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Abstract. The present paper derives convergence rates and asymptotic normality of a class of
M−estimators in the periodic asymmetric GARCH model. Simulation studies are conducted for
evaluating the performance of the estimator. Finally, an empirical study on the exchange rates of
the Algerian Dinar against the U.S-dollar and the single European currency (Euro) illustrates the
usefulness of the periodic T GARCH model.
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1. INTRODUCTION

Periodic Generalized AutoRegressive Conditional Heteroscedastic (PGARCH) mod-
els have been vastly used to analyze the volatility in economic and financial time
series (c.f., [1], [2]). Later Bibi and Ghezal [3] proposed an asymmetric of the
PGARCH model called the PT GARCH model. A stochastic process (Xn)n∈Z is said
to follow a PT GARCH(p,q) model if

Xn = σ
1
2
n ηn, (1.1)

where (ηn)n∈Z is a sequence of independent identically distributed (i.i.d.) random
variables with zero mean and unit variance and ηk is independent of Xn for k > n, and
conditionally on the σ−field ℑn−1 = σ(Xn−i, i ≥ 1), σn satisfy

σn = a0(n)+
q

∑
i=1

(
ai(n)X+2

n−i +bi(n)X−2
n−i

)
+

p

∑
j=1

c j (n)σn− j, (1.2)

where X±
n = max(±Xn,0) , X±2

n = (X±
n )

2 so, Xn = X+
n −X−

n and |Xn| = X+
n +X−

n .
Now, setting n = st + v, Xst+v = Xt (v) , σst+v = σt (v) and ηst+v = ηt (v) , Model
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(1.1)− (1.2) may be equivalently written as
Xt (v) = σ

1
2
t (v)ηt (v)

σt (v) = a0(v)+
q
∑

i=1

(
ai(v)X+

t (v− i)+bi(v)X−
t (v− i)

)
+

p
∑
j=1

c j (v)σt (v− j)
.

(1.3)
In (1.3), a0(v), ai(v), bi(v) and c j(v) with i ∈ {1, ...,q} and j ∈ {1, ..., p} are pos-
itive coefficients with a0(v) > 0 for any v ∈ {1, ...,s}, and Xt (v) refers to Xt during
the v− th regime v ∈ {1, ...,s} of cycle t. For the convenience, Xt (v) = Xt−1 (v+ s) ,
σt (v) = σt−1 (v+ s) and ηt (v) = ηt−1 (v+ s) if v < 0. The non-periodic notations
(Xt) , (σt) , (ηt) etc. will be used interchangeably with the periodic notations (Xt (v)) ,
(σt (v)) , (ηt (v)) etc. Some results on PT GARCH model can be found in literature.
Guerbyenne and Kessira [10] gave a necessary and sufficient condition which ensure
the existence of a strictly periodically stationary (SPS) and periodically ergodic (PE)
solution to PT GARCH process, and established its strong consistency and asymptotic
normality of the quasi maximum likelihood estimator (QMLE), See also Bibi and
Ghezal [3]. As a consequence, QMLE is currently a widely used method for estimat-
ing the unknown parameters in symmetric or asymmetric PGARCH models. But, as
everyone knows, the QMLE is asymptotic if the innovation has finite four moments,
while stringent moment conditions may not hold in many situations, for this reason,
we propose an M−estimation to reduce the requirement on moments of the innova-
tions. Many symmetric standard or periodic GARCH models have been considered in
the literature to estimate parameter using M−estimation (see, [13], [18], [20]). Now,
in this paper we present a class of M−estimators of asymmetric PGARCH models.

The rest of the paper is organized as follows. In section 2, we define the class of
M−estimators. Section 3 is devoted to the asymptotic properties of M−estimation
and gives an estimator of asymptotic variance. Simulation results and an illustrative
application on real data are reported in Sections 4 and 5. Section 6 concludes the
paper.

2. M−ESTIMATION

In this section, we investigate the problem of M−estimation of some function of
the model parameter vector θ

′ :=
(
a′,b′,c′

)
:=
(
θ
′ (1) , ...,θ′ (s)

)
∈ Θ ⊂ ]0,+∞]s ×

[0,+∞[s(2q+p) where a′ :=
(
a′0,a

′
1, ...,a

′
q
)
, b′ :=

(
b′1, ...,b

′
q
)
, c′ :=

(
c′1, ...,c

′
p
)

and
θ
′ (v) := (a0 (v) ,a1 (v) , ...,aq (v) ,b1 (v) , ...,bq (v) ,c1 (v) , ...,cp (v)) , v = 1, ...,s with

a′i := (ai (1) , ..., ai (s)), b′k := (bk (1) , ...,bk (s)) and c′j := (c j (1) , ...,c j (s)) for all
0 ≤ i ≤ q, 1 ≤ k ≤ q and 1 ≤ j ≤ p based on the realization {X1, ...,Xn;n = sN} from
the unique, causal and SPS solution of (1.3), and let σ2

t (θ) be the conditional variance
of Xt given Ft−1 where Ft := σ(eu;u ≤ t) . The true parameter value is unknown and
is denoted by θ

′
0 :=

(
a′0,b

′
0,c

′
0
)
∈ Θ ⊂ ]0,+∞[s × [0,+∞[s(2q+p). Now, by a similar

argument to Lemma 2.3 and Theorem 2.1 of Berkes et al. [12], then PT GARCH(p,q)
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can be transformed to an infinite order PTARCH(∞), i.e., almost surely

σt (v) = κ0(v)+∑
i≥1

(
κi(v)X+2

t (v− i)+ τi(v)X−2
t (v− i)

)
,

where the coefficients κi(v), τk(v), i ≥ 0, k ≥ 1 are given by

κi(v) =
a0(v)

1−
p
∑
j=1

c j (v)
I{i=0}+

di

dxi


q
∑
j=1

a j(v)x j

1−
p
∑
j=1

c j (v)x j


x=0

I{i>0}, i ≥ 0,

τk(v) =
dk

dxk


q
∑
j=1

b j(v)x j

1−
p
∑
j=1

c j (v)x j


x=0

I{k>0}, k ≥ 1,

where I{.} denotes the indicator function. If f denotes the error density of ηt , then
the conditional density of Xt given the information available up to time t − 1 will
be σt,θ0

f
(

σ
−1
t,θ0

Xt

)
, 1 ≤ t ≤ sN. Hence, we can get a minimizer of the negative

log−likelihood function

(sN)−1
N−1

∑
t=0

s

∑
v=1

(
1
2

logσ
2
t,θ (v)− f

(
σ
−1
t,θ (v)Xst+v

))
,θ ∈ Θ,

or, as a solution to the equation

N−1

∑
t=0

s

∑
v=1

1
2

(
1+K∗

(
σ
−1
t,θ (v)Xst+v

))
σ
−2
t,θ (v)∇θσ

2
t,θ (v) = 0,

where K∗ (x) = x f−1 (x)∇x f (x) , ∇x f (x) denotes its derivative or gradient of f (x) .
More generally, since the density f is unknown, for a score function K which satisfies
some constraints, we can then define an estimator θ̂sN as a solution of the following
equation

N−1

∑
t=0

s

∑
v=1

1
2

(
1+K

(
σ
−1
t,θ (v)Xst+v

))
σ
−2
t,θ (v)∇θσ

2
t,θ (v) = 0.

Remark 1. We now discuss the score function K, in [18], let K (x) = xϕ(x) , x ∈
R,where ϕ : R−→ R is differentiable in all but finite number of points and an odd,
i.e., satisfies the skew-symmetric function ϕ(−x) = −ϕ(x) , ∀x ∈ R∗. Let ∆ ⊂ R be
the set of points on which ϕ is differentiable and ∆ denote its complement. Examples
of such score function are reported in Table 1.
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Names Expressions of ϕ Expressions of K Set ∆

1. Least absolute deviation (LAD) sign(x) |x| {0}
score function

2. Huber’s k−score function,k > 0 xI{|x|≤k}+ ksign(x)I{|x|>k} x2I{|x|≤k}+ k |x|I{|x|>k} {−k,k}

3. QMLE score function x x2 φ

4. Score function for the maximum − f−1 (x)∇x f (x) , f is the x
(
− f−1 (x)∇x f (x)

)
According

likelihood estimation (MLE) true density of ηt to f

5. Score function for the exponential a |x|b−1 sign(x) a |x|b {0}
pseudo MLE a > 0,1 < b ≤ 2

6. λ−score function,λ > 1 λsign(x)(1+ |x|)−1
λ |x|(1+ |x|)−1 {0}

7. Score function for the Cauchy 2x
(
1+ x2

)−1 2x2
(
1+ x2

)−1 {0}

Table 1. Examples of score functions.

Note however that θ̂sN’s are noncomputable because σ2
t,θ’s are unobservable. We

define observable approximations
{

σ2
t,θ, t ≥ 1

}
to the variance functions

{
σ̃2

t,θ, t ≥ 1
}

as

σ̃t,θ (v) = κ0,θ(v)+ I{st+v≥2}

st+v−1

∑
i=1

(
κi,θ(v)X+2

t (v− i)+ τi,θ(v)X−2
t (v− i)

)
, θ ∈ Θ.

Then an M−estimator θ̃sN based on the score function K is a measurable solution to
the following equation,

N−1

∑
t=0

s

∑
v=1

1
2

(
1+K

(
σ̃
−1
t,θ (v)Xst+v

))
σ̃
−2
t,θ (v)∇θσ̃

2
t,θ (v) = 0.

Remark 2. For K (x) = x2 of Example 3 in Table 1, θ̂sN is the renowned QMLE as
debated by Guerbyenne and Kessira [10] and Bibi and Ghezal [3].

3. ASYMPTOTIC PROPERTIES FOR M−ESTIMATORS OF PT GARCH MODELS

To study the strong consistency and the asymptotic normality of θ̂sN , we first

define the polynomials A0,v (z) =
q
∑

i=1
a0,i (v)zi, B0,v (z) =

q
∑

i=1
b0,i (v)zi and C0,v (z) =

1−
p
∑

i=1
c0,i (v)zi, by convention A0,v (z) = 0, B0,v (z) = 0 if q = 0 and C0,v (z) = 1 if

p = 0, for all v ∈ {1, ...,s} . Now, consider the following regularities assumptions (for
more details and discussions, see Iqbal [13]),

H.0 For the score function K, there exists a unique constant cK > 0 satisfying
E
{

K
(

c−1/2
K η0

)}
= 1.
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H.1 θ0 ∈ Θ and Θ is a compact subset of ]0,+∞]s × [0,+∞[s(2q+p) and θ0, θ
(K)
0 ∈

Θ̊, with Θ̊ denotes the interior of Θ, where

θ
(K) :=

(
a′(K),b

′
(K),c

′
(K)

)
= cK

(
a′,b′,c′

)
.

H.2 The moment conditions:

E
{

K2
(

c−1/2
K η0

)}
< ∞ and0 < E

{
c−1/2

K η0∇
θ
(K)K

(
c−1/2

K η0

)}
< ∞.

H.3 (ηt)t∈Z is non-degenerate and P(ηt > 0) ∈ (0,1).
H.4 If p > 0, A0,v (z) and B0,v (z) have no common roots with C0,v (z) for all v.

Moreover, A0,v (1)+B0,v (1) ̸= 0 and a0,q (v)+ b0,q (v)+ c0,p (v) ̸= 0 for all
v ∈ {1, ...,s} .

H.5 γ
(s)
L (Λ0)< 0 and ρ

(
s

∏
v=1

Ωv

)
< 1 where γL (Λ0) is the Lyapunov exponent as-

sociated with the random matrix Λ0

(
η

t

)
, with Λ0

(
η

t

)
:=

s−1
∏

v=0
Γ0,s−v (ηt (s− v)) ,

where Γ0,v (ηt (v)) is appropriate (2q+ p)× (2q+ p) matrice easily obtained
and uniquely determined by{

a0,i (v) ,b0,i (v) ,c0, j (v) ,η+
t (v) ,η−

t (v) ,1 ≤ i ≤ q,1 ≤ j ≤ p
}

and Ωv is appropriate p× p matrice easily obtained and uniquely determined
by
{

c j (v) ,1 ≤ j ≤ p
}
.

H.6 There exist functions g, h and l satisfying

i. |K (uv)−K (v)| ≤ g(v)
∣∣u2 −1

∣∣ , v ∈ R, u > 0,
ii. |∇K (uv)−∇K (v)| ≤ h(v) |u−1| , v ∈ R, u > 0, uv,v ∈ Θ,
iii. |h(v+uv)−h(v)| ≤ l (v)u, v ∈ R, u > 0,

where E
{

max
(

log
(

g
(

c−1/2
K η0

))
,0
)}

<∞, E
{∣∣∣c−1/2

K η0

∣∣∣h(c−1/2
K η0

)}
<

∞ and E
{

max
(

log
(

l
(

c−1/2
K η0

))
,0
)}

< ∞.

We are now in a position to state the following result.

Theorem 1. Under Assumptions H.0−H.6, then θ̂Ns
P→ θ

(K)
0 as N → ∞ and

√
Ns
(

θ̂Ns −θ
(K)
0

)
;N

(
O,σ2

KJ−1
)

as N → ∞ where the matrix J given by

J :=
s

∑
v=1

E
θ
(K)
0

{
σ
−2
t,θ(K)

0

(v)∇
θ
(K)σt,θ(K)

0
(v)∇

θ
(K)′σt,θ(K)

0
(v)
}

,

and σ2
K = 4Var

θ
(K)
0

(
K
(

c−1/2
K η0

))(
E

θ
(K)
0

{
c−1/2

K η0∇
θ
(K)′K

(
c−1/2

K η0

)})−2
.

To prove Theorem 1, we make the following assertions gathered in the following
proposition (see, [12], [18], for more details)
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Proposition 1. Under Assumptions H.0−H.6, we have

(1) Let
{

A(i)
t , i = 1,2,3, t ≥ 0

}
be a sequence of identically distributed random

variables. If
3
∑

i=1
E
{

max
(

logA(i)
0 ,0

)}
< +∞, then for any |r| < 1,

∑
t≥0

(
A(1)

t +A(2)
t A(3)

t

)
rt converges with probability one.

(2) For all v ∈ {1, ...,s}, i ≥ 0, t ∈ Z, we have σ
t,θ(K)

0
= cKσt,θ0

, and the coef-

ficients
{

κi,θ(v),τi,θ(v)
}

and the functions
{

σt,θ
}

are differentiable in the
interior Θ̊ of Θ.

(3) There is a number r ∈ (0,1) such that ∀θ ∈ Θ̊, v ∈ {1, ...,s}, ∀i ≥ 0,

κ1ςi < κi,θ(v)< κ2ri,
∣∣∇θκi,θ(v)

∣∣< κ3ri,
∣∣∣∇2

θ
κi,θ(v)

∣∣∣< κ4ri,

τ1ςi < τi,θ(v)< τ2ri,
∣∣∇θκi,θ(v)

∣∣< τ3ri,
∣∣∣∇2

θ
κi,θ(v)

∣∣∣< τ4ri,

where ς =
{

a0 (v) ,a1 (v) , ...,aq (v) ,b1 (v) , ...,bq (v) ,c1 (v) , ...,cp (v) ;
v ∈ {1, ...,s} ,θ ∈ Θ} ∈ (0,1) .

(4) There exist random variables e0 and e1, both independent of {ηt , t ≥ 1}, such
that ∀θ ∈ Θ̊, 0 < σt,θ0

− σ̃t,θ0
< rte0 and

∣∣∇θ

(
σt,θ0

− σ̃t,θ0

)∣∣< rte1.
(5) For any d ≥ 1 and v ∈ {1, ...,s} ,

E
{

sup
{∣∣σt,θ (v)

∣∣−d ∣∣∇θσt,θ (v)
∣∣d ,θ ∈ Θ̊

}}
<+∞,

E
{

sup
{∣∣σt,θ (v)

∣∣−d ∣∣∇2
θσt,θ (v)

∣∣d ,θ ∈ Θ̊

}}
<+∞.

(6) Let R1 (x) = x∇xK (x). The following two inequalities hold,

R1 (uv)−R1 (v)≤ |u−1| |v|(|∇xK (v)|+uh(v)) ,

R1 (uv)−R1 (wv)≤ |u−w| |v|(|u−1|h(v)+ |∇xK (v)|+ |h(wv)|) .
Now, we use the modified result of [16] because we want to establish consistency

and asymptotic properties of θ̂Ns. Let function Gn : Θ −→ R be twice differentiable
with respect to a in a µ−neighborhood {ϑ : ∥ϑ−ϑ0∥ ≤ µ} ⊂ Θ, ϑ0 ∈ Θ, we define a
sequence of estimators ϑ̂n ∈ Θ, as a solution to the equation

i. ∇ϑGn

(
ϑ̂n

)
= 0,

ii. Gn (ϑ)−Gn (ϑ0) = (ϑ−ϑ0)
′
∇ϑGn (ϑ0)+2−1 (ϑ−ϑ0)

′
∇2

ϑ
Gn (ϑ0)(ϑ−ϑ0)

+2−1 (ϑ−ϑ0)
′
∇2

ϑ
Fn (ϑ

∗)(ϑ−ϑ0) ,

where ϑ
∗ satisfies ∥ϑ

∗−ϑ0∥ ≤ µ and Fn (ϑ
∗) = ∇2

ϑ
(Gn (ϑ

∗)−Gn (ϑ0)) . Moreover,
the true parameter value ϑ0 satisfies the following properties,

iii. n−1∇ϑGn (ϑ0)
p−→ 0,n −→+∞,

iv. (2n)−1
∇2

ϑ
Gn (ϑ0)

p−→ ΣG,n −→+∞,
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for some positive definite matrix ΣG,

v. lim
n−→∞

lim
µ >−→0

sup
{
(2n)−1 |Fn (ϑ

∗)| ;∥ϑ
∗−ϑ0∥ ≤ µ

}
<+∞, a.s.

From the above mentioned we have the following theorem which is much similar to
that of Klimko and Nelson [16]

Theorem 2. Suppose that ii.−v. hold, then the following results on asymptotics
of ϑ̂n hold.

(1) For ϑ̂n satisfies the equation i., then, ϑ̂n
p−→ ϑ0.

(2) In addition, if for some positive definite matrix ΓG,
(
2n1/2

)−1
∇ϑGn (ϑ0) ∼

N (O,ΓG) , then n1/2
(

ϑ̂n −ϑ0

)
∼ N

(
O,Σ−1

G ΓGΣ
−1
G

)
.

The proof of Theorem 1. Define a function φ by φ(x)=
|x|∫
0

ϕ(t)dt,∀x∈R and define

mt (θ) =
s

∑
v=1

(
φ

(
σ
−1/2
t,θ (v)Xt (v)

)
+2−1 log

(
σt,θ (v)

))
, t = 0, ...,N −1,

m̃t (θ) =
s

∑
v=1

(
φ

(
σ̃
−1/2
t,θ (v)Xt (v)

)
+2−1 log

(
σ̃t,θ (v)

))
, t = 0, ...,N −1,

MN (θ) =
N−1

∑
t=0

mt (θ) , M̃N (θ) =
N−1

∑
t=0

m̃t (θ) .

Then, the first partial derivatives of mt (θ) and m̃t (θ) (resp., MN (θ) and M̃N (θ)) are
given by

∇θmt (θ) = 2−1
s

∑
v=1

(
−K

(
σ
−1/2
t,θ (v)Xt (v)

)
+1
)

σ
−1
t,θ (v)∇θσt,θ (v) ,

∇θm̃t (θ) = 2−1
s

∑
v=1

(
−K

(
σ̃
−1/2
t,θ (v)Xt (v)

)
+1
)

σ̃
−1
t,θ (v)∇θσ̃t,θ (v) ,

∇θMN (θ) = 2−1
N−1

∑
t=0

s

∑
v=1

(
−K

(
σ
−1/2
t,θ (v)Xt (v)

)
+1
)

σ
−1
t,θ (v)∇θσt,θ (v) ,

∇θM̃N (θ) = 2−1
N−1

∑
t=0

s

∑
v=1

(
−K

(
σ̃
−1/2
t,θ (v)Xt (v)

)
+1
)

σ̃
−1
t,θ (v)∇θσ̃t,θ (v) .

Thus, our proof depends on checking the conditions of the Theorem 1 for the criterion
functions M̃N . In the first step, we verify the above-mentioned conditions of Theorem
2 for the criterion functions MN . The second partial derivatives of mt (θ) and m̃t (θ)
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are given by

∇
2
θmt (θ) = 2−2

s

∑
v=1

R1

(
σ
−1/2
t,θ (v)Xt (v)

)
σ
−2
t,θ (v)∇θσt,θ (v)∇θ

′σt,θ (v)

+
s

∑
v=1

R2

(
σ
−1/2
t,θ (v)Xt (v)

)
σ
−2
t,θ (v)

(
σt,θ (v)∇

2
θσt,θ (v)

−∇θσt,θ (v)∇θ
′σt,θ (v)

)
,

∇
2
θm̃t (θ) = 2−2

s

∑
v=1

R1

(
σ̃
−1/2
t,θ (v)Xt (v)

)
σ̃
−2
t,θ (v)∇θσ̃t,θ (v)∇θ

′ σ̃t,θ (v)

+
s

∑
v=1

R2

(
σ̃
−1/2
t,θ (v)Xt (v)

)
σ̃
−2
t,θ (v)

(
σ̃t,θ (v)∇

2
θσ̃t,θ (v)

−∇θσ̃t,θ (v)∇θ
′ σ̃t,θ (v)

)
,

where R2 (x) = 2−1 (1−K (x)). Hence, ii. holds. For the rest of the proofs are very
similar to those of Fan et al. [20]. □

The following result gives an estimator of the asymptotic variance

Theorem 3. Assume that Assumptions H.0−H.6, E
{

g
(

c−1/2
K η0

)}
< +∞ and

E
{

X2
st+v
}
<+∞, 1 ≤ v ≤ s hold, then

σ̂
2
K,N Ĵ−1

N
p−→ σ

2
KJ−1,N −→+∞,

where

σ̂
2
K,N = 4

(
(Ns)−1

N−1

∑
t=0

s

∑
v=1

K2
(

Xt (v) σ̂
−1/2
t,θ̂Ns

(v)
)

−

(
(Ns)−1

N−1

∑
t=0

s

∑
v=1

K
(

Xt (v) σ̂
−1/2
t,θ̂Ns

(v)
))2


×

(
(Ns)−1

N−1

∑
t=0

s

∑
v=1

Xt (v) σ̂
−1/2
t,θ̂Ns

(v)∇K
(

Xt (v) σ̂
−1/2
t,θ̂Ns

(v)
))−2

and ĴN := N−1
N−1
∑

t=0

s
∑

v=1
σ̂
−2
t,θ̂Ns

(v)∇σ̂t,θ̂Ns
(v)
(

∇σt,θ̂Ns
(v)
)′
.

Proof. The proof is very similar to those of Mukherjee [18]. It suffices to replace
the stationarity and ergodicity arguments by the SPS and PE ones, respectively. For
this we omit the proof. □

Remarks 1. (1) The large class of M−estimators for estimating the paramet-
ers of the PT GARCH model includes the QMLE as a special case and LAD
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estimator as well as many other useful estimators. It is worth noting that
M−estimators also contain less-known estimators (see, Examples 2, 6 and 7
in Table 1), which can be considered an attractive alternative to the QMLE.

(2) Regarding the closed-form expression of the coefficients cK in Assumption
H.0 are c1/2

K = E {|η0|} for the LAD score and cK = E
{

η2
0
}

for the QMLE

score, cK = 1 for the MLE score and cK =
(

aE
{
|η0|b

})2/b
for the exponen-

tial pseudo MLE score. For the other scores, cK does not have a closed-form
expression but the corresponding numerical values can be computed from
H.0 and H.3 for various error distributions (for further discussion see [11]).

(3) It is worth noting that the condition γ
(s)
L (Λ0)< 0 in H.5 provide the existence

of a SPS solution to the PT GARCH models. Moreover, the solution is unique
and PE. Now, the non stationarity condition stems from the fact that the SPS
condition is not met, i.e., γ

(s)
L (Λ0)> 0. Thus, it is useful and fruitful the study

the asymptotic properties of M−estimators for non-stationary PT GARCH
models (cf., [19], [14], [15], when K (x) = x2).

(4) Francq and Zakoı̈an [7] established the asymptotic distribution of the QMLE
when some coefficients are equal to zero, thus, it would be beneficial to gen-
eralize the asymptotic properties of M−estimaors for PT GARCH when θ0 is
on the boundary.

(5) Various authors have supposed that the period s is known and fixed (see
Ghezal et al. [3], [6], [5], [4], [8], [9] and references therein), if otherwise,
the period s is obviously an important parameter, hence one can estimate the
parameter s using the periodogram, as we can consider it the most important
method to determine the presence of periodicities (see Martin and Kedem
[17] for more details).

4. SIMULATION STUDY

Now, we illustrate the M−estimators described in previous sections (at least for
a moderate periodicity coefficients s = 2 say), we provide some numerical results
from Monte Carlo experiment. We simulate 500 independent trajectories via some
specifications of PT GARCH (1,1) models with length n ∈ {1000,3000} with stand-
ard N (0,1) and Student−t(10) innovation distributions and computed the QMLE,
LAD, and Huber’s estimates with k = 1.5 for each replication with vector θ of para-
meters described in the bottom of each table below which is chosen to satisfy the
SPS condition. For each trajectory, the vector θ has been estimated with these three
M−estimators noted as θ̂n. In Table below, the columns are correspond to the average
of the parameters estimates over the 500 simulations. In order to show the perform-
ance of three M−estimators, the roots mean square error (RMSE) of the each θ̂n (v),
v = 1, ...s, (results between bracket), are reported in Table 2 below.
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N (0,1) t(10)
QMLE LAD Huber, k = 1.5 QMLE LAD Huber, k = 1.5

cK 1 2/π 0.825 1 0.55 0.725
Parameters TV \ n 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000 1000 3000
a(K)

0 (1) cK 0.9964 1.0037 0.6329 0.6389 0.8211 0.8278 0.9949 1.0039 0.5453 0.5529 0.7198 0.7292
(0.0826) (0.0679) (0.0490) (0.0450) (0.0688) (0.0392) (0.0749) (0.0612) (0.0610) (0.0511) (0.0804) (0.0594)

a(K)
0 (2) 0.5cK 0.5032 0.4984 0.3216 0.3167 0.4157 0.4108 0.5099 0.4971 0.2846 0.2722 0.3650 0.3601

(0.0559) (0.0456) (0.0844) (0.0723) (0.0908) (0.0551) (0.0607) (0.0573) (0.0932) (0.0820) (0.0921) (0.0604)

a(K)
1 (1) 0.5cK 0.4995 0.4996 0.3177 0.3180 0.4119 0.4121 0.5039 0.4994 0.2788 0.2796 0.3672 0.3620

(0.0643) (0.0397) (0.0364) (0.0223) (0.0600) (0.0343) (0.0648) (0.0407) (0.0372) (0.0230) (0.0613) (0.0360)
a(K)

1 (2) 0.25cK 0.2459 0.2501 0.1552 0.1594 0.2018 0.2065 0.2419 0.2502 0.1301 0.1379 0.1767 0.1816
(0.0678) (0.0402) (0.0372) (0.0220) (0.0642) (0.0391) (0.0686) (0.0403) (0.0388) (0.0228) (0.0646) (0.0395)

b(K)
1 (1) 0.25cK 0.2479 0.2493 0.1569 0.1584 0.2042 0.2056 0.2462 0.2481 0.1338 0.1355 0.1794 0.1806

(0.0501) (0.0303) (0.0281) (0.0169) (0.0445) (0.0247) (0.0504) (0.0305) (0.0289) (0.0174) (0.0472) (0.0275)
b(K)

1 (2) 0.45cK 0.4429 0.4466 0.2802 0.2853 0.3682 0.3702 0.4424 0.4468 0.2400 0.2461 0.3239 0.3283
(0.0799) (0.0467) (0.0440) (0.0259) (0.0754) (0.0452) (0.0799) (0.0470) (0.0453) (0.0265) (0.0760) (0.0461)

c(K)
1 (1) 0.15cK 0.1391 0.1426 0.0885 0.0904 0.1129 0.1284 0.1377 0.1424 0.0722 0.0769 0.0993 0.1016

(0.0269) (0.0266) (0.0562) (0.0529) (0.0225) (0.0131) (0.0290) (0.0268) (0.0675) (0.0608) (0.0441) (0.0437)
c(K)

1 (2) 0.55cK 0.5525 0.5518 0.3532 0.3524 0.4553 0.4556 0.5527 0.5622 0.3054 0.3047 0.4011 0.3996
(0.0297) (0.0283) (0.0416) (0.0379) (0.0365) (0.0192) (0.0355) (0.0290) (0.0354) (0.0299) (0.0387) (0.0238)

Table 2: Average and RMSE of 500 simulations of three M−estimators for PT GARCH (1,1)

Now, a few comments are in order. Table 2 compares the asymptotic parameters
estimates and their RMSE over 500 independent simulations of the periodic
T GARCH(1,1) for sample sizes n = 1000 and n = 3000. As expected the estim-
ates of the periodic T GARCH(1,1) coefficients based on QMLE, LAD, and Huber’s
displayed RMSE decrease as the sample size increases. We can also see that the
values of the estimates of the QMLE, LAD, and Huber’s corresponding to N (0,1)
are generally found to be more efficient than t10 ones. Furthermore, LAD−estimator
performs even better compared to all its competitors in terms of even smaller RMSE.

5. AN APPLICATION TO EXCHANGE RATES

In this section, we apply our model for modeling the two daily time series (X1t ,
X2t)t≥1 of exchange rates: Euro/Algerian dinar (EUR/DZD) and U.S. dollar/ Al-
gerian dinar (USD/DZD) provided by the Bank of Algeria. We first removed all the
days where market was closed (i.e., holidays and weekends). The observations cover
the period from January 3, 2000 to September 29, 2011. The final sample consists
of 3055 observations for each series. In order to do so, we collect the two exchange
rates at time t,

X1t = EUR/DZDt , X2t =USD/DZDt ,

and their corresponding log−return series r1t and r2t , where rkt = 100log(Xkt/Xkt−1) ,
for k = 1,2. The graphics of prices X1t and X2t , the daily returns series of prices
r1t ,r2t , squad and absolute returns are plotted in Fig 1
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FIGURE 1. The plots of the price series (Xkt) ,(rkt) ,
(
r2

kt

)
and

(|rkt |) ,k = 1,2.

Some elementary descriptive statistics are provided for the two log−return series
in Table 3.

Series mean Std. Dev Median Skewness Kurtosis Min Max
r1t 0.1000 5.0000 0.1000 0.4000 9.0000 −23.300 49.700
r2t 0.0000 3.0000 0.0000 1.0000 13.000 −19.000 34.000
Table 3: Summary statistics for returns series (r1t ,r2t)t≥1 .

Continuation of Table 3
Series Arch(300) J. Bera LBtest
r1t 100% 4.597×103 87.33%
r2t 100% 1.301×104 100%

The findings indicate that for the EUR/DZD (resp. USD/DZD), the lowest returns
(−23.300) (resp. −19.000) and the highest returns (49.700) (resp. 34.000). The
skewness for two log−return series is positive. Moreover, one of the features which
prominently stands out most from Table 3 is that the kurtosis for two log−returns is
much larger than 3, which indicates that the models based on the Gaussian assump-
tion may not well describe the data.

From Fig 2, that (rkt)t≥1,k=1,2 presents a Taylor-effect (characterized by ρ̂|rkt |(h)>
ρ̂r2

kt
(h) for some lag h ≥ 1). Now, we will propose the 5−periodic T GARCH (1,1)

model that allows for the description of intraweek effect in the daily exchange rate,
where the parameters are allowed to vary with the day of the week (v = 1,2,3,4 and
5)

v =


1 if the day corresponding is a Monday
...
5 if the day corresponding is a Friday

.
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FIGURE 2. Sample autocorrelations of returns associated to Euro
and Dollar.

The estimated parameters of the 5−periodic T GARCH (1,1) model and their RMSE
are reported in Tables 4−5.

QMLE LAD

Days âK
0 âK

1 b̂
K
1 ĉK

1 âK
0 âK

1 b̂
K
1 ĉK

1
Monday 0.0308 0.0239 0.0259 0.0986 0.0013 0.0089 0.0067 0.3464

(0.0403) (0.0165) (0.0177) (0.1130) (0.0008) (0.0018) (0.0016) (0.1043)
Tuesday 0.0434 0.0277 0.0363 0.1154 0.0051 0.0031 0.0028 0.2154

(0.0370) (0.0135) (0.0145) (0.0893) (0.0004) (0.0007) (0.0008) (0.0560)
Wednesday 0.0489 0.0255 0.0232 0.1348 0.0048 0.0095 0.0091 3.3459

(0.0311) (0.0145) (0.0127) (0.0713) (0.0006) (0.0009) (0.0008) (0.1415)
Thursday 0.0413 0.0196 0.0180 0.1105 0.0117 0.0106 0.0096 5.0442

(0.0316) (0.0146) (0.0127) (0.0825) (0.0012) (0.0013) (0.0014) (0.1880)
Friday 0.0291 0.0183 0.0234 0.0884 0.0048 0.0031 0.0086 0.5705

(0.0331) (0.0148) (0.0179) (0.0964) (0.0009) (0.0014) (0.0020) (0.1103)
Table 4. QMLE, LAD, Huber’s estimates from the Euro data and their RMSE.

QMLE LAD

Days âK
0 âK

1 b̂
K
1 ĉK

1 âK
0 âK

1 b̂
K
1 ĉK

1
Monday 0.0480 0.0749 0.0870 0.2028 0.0332 0.0933 0.0792 0.0952

(0.0062) (0.0295) (0.0224) (0.0606) (0.0153) (0.0301) (0.0377) (0.0183)
Tuesday 0.0301 0.0800 0.0453 0.1269 0.0051 0.0697 0.2578 0.1409

(0.0058) (0.0168) (0.0128) (0.0412) (0.0006) (0.0327) (0.0670) (0.0217)
Wednesday 0.0220 0.1063 0.0526 0.0792 0.0037 0.1128 0.0259 0.0458

(0.0051) (0.0173) (0.0174) (0.0381) (0.0018) (0.0508) (0.0097) (0.0195)
Thursday 0.0219 0.0755 0.0529 0.1016 0.0100 0.1159 0.0903 0.3014

(0.0045) (0.0193) (0.0127) (0.0440) (0.0086) (0.0991) (0.0341) (0.1665)
Friday 0.0308 0.0968 0.0562 0.1458 0.0222 0.0468 0.0521 0.0560

(0.0055) (0.0159) (0.0191) (0.0485) (0.0119) (0.0249) (0.0139) (0.0069)
Table 5. QMLE, LAD, Huber’s estimates from the Dollar data and their RMSE.
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Huber, k = 1.5

Days âK
0 âK

1 b̂
K
1 ĉK

1
Monday 0.1808 0.1061 0.6063 0.3197

(0.0333) (0.0155) (0.0835) (0.1352)
Tuesday 0.1849 0.6622 4.0544 0.1452

(0.0368) (0.0271) (0.0672) (0.0934)
Wednesday 0.8388 5.0880 0.5673 0.5964

(0.0146) (0.0493) (0.0230) (0.0350)
Thursday 0.4958 0.2560 0.1840 1.9462

(0.0416) (0.0725) (0.0558) (0.1735)
Friday 0.1753 0.2997 0.2316 0.3591

(0.0216) (0.0373) (0.0758) (0.0608)
Continuous of Table 4.

Huber, k = 1.5

Days âK
0 âK

1 b̂
K
1 ĉK

1
Monday 0.0390 0.0999 0.0670 0.1465

(0.0270) (0.0369) (0.0437) (0.0323)
Tuesday 0.0198 0.2140 0.2896 0.0510

(0.0137) (0.0739) (0.0804) (0.0304)
Wednesday 0.0038 0.0920 0.0114 0.0039

(0.0004) (0.0215) (0.0016) (0.0018)
Thursday 0.0088 0.1271 0.1389 0.2626

(0.0062) (0.0731) (0.0615) (0.1380)
Friday 0.0439 0.7237 0.1481 0.0658

(0.0140) (0.0301) (0.0916) (0.0363)
Continuous of Table 5.

6. CONCLUSION

In this paper, we consider estimating the parameters of the periodic asymmetric
GARCH(p,q) model using M−estimators. Regardless of the usually-used QMLE,
alternative estimators based on the LAD and Huber’s score functions are used. Sim-
ulation results expose that some of these estimators can perform better than the
QMLE. Finally, the methodology is illustrated through a simulation study and an
empirical application of two daily time series of exchange rates: Euro/Algerian dinar
(EUR/DZD) and U.S. dollar/ Algerian dinar (USD/DZD) provided by the Bank of
Algeria.
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