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Abstract. We establish a fixed point theorem involving a rational expression in a complete partial
metric space. Our result generalizes a well-known result in (usual) metric spaces. Also, we
introduce an example to illustrate the usability of our result.
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1. INTRODUCTION AND PRELIMINARIES

The notion of partial metric space was introduced by Matthews [10,11] in 1992. In
fact, a partial metric space is a generalization of usual metric spaces in which d.x;x/
are no longer necessarily zero. After this remarkable contribution, many authors
focused on partial metric spaces and its topological properties (see e.g. [1–9,12,13]).

The definition of partial metric space is given by Matthews (see e.g.[10, 11]) as
follows:

Definition 1. Let X be a nonempty set and let p WX �X ! Œ0;1/ satisfy

(PM1/ x D y , p.x;x/D p.y;y/D p.x;y/

(PM2/ p.x;x/ � p.x;y/

(PM3/ p.x;y/ D p.y;x/

(PM4/ p.x;y/ � p.x;´/Cp.´;y/ �p.´;´/

for all x, y and ´ 2 X . Then the pair .X;p/ is called a partial metric space (in short
PMS) and p is called a partial metric on X .

Notice that for a partial metric p on X , the function dp WX �X ! RC given by

dp.x;y/D 2p.x;y/�p.x;x/�p.y;y/ (1.1)

is a (usual) metric on X . Observe that each partial metric p on X generates a T0

topology �p on X with a base of the family of open p-balls fBp.x;"/ W x 2X;" > 0g,
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where Bp.x;"/D fy 2X W p.x;y/ < p.x;x/C"g for all x 2X and " > 0. Similarly,
closed p-ball is defined as BpŒx;"�D fy 2X W p.x;y/� p.x;x/C "g

Some basic concepts on partial metric spaces are defined as follows:

Definition 2 (See e.g.[10, 11]).
(i) A sequence fxng in a PMS .X;p/ converges to x 2X if and only if p.x;x/D

limn!1p.x;xn/.
(ii) A sequence fxng in a PMS .X;p/ is called Cauchy if and only if

limn;m!1p.xn;xm/ exists (and finite).
(iii) A PMS .X;p/ is said to be complete if every Cauchy sequence fxng in X

converges, with respect to �p, to a point x 2 X such that
p.x;x/D limn;m!1p.xn;xm/.

(iv) A mapping f WX!X is said to be continuous at x0 2X , if for every " > 0,
there exists ı > 0 such that f .B.x0; ı//� B.f .x0/;"/.

The following lemmas play important role in the proofs of our main result.

Lemma 1 (See e.g.[10, 11]). .A/ A sequence fxng is Cauchy in a PMS .X;p/
if and only if fxng is Cauchy in a metric space .X;dp/,

.B/ A PMS .X;p/ is complete if and only if a metric space .X;dp/ is complete.
Moreover,

lim
n!1

dp.x;xn/D 0, p.x;x/D lim
n!1

p.x;xn/D lim
n;m!1

p.xn;xm/ (1.2)

Lemma 2 (See e.g.[4]). Let .X;p/ be a PMS. Then
(A) If p.x;y/D 0 then x D y,
(B) If x ¤ y, then p.x;y/ > 0.

Lemma 3 (See e.g. [4]). Let xn! ´ as n!1 in a PMS .X;p/ where p.´;´/D
0. Then limn!1p.xn;y/D p.´;y/ for every y 2X .

2. THE MAIN RESULT

In this section we establish our main theorem which gives conditions for existence
and uniqueness of a fixed point for a certain type operators on partial metric spaces.

Theorem 1. Let .X;p/ be a complete partial metric space and T W X ! X be a
mapping satisfying

 .p.T x;Ty//�  .M.x;y//�'.M.x;y//;8x;y 2X; (2.1)

where M.x;y/ is given by

M.x;y/Dmax
�
p.y;Ty/

1Cp.x;T x/

1Cp.x;y/
;p.x;y/

�
and  W Œ0;1/! Œ0;1/ is a continuous and monotone non-decreasing function with
 .t/ D 0 if and only if t D 0 and ' W Œ0;1/! Œ0;1/ is a lower semi-continuous
function with '.t/D 0 if and only if t D 0. Then T has a unique fixed point.
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Proof. Let x0 be an arbitrary point in X . We construct the sequence fxng in X as
follows:

xnC1 D T xn; nD 0;1;2;3; � � � :

If there exists n such that xnD xnC1 then xn is a fixed point of T . Now, suppose that
xn ¤ xnC1 for all n� 0. Letting x D xn�1 and y D xn in (2.1), we have

 .p.xn;xnC1//D  .p.T xn�1;T xn//�  .M.xn�1;xn//�'.M.xn�1;xn//

where

M.xn�1;xn/Dmax
�
p.xn;T xn/

1Cp.xn�1;T xn�1/

1Cp.xn�1;xn/
;p.xn�1;xn/

�
:

Hence, we obtain

 .p.xn;xnC1//�  .maxfp.xn;xnC1/;p.xn�1;xn/g/

�'.maxfp.xn;xnC1/;p.xn�1;xn//g/ (2.2)

If p.xn;xnC1/ > p.xn�1;xn/, then from (2.2), we have

 .p.xn;xnC1//�  .p.xn;xnC1//�'.p.xn;xnC1// <  .p.xn;xnC1//

which is a contradiction since p.xn;xnC1/> 0 by Lemma 2. So, we have p.xn;xnC1/�

p.xn�1;xn/, that is, fp.xn;xnC1/g is a non-increasing sequence of positive real
numbers. Thus, there exists L� 0 such that

lim
n!1

p.xn;xnC1/D L (2.3)

Suppose that L > 0. Taking the upper limit in (2.2) as n!1 and using (2.3) and
the properties of  , ', we have

 .L/�  .L/� lim
n!1

inf'.p.xn�1;xn//�  .L/�'.L/ <  .L/

which is a contradiction. Therefore

lim
n!1

p.xn;xnC1/D 0 (2.4)

Due to (1.1), we have dp.xn;xnC1/� 2p.xn;xnC1/

lim
n!1

dp.xn;xnC1/D 0 (2.5)

Now, we prove that
lim

n;m!1
p.xn;xm/D 0:

Suppose the contrary, that is,

lim
n;m!1

p.xn;xm/¤ 0:

Then there exists � > 0 for which we can find two subsequences
˚
xm.k/

	
;
˚
xn.k/

	
of

fxng such that n.k/ is the smallest index for which

n.k/ > m.k/ > k; p.xn.k/;xm.k//� ": (2.6)
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This means that
p.xn.k/�1;xm.k// < ": (2.7)

From (2.6) and (2.7), we have

"� p.xn.k/;xm.k//� p.xn.k/;xn.k/�1/Cp.xn.k/�1;xm.k//�p.xn.k/�1;xn.k/�1/

� p.xn.k/;xn.k/�1/Cp.xn.k/�1;xm.k//

< "Cp.xn.k/;xn.k/�1/

Taking k!1 and using (2.4), we get

lim
k!1

p.xn.k/;xm.k//D " (2.8)

By the triangle inequality, we have

p.xn.k/;xm.k//� p.xn.k/;xn.k/�1/Cp.xn.k/�1;xm.k//�p.xn.k/�1;xn.k/�1/

� p.xn.k/;xn.k/�1/Cp.xn.k/�1;xm.k//

� p.xn.k/;xn.k/�1/Cp.xn.k/�1;xm.k/�1/Cp.xm.k/�1;xm.k//

�p.xm.k/�1;xm.k/�1/

� p.xn.k/;xn.k/�1/Cp.xn.k/�1;xm.k/�1/Cp.xm.k/�1;xm.k//

and

p.xn.k/�1;xm.k/�1/� p.xn.k/�1;xn.k//Cp.xn.k/;xm.k/�1/�p.xn.k/;xn.k//

� p.xn.k/�1;xn.k//Cp.xn.k/;xm.k/�1/

� p.xn.k/�1;xn.k//Cp.xn.k/;xm.k//Cp.xm.k/;xm.k/�1/

�p.xm.k/;xm.k//

� p.xn.k/�1;xn.k//Cp.xn.k/;xm.k//Cp.xm.k/;xm.k/�1/

Taking k!1 in the above two inequalities and using (2.4),(2.8), we get

lim
k!1

p.xn.k/�1;xm.k/�1/D " (2.9)

Now from (2.1), we have

 .p.xm.k/;xn.k///D  .p.T xm.k/�1;T xn.k/�1//

�  .M.xm.k/�1;xn.k/�1//�'.p.xm.k/�1/;xn.k/�1/ (2.10)

where

M.xm.k/�1;xn.k/�1/D

Dmax
�
p.xn.k/�1;xn.k//

1Cp.xm.k/�1;xm.k//

1Cp.xm.k/�1;xn.k/�1/
;p.xm.k/�1;xn.k/�1/

�
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By (2.4),(2.8) and (2.9), we have

lim
k!1

M.xm.k/�1;xn.k/�1/D ": (2.11)

Now, passing to the upper limit when k!1 in (2.10) and using (2.8),(2.11) and the
properties of  , ', we have

 ."/�  ."/� lim
k!1

inf'.M.xm.k/�1;xn.k/�1//�  ."/�'."/ <  ."/

which is a contradiction. So, we have

lim
n;m!1

p.xn;xm/D 0:

Since limn;m!1p.xn;xm/ exists and finite, we conclude that .xn/ is a Cauchy se-
quence in .X;p/.

Due to (1.1), we have dp.xn;xm/� 2p.xn;xm/. Therefore

lim
n;m!1

dp.xn;xm/D 0: (2.12)

Thus, by Lemma 1, fxng is a Cauchy sequence in both .X;dp/ and .X;p/.
Since .X;p/ is a complete partial metric space, then there exists x 2 X such that

limn!1p.xn;x/D p.x;x/. Since limn;m!1p.xn;xm/D 0, then again by Lemma
1, we have p.x;x/D 0. Let us now prove that x is a fixed point of T . Suppose that
T x ¤ x. From (2.1) and Lemma 3, we have

 .p.xn;T x//D  .p.T xn�1;T x//

�  .max
�
p.x;T x/

1Cp.xn�1;T xn�1/

1Cp.xn�1;x/
;p.xn�1;x/

�
/

�'.max
�
p.x;T x/

1Cp.xn�1;T xn�1/

1Cp.xn�1;x/
;p.xn�1;x/

�
/ (2.13)

Letting n!1 in the above inequality and regarding the property of �; , we
obtain

 .p.x;T x//�  .p.x;T x//�'.p.x;T x// <  .p.x;T x//

which is a contradiction. Thus T xD x, that is, x is fixed point of T . Finally, we shall
prove the uniqueness. Suppose that y is another fixed point of T such that x ¤ y.
From (2.1),

 .p.x;y//D  .p.T x;Ty//�  .M.x;y//�'.M.x;y//

D>  .p.x;y//�'.p.x;y// <  .p.x;y//

which is a contradiction since p.x;y/ > 0. Hence x D y.
The proof is completed. �
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Example 1. LetX D Œ0;1� and p.x;y/Dmaxfx;yg then .X;p/ is a PMS. Suppose
T W X ! X such that T x D x2

1Cx
for all x 2 X and �.t/ W Œ0;1/! Œ0;1/ such that

 .t/D t
1Ct

and �.t/D t . Without loss of generality assume x � y: Then, we have

p.T x;Ty/Dmax
�
x2

1Cx
;
y2

1Cy

�
D

x2

1Cx

On the other hand,

max
�
p.y;Ty/

1Cp.x;T x/

1Cp.x;y/
;p.x;y/

�
Dmax

�
y
1Cx

1Cx
;x

�
D x

Combining the observations above, we get

p.T x;Ty/Dmax
�
x2

1Cx
;
y2

1Cy

�
D

x2

1Cx
� x�

x

1Cx
D

x2

1Cx
:

Thus, it satisfies all conditions of Theorem 1. Hence, T has a unique fixed point,
indeed x D 0 is the required point.

In Theorem 1, taking  .t/ D t for all t 2 Œ0;1/ and '.t/ D .1� k/t for all t 2
Œ0;1/ with k 2 .0;1/, we get the following result.

Corollary 1. Let .X;d/ be a complete partial metric space and T W X ! X be a
mapping satisfying

p.T x;Ty/� kmax
�
p.y;Ty/

1Cp.x;T x/

1Cp.x;y/
;p.x;y/

�
(2.14)

where k 2 .0;1/. Then T has a unique fixed point.

Example 2. Let X D Œ0;1�. Define T W X �X ! X by T x D x
2

. Also, define
p W X �X ! RC by p.x;y/ D maxfx;yg, then .X;p/ is a complete partial metric
space and

p.T x;Ty/�
1

2
max

�
p.y;Ty/

1Cp.x;T x/

1Cp.x;y/
;p.x;y/

�
:

Thus by Corollary 1, T has a unique fixed point. Here 0 is the unique fixed point of
T .

Example 3. Let X D Œ0;1/. Define T W X �X ! X by T x D 2x. Also, define
p W X �X ! RC by p.x;y/ D maxfx;yg, then .X;p/ is a complete partial metric
space. It is clear that Matthew’s Theorem (analog of Banach Contraction Mapping
principle) does not work. Indeed, without loss of generality, we may assume that
x � y.
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Then
p.T x;Ty/D 2y > ky D kp.x;y/

for any k 2 Œ0;1/.
However, for k D 1

3
, we have

2y D p.T x;Ty/�
1

3
2y
1C2x

1Cx
D kmax

�
p.y;Ty/

1Cp.x;T x/

1Cp.x;y/
;p.x;y/

�
:

Thus by Corollary 1, T has a unique fixed point. Here 0 is the unique fixed point of
T .
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