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UNIT GROUP OF INTEGRAL GROUP RING Z(G×C3)
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Received 28 March, 2023

Abstract. Presenting an explicit descryption of unit group in the integral group ring of a given
non-abelian group is a classical and open problem. Let S3 be a symmetric group of order 6 and C3
be a cyclic group of order 3. In this study, we firstly explore the commensurability in unit group of
integral group ring Z(S3 ×C3) by showing the existence of a subgroup as (F55 ⋊F3)⋊ (S∗3 ×C2)
where Fρ denotes a free group of rank ρ. Later, we introduce an explicit structure of the unit
group in Z(S3 ×C3) in terms of semi-direct product of torsion-free normal complement of S3
and the group of units in RS3 where R = Z[ω] is the complex integral domain since ω is the
primitive 3rd root of unity. At the end, we give a general method that determines the structure of
the unit group of Z(G×C3) for an arbitrary group G depends on torsion-free normal complement
V (G) of G in U(Z(G×C3)) in an implicit form. As a consequence, a conjecture which is found
in [21] is solved.
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1. INTRODUCTION

We denote the integral group ring of a given finite group G over the ring of integers
by ZG. Its elements are all finite sums of the form ∑g∈G αgg where αg ∈ Z. The ring
epimorphism defined by ε : ZG −→ Z, ε(g) = 1, is called the augmentation map.
Hence, naturally kernel of ε which is named by augmentation ideal and denoted by
∆Z(G) is obtained as a Z-module based on the set S = {g−1 : g ∈ G}.

The group of all units in ZG is generally shown by U(ZG) and the subgroup
of units whose augmentations are 1 denoted by U1(ZG). It is well known that
±U1(ZG) =U(ZG) and the set ±G is said to be trivial units in U(ZG) [19].

Describing units of integral group rings is a classical hard problem for various
type of groups. The subject matter has captured the interest of researchers in the
fields of algebra, number theory, and algebraic topology throughout the years. As
stated in [16], most descriptions of U(ZG) in the mathematical literature either give
an explicit description of unit group, the general structure of U(ZG), or a subgroup of
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
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http://dx.doi.org/10.18514/MMN.2024.4666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


830 Ö. KÜSMÜŞ

finite index of the unit group U(ZG). Results were often attained by using techniques
from representation theory and algebraic number theory [22].

In 1940, a crucial work on the unit problem was done by Graham Higman who
displayed that if U(ZG) = ±G, then U(Z(G×C2)) = ±(G×C2) [6, 7]. Using this,
he showed that U(ZG) =±G if and only if G is an abelian group of exponent 2, 3, 4,
or 6 or G = E ×K8 where K8 is the quaternion group of order 8, E is an elementary
abelian 2–group and moreover, Higman gave a general structure theorem for U(ZA),
where A is a finite abelian group [6, 7]. Some additional results have been provided
for these groups: A4 and S4 by Allen-Hobby [1, 2], D2p written by Passman-Smith
[18], G =Cp ⋊Cq, such that q is a prime dividing p−1 made by Galovitch-Reiner-
Ullom [5], |G| = p3 given in [20], and a version of U(ZS3) can be found at [8]. In
[10], Jespers and Parmenter submitted an explicit description of U(ZS3) in terms of
bicyclic units as follows:

Theorem 1. [10] In U1(ZS3), S3 has a torsion-free normal complement which is
generated by bicyclic units as U1(ZS3) = V ⋊ S3 such that V =

〈
ub,a,uba,a,uba2,a

〉
where

ub,a = 1+(1−b)a(1+b)

uba,a = 1+(1−ba)a(1+ba)

uba2,a = 1+(1−ba2)a(1+ba2)

In 1993, Jespers and Parmenter described U(ZG) for all groups of order 16 [11]. In
[9], Jespers introduced U(ZG) for the dihedral group of order 12 and for G=D8×C2.
Kelebek and Bilgin gave the structure of U(Z(Cn×K4)) where Cn is a cyclic group of
order n and K4 is a Klein-4 group [14]. Köklüce and Tüfekçi presented the symmetric
unit groups whose rank is less than 4 of integral group rings of cyclic groups [15]. In
[16, 21], a general algebraic framework was implicitly developed to study U(ZG∗),
where G∗ = G×Cp, p is a prime integer and G is a finite group. It was stated that
U(ZG∗) is an open problem, where G∗ = T ×C2 such that T is a binary dihedral
group (or dicyclic group) of order 12 and C2 is a cyclic group of order 2 was posed
as a conjecture [21]. In [3], Bilgin, Küsmüş and Low studied this open problem and
introduced some substantial proofs which explain the isomorphic form of unit group
in integral group ring of direct product

T ×C2 =
〈
a,b,x : a6 = x2 = 1,a3 = b2,bab−1 = a−1,ax = xa,bx = xb

〉
in terms of semi-direct products of finitely generated free-groups. In [21], Low stated
that succeeding a complete characterization of U(Z(G×Cp)) depends on clarifying
the structure of U(RCp) where R is a complex integral domain for p ≥ 3 which keeps
its enigma. In this study, we focus on the case where G = S3, p = 3 and we then
study the open problem which related to characterization of unit group of integral
group ring Z(G ×Cp) where G is a non-abelian group and p = 3 found in [21].
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As a solution to this problem, we characterize the unit group in integral group ring
Z(S3 ×C3) of

S∗3 := S3 ×C3 =
〈
a,b,x : a3 = b2 = x3 = 1,bab−1 = a−1,ax = xa,bx = xb

〉
.

2. DECOMPOSITION OF U(ZS∗3)

It is worth mentioning that the groups possessing a non-abelian torsion-free normal
complement have been classified in [12]. Furthermore, various studies [9], [17], [21],
[3] have described the free group structure of U(Z(G×C2)) for G = S3,D4,P and
T , respectively. It is crucial to note that these characterizations heavily rely on the
fact that ω2 = 1 implies Z[ω] = Z which provides an advantage according to the
scheme presented in [3]. However, this is not the case for ωn = 1 where n ≥ 3, as we
have Z ⊊ Z[ω]. In this section, we firstly concentrate on investigating a subgroup of
U(ZS∗3) that is commensurable [13]. To proceed further, we require some preliminary
propositions.

Proposition 1. Since S3 =
〈
a,b : a3 = b2 = 1,bab−1 = a−1

〉
,

U1(F3S3)≃ (31+2
+ ⋊C3)⋊K4

where K4 is Klein 4-group, C3 is a cyclic group of order 3 and 31+2
+ extraspecial

group of order 27.

Proof. Let N = ⟨a⟩. We can define the projection ϕ : S3 −→ S3/N by ϕ(g) = gN.
Linearity of ϕ over the ring F3 follows that ϕ : F3S3 −→ F3(S3/N) is a projection at
ring level by

ϕ(αiai +βibai) = (α0 +α1 +α2)N +(β0 +β1 +β2)bN (2.1)

Let ϕ̃ be the restriction of ϕ on the unit level which is defined in the same as the rule
in (2.1).

This indicates that ϕ̃(U(F3S3)) = U(F3C2). Furthermore, we have from [4] that
U(F3kC2) =Cpk−1 ×Cpk−1. Therefore U(F3C2) = K4 where K4 is Klein 4-group and
thus Imϕ̃ = K4.

On the other hand,

Ker ϕ̃ =

{
2

∑
i=0

αiai +βibai : (
2

∑
i=0

αi,
2

∑
i=0

βi) = (1,0),∀αi,βi ∈ F3

}
is composed of 81 elements. Since ⟨a⟩ ⊂Kerϕ̃, consider the quotient G

′
=Kerϕ̃/⟨a⟩.

One can discern that
〈
−1+a+a2

〉
is a cyclic group of order 3 and moreover it is

central in G
′
.

As a result, we conclude that G
′
/
〈
−1+a+a2

〉
is an elementary abelian 3-group

and hence G
′
is an extraspecial 3-group which can generally be denoted as 31+2

+ . This
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manifests that Kerϕ̃ is isomorphic to 31+2
+ ⋊C3. Therefore, it is possible to achieve

an exact sequence as

Ker ϕ̃
ι−−−−→ U1(F3S3)

ϕ̃−−−−→ Imϕ̃ =U1(F3C2)≃ K4

Reminding the identity map is the reverse direction of embedding i, we can phrase
that the sequence splits as U1(F3S3)=Kerϕ̃⋊Imϕ̃ which substantiates the proof. □

Proposition 2. Let σ3 : ZG → Z3G be a surjective ring homomorphism that re-
duces the coefficients modulo 3 and V =

〈
ub,a,uba,a,uba2,a

〉
be the torsion free normal

complement of S3. Then, σ3(U1(ZS3)) = σ3(V )⋊S3.

Proof. Clearly, σ3(U1(ZS3)) = σ3(V ⋊ S3) = σ3(V ) · S3. In addition, σ3(V ) is
normalized by S3 due to the following equalities which can be easily shown:

aσ3(ub,a)a2 = σ3(uba,a)

aσ3(uba,a)a2 = σ3(uba2,a)

aσ3(uba2,a)a
2 = σ3(ub,a)

bσ3(ub,a)b = σ3(ub,a)
−1

bσ3(uba,a)b = σ3(uba2,a)
−1

bσ3(uba2,a)b = σ3(uba,a)
−1

On the other hand, the fact that σ3(V )∩ S3 = 1 infers that σ3(U1(ZS3)) is indeed a
semi-direct product as claimed. □

Proposition 3. σ3(V )≃C3 ×C3 ×C3.

Proof. Since V =
〈
ub,a,uba,a,uba2,a

〉
, check that

σ3(ub,a)
3 = σ3(uba,a)

3 = σ3(uba2,a)
3 = 1.

We can conclude by the previous proposition that each of σ3(ub,a),σ3(uba,a) and
σ3(uba2,a) gives a normal subgroup. Moreover, as the bicyclic units in V and the
powers of images under σ3 of them are distinct, the product is direct. □

Now, we can introduce the following commutative diagram by taking inspration
from [16]:

K ι−−−−→ U(ZS∗3)
π−−−−→ U(ZS3)

f
y f

y σ3

y
M ι−−−−→ U(Z[ω]S3)

α−−−−→ U(Z3S3)

Lemma 1. K and M are isomorphic to each other.
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Proof. Using the definitions of π, α, f and σ3 defined on ZS∗3, we have the follow-
ing diagram:

K∗ ι−−−−→ ZS∗3
π−−−−→ ZS3

f
y f

y σ3

y
M∗ ι−−−−→ Z[ω]S3

α−−−−→ Z3S3

Let (x−1)c1 +(x2 −1)c2 ∈ K∗. Then, linearity of f follows that

f ((x−1)c1 +(x2 −1)c2) = (ω−1)c1 +(ω2 −1)c2.

Due to the fact that ω is the primitive root of unity, rearranging the terms, we have

(ω−1)c1 +(ω2 −1)c2 = (ω−1)(c1 − c2)−3c2.

It requires that f ((x−1)c1+(x2−1)c2) = 0 if and only if (x−1)c1+(x2−1)c2 = 0.
Thus, f is injective. Taking the pre-image of ω as x, it is easy to perceive that f
is surjective. We deduce from [16] that K = U(1+K∗) and M = U(1+M∗) are
isomorphic groups of units in multiplicative monoids K∗ and M∗ respectively. □

Corollary 1.

K ι−−−−→ U(ZS∗3)
π−−−−→ U(ZS3)

≃
y f

y σ3

y
M ι−−−−→ U(Z[ω]S3)

σ3−−−−→ U(Z3S3)

ι

x ι

x ι

x
M+ ι−−−−→ U1(ZS3)

onto−−−−→ σ3(V )⋊S3

ι

x ι

x ι

x
M+∩V ι−−−−→ V onto−−−−→ σ3(V )

Corollary 2. M+ is a free group of rank 55.

Proof. Let w(σ3(ub,a),σ3(uba,a),σ3(uba2,a)) be a word in σ3(V ) and g ∈ S3. As
σ3(V )∩S3 = {1}, observe that if w(σ3(ub,a),σ3(uba,a),σ3(uba2,a)) ·g = 1, then

w(σ3(ub,a),σ3(uba,a),σ3(uba2,a)) = g−1 ∈ σ3(V )∩S3.

This implies that g = 1. This means that M+ consists of words of the form

ui1
b,a ·u

i2
ba,a ·u

i3
ba2,a

where 0 ≤ i1, i2, i3 ≤ 2. This shows that M+ = M+ ∩V . Besides V
M+∩V ≃ σ3(V )

implies that
[V : M+] = |σ3(V )|= 27



834 Ö. KÜSMÜŞ

Since V is a free group of rank 3, we conclude by Schreier’s index formula and
Schreier’s Theorem that M+ is a free group of rank 55 via Schreier’s index formula.

□

Theorem 2. U(ZS∗3) is commensurable which contains a subgroup of finite index
as

(F55 ⋊F3)⋊ (S∗3 ×C2)

Proof. As U(Z[ω]S3) =U1(Z[ω]S3)⋊U(Z[ω]) and U(Z[ω]) = ⟨−1⟩×⟨ω⟩ ≃C6,
we can recognize that U1(ZS3) ↪→U1(Z[ω]S3)×C6 and hence M+ ↪→ M+×C6 ⊊ M.
We know from the diagram in Corollary 1 and Lemma 1 that

U1(ZS∗3) = K ⋊ (V ⋊S3)≃ M⋊ (V ⋊S3)

Since,
(M+×C6)⋊ (V ⋊S3)⊊ M⋊ (V ⋊S3)

we conclude that

(M+×C6)⋊ (V ⋊S3) = (M+⋊V )⋊ (S3 ×C3)×C2 = (F55 ⋊F3)⋊ (S∗3 ×C2)

as claimed. □

Let R = Z[ω] and {ubai,a}3
i=1 be the set of generators in torsion-free normal com-

plement of S3. Note that Z[ω]S3 can be decomposed as ZS3 ⊕ωZS3. Defining a ring
epimorphism ψ : ZS3 ⊕ωZS3 −→ ZS3 by ψ(α,ωβ) = α follows that Kerψ = ωZS3
and the following exact sequence

ωZS3
ι−−−−→ ZS3 ⊕ωZS3

ψ−−−−→ ZS3

At unit group level, this sequence can be extended as

(1+ωZS3)∩U(ZS3)
ι−−−−→ U(Z[ω]S3)

ψ−−−−→ U(ZS3)

Let u = 1+ωr ∈ (1+ωZS3)∩U(ZS3). So there exists v = 1+ωs where r,s ∈ ZS3
such that uv = 1. Notice that u and v are inverses of each other if and only if

uv = (1− rs)+ω(r+ s− rs) = 1

and so r and s are either trivial or nilpotent elements of index 2 in ZS3. It follows that
either 1− r = 1 or 1− r ∈V due to the fact that every unipotent unit is lifted from a
nilpotent element of index 2. Hence we can take r = ubai,a −1. Accordingly,

(1+ωZS3)∩U(ZS3) = F

and
U(Z[ω]S3) = F ⋊U(ZS3) (2.2)

where
F =

〈
1+ω(ubai,a −1) : ubai,a ∈V, i = 0,1,2

〉
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Theorem 3.
U(RS3)≃

F ⋊V ⋊S3

(31+2
+ ⋊C3)⋊K4

where 31+2
+ denotes extraspecial group of order 27.

Proof. In Corollary 1, consider the second row of the diagram. As the map i is
an embedding, this row can be split into two parts: That is U(RS3) is isomorphic
to the semidirect product of M and U(Z3S3). Additionally, equation (2.2) tells us
that U(RS3) is isomorphic to the direct product of F and U(ZS3). Combining these
different forms of U(RS3), we can conclude that F and U(ZS3) together form a group
which is isomorphic to the semidirect product of M and U(Z3S3) that is

U(RS3) = F ⋊U(ZS3)≃ M⋊U(Z3S3)

Using this result, we can infer that M is isomorphic to the quotient group obtained
by dividing the direct product of F and U(ZS3) by the normal subgroup U(Z3S3). In
other words,

M ≃ F ⋊U(ZS3)

U(Z3S3)

Furthermore, Proposition 1 tells us that U(Z3S3) is an extraspecial 3-group of order
27, denoted by 31+2

+ . This establishes the proof. □

An alternative way to describe U(RS3) is through the use of cyclic groups instead
of 31+2

+ as follows.

Theorem 4.
U(RS3)≃

F ⋊V ⋊S3

[(C3
3 ⋊C3)⋊C2]×C2

where C3
3 =C3 ×C3 ×C3.

Proof. To enhance clarity of the proof, it is adequate to take into account k = 1 in
the main result of [4] concerning U(Z3S3). □

Lemma 2. F is a free group on the generator set S = {vb,a,vba,a,vba2,a} where
vbai,a = 1+ω(ubai,a −1).

Proof. Let vbai,a denote 1+ω(ubai,a −1). Then F can be stated as

F =
〈
vb,a,vba,a,vba2,a

〉
Assume that F is not a free group. Then any unit in F can be written in different ways
as a product of finitely many elements of S = {vb,a,vba,a,vba2,a} and their inverses
disregarding trivial variations. Let any element vbai,a in F be phrased as

vbai,a = vbai1 ,avbai2 ,a (2.3)

Then the equation (2.3) hold if and only if

vbai,a = 1+(ubai1 ,a +ubai2 ,a −ubai1 ,aubai2 ,a −1)+ω(2(ubai1 ,a +ubai2 ,a)−3)
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and so

2ubai1 ,aubai2 ,a = ubai,a

which is a contradiction due to the fact that V is free. Besides, T : V −→ F defined
by

T (ubai,a) = vbai,a

is a bijective map. Therefore, F is a free group as well. □

We are now prepared to establish our principal structural theorem in this section,
as follows.

Theorem 5. U(ZS∗3) = M⋊V ⋊S3 where M ≃ F⋊V⋊S3
(31+2

+ ⋊C3)⋊K4
.

Proof. Remind that we have the split extension

U(ZS∗3) = K ⋊U(ZS3)

from the commutative diagram of maps in Corollary 1. We also know from Lemma
1 that K ≃ M. Besides this,

U(RS3) = M⋊ (31+2
+ ⋊C3)⋊K4 (2.4)

because of Theorem 3. On the other hand, equation (2.2) and [10] follows that

U(RS3) = F ⋊V ⋊S3 (2.5)

Let

δ : M⋊ (31+2
+ ⋊C3)⋊K4 −→ M

by δ(m.(a.b.c)) = m where (a.b).c ∈ (31+2
+ ⋊C3)⋊K4. Then, it is clear that

Kerδ =U1(F3S3) = (31+2
+ ⋊C3)⋊K4

Thus,

M ≃U(RS3)/U1(F3S3) (2.6)

Using equations (2.4), (2.5) and (2.6), we conclude that U(ZS∗3) = M⋊V ⋊S3 where

M ≃ F ⋊V ⋊S3

(31+2
+ ⋊C3)⋊K4

as required. □
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3. CONCLUSION AND DISCUSSION

In this study, we have examined the commensurability of U(ZS∗3), demonstrating
the existence of a subgroup in U(ZS∗3), one of whose factors is free-by-free group,
specifically F55 ⋊F3. We then proceeded to investigate the whole unit group of the
integral group ring ZS∗3 by characterizing it through the description of the unit group
of RS3, where R = Z[ω], with ω being the primitive 3rd root of unity, and its torsion-
free subgroup generated by units which are lifted from square-zero elements.

Regarding the characterization of the entire unit group in ZS∗3, we have estab-
lished that the torsion-free normal complement of S∗3 is derived from the unipotent
unit generators of ZS∗3. In fact, by modifying the definitions of maps π,σ3 and f in
the commutative diagram established in Corollary 1 over an arbitrary finite group G
rather than specifically on the symmetric group S3, we can derive the aforementioned
diagram in the following manner:

K ι−−−−→ U(ZG∗)
π−−−−→ U(ZG)

≃
y f

y σ3

y
M ι−−−−→ U(Z[ω]G)

α−−−−→ U(Z3G)

(3.1)

where G∗ = G×C3.
To achieve a comprehensive description of U(ZG∗) using (3.1), it is imperative

to possess an explicit version of U(ZG) that either elucidates its general structure
or identifies a subgroup of finite index. Moreover, as can be seen from the split ex-
tension of the second row of our diagram, since U(Z[ω]G) = M ⋊U(Z3G), another
characterization of the unit group U(ZG∗) in terms of the unit group of the finite
group algebra Z3G can be given. The commutative diagram constructed on an arbit-
rary group G only yields an implicit version of U(ZG∗). Our diagram can extend the
integral group ring ZG, which has been specifically examined by relevant researchers
to explore the unit group and provide an explicit description, to U(ZG∗). In particu-
lar, when working with a group G for which G has a torsion-free normal complement,
denoted by V (G) in U(ZG), one can establish split extension form of U(ZG∗) in the
context of V (G). We know that U(ZG∗) ≃ M ⋊U(ZG) and U(RG) = F ⋊U(ZG).
As another homomorphic image, we have M ≃U(RG)/U(Z3G). Therefore, we can
implicitly characterize U(ZG∗) as

U(ZG∗)≃ F ⋊V (G)⋊G
U(Z3G)

⋊V (G)⋊G (3.2)

The isomorphism established in (3.2) can be applied to provide a precise characteriz-
ation for all groups G, for which the unit group in group algebra of G over Z3 is com-
pletely characterized and has a known torsion-free normal complement in U(ZG).
From this perspective, this study may serve as a source of inspiration for future in-
vestigations.
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