC2

]
, Wr =

[
XFC, Σ1(XFC)

⊥] and P2 ∈ Rs,n is an arbitrary mat-
rix. Then,

D
−−−−−−−−−→
[BLUPR (∆2)] = σ

2
Σ2 ⊗

[
Ĥ2, JΣ1(XFC)

⊥
]

W+
r Σ1

×
([

Ĥ2, JΣ1(XFC)
⊥
]

W+
r
)′
, (3.13)

D[
−→
∆2 −

−−−−−−−−→
BLUPR (∆2)] = σ

2
Σ2 ⊗

([
Ĥ2, JΣ1(XFC)

⊥
]

W+
r −J

)
×Σ1

([
Ĥ2, JΣ1(XFC)

⊥
]

W+
r −J

)′
. (3.14)

(3)
−−−−−−−−→
BLUPR1(∆1) =

(
Im ⊗

(
M1W+

r1
+U1W⊥

r1

))−→
ϒ1,

where U1 ∈ Rs,n is arbitrary matrix, M1 =
[
H1FC1 , JΣ1X⊥

2 (X⊥
2 X1FC1)

⊥]
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and Wr1 =
[
X⊥

2 X1FC1 , X⊥
2 Σ1X⊥

2 (X⊥
2 X1FC1)

⊥]. Then,

D
−−−−−−−−−→
[BLUPR1(∆1)] = σ

2
Σ2 ⊗M1W+

r1
X⊥

2 Σ1X⊥
2
(
M1W+

r1

)′
, (3.15)

D[
−→
∆1 −

−−−−−−−−→
BLUPR1(∆1)] = σ

2
Σ2 ⊗

(
M1W+

r1
X⊥

2 −J
)

Σ1

(
M1W+

r1
X⊥

2 −J
)′
. (3.16)

(4)
−−−−−−−−→
BLUPR2(∆2) =

(
Im ⊗

(
M2W+

r2
+U2W⊥

r2

))−→
ϒ2,

where U2 ∈ Rs,n is arbitrary matrix, M2 =
[
H2FC2 , JΣ1X⊥

1 (X⊥
1 X2FC2)

⊥]
and Wr2 =

[
X⊥

1 X2FC2 , X⊥
1 Σ1X⊥

1 (X⊥
1 X2FC2)

⊥] . Then,

D
−−−−−−−−−→
[BLUPR2(∆2)] = σ

2
Σ2 ⊗M2W+

r2
X⊥

1 Σ1X⊥
1
(
M2W+

r2

)′
, (3.17)

D[
−→
∆2 −

−−−−−−−−→
BLUPR2(∆2)] = σ

2
Σ2 ⊗

(
M2W+

r2
X⊥

1 −J
)

Σ1

(
M2W+

r2
X⊥

1 −J
)′
. (3.18)

Proof of Theorem 2. For BLUP of ∆i under Ri, the fundamental equations can be
proved similarly to Theorem 1. □

The basic conclusions are reached by changing (3.3) in Theorem 1 into (3.9), ac-
cordingly.

Corollary 1. M and R be as given (1.1) and (1.11), respectively. Let Φ and ∆ be
as given in (1.4) and (1.13), respectively, and suppose that ∆ is predictable under R .
Then

BLUPM (Φ) = HC+D+BLUPR (∆)

= HC+D+
([

HFC, JΣ1(XFC)
⊥]W+

r +UrW⊥
r

)
×
(
Y−XC+D

)
where Ur ∈ Rk,n is arbitrary matrix, and Wr =

[
XFC, Σ1(XFC)

⊥]. In particular,

BLUPM (HΘ) = HC+D+BLUPR (HFCΩ)

= HC+D+
([

HFC, 0
]

W+
r +UrW⊥

r

)(
Y−XC+D

)
.

Corollary 2. Mi and Ri be as given (1.2)-(1.3) and (1.11)-(1.12), respectively. Let
Φi and ∆i be as given in (1.5)-(1.6) and (1.14)-(1.15), respectively, and suppose that
∆i, i = 1,2 is predictable under Ri. Then

BLUPM1
(Φ1) = H1C1

+D+BLUPR1(∆1)

= H1C1
+D+

(
M1W+

r1
+U1W⊥

r1

)(
Y−X1C1

+D
)

where U1 ∈Rk,n is arbitrary matrix, M1 =
[
H1FC1 , JΣ1X⊥

2 (X⊥
2 X1FC1)

⊥] and Wr1 =[
X⊥

2 X1FC1 , X⊥
2 Σ1X⊥

2 (X⊥
2 X1FC1)

⊥]. In particular,

BLUPM1
(H1Θ1) = H1C+

1 D+BLUPR1(H1FC1Ω1)
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= H1C+
1 D+

([
H1FC1 , 0

]
W+

r1 +U1W⊥
r1

)(
Y−X1C+

1 D
)

and

BLUPM2
(Φ2) = H2C2

+D+BLUPR2(∆2)

= H2C2
+D+

(
M2W+

r2
+U2W⊥

r2

)(
Y−X2C2

+D
)

where U2 ∈ Rk,n is arbitrary matrix, M2 =
[
H2FC2 , JΣ1X⊥

1 (X⊥
1 X2FC2)

⊥] and

Wr2 =
[
X⊥

1 X2FC2 , X⊥
1 Σ1X⊥

1 (X⊥
1 X2FC2)

⊥] .
In particular,

BLUPM2
(H2Θ2) = H2C+

2 D+BLUPR2(H2FC2Ω2)

= H2C+
2 D+

([
H2FC2 , 0

]
W+

r2 +U2W⊥
r2

)(
Y−X2C+

2 D
)
.

4. SUMMARY COMMENTS

This study presents a general approach to CMLMs and some related reduced mod-
els. We use the approach of reparameterization of CMLMs subject to exact linear
restrictions. Another popular approach to handling a CMLM is to construct a new
combined model by merging two given parts of the CMLM, i.e., the model part and
the restriction part, into a combined form. According to this approach, the explicitly
constrained model M and some related reduced models Mi, i = 1,2 are converted
into the following implicitly CMLM and some related reduced models:

M̂ :
[

Y
D

]
=

[
X
C

]
Θ+

[
Ψ

0

]
with D

[
Y
D

]
= σ

2
[

Σ2 ⊗Σ1 0
0 0

]
, (4.1)

M̂i :
[

X⊥
j Y
D

]
=

[
X⊥

j Xi

Ci

]
Θi +

[
X⊥

j Ψ

0

]
with D

[
X⊥

j Y
D

]
= σ

2
[

Σ2 ⊗X⊥
j Σ1X⊥

j 0
0 0

]
,

(4.2)
i, j = 1,2 and i ̸= j. Then, by taking into account the model M̂ and M̂i, i = 1,2 in
(4.1) and (4.2), respectively, equivalent results for the BLUP of Φ may be established.
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Sakarya University, Department of Econometrics, 54187 Sakarya, Turkey
E-mail address: nesring@sakarya.edu.tr

http://dx.doi.org/10.1007/s00184-015-0533-0
http://dx.doi.org/10.1016/j.jmva.2015.09.007
http://dx.doi.org/10.1016/j.spl.2017.04.007
http://dx.doi.org/10.1007/s00362-014-0654-y

	1. Introduction
	2. Preliminary
	3. BLUPs/BLUEs under a CMLM with some related reduced models
	4. Summary Comments
	References

