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Abstract. In the present article, we provide a recurrence relation for the semi-exponential Post-
Widder operators (1.1) and estimate the moments for these operators. The next section discusses
some convergence results in the Lipschitz-type space and estimates the rate of convergence with
the help of the Ditzian-Totik modulus of smoothness and weighted modulus of continuity. At
last, we estimate the rate of convergence for the functions whose derivatives are of bounded
variation.
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1. INTRODUCTION

In the literature on approximation theory, several generalizations of exponential-
type operators have been studied by many authors. The authors have focused on ex-
amining the rate of convergence of these generalizations. Recently, some researchers
have introduced the concept of semi-exponential operators from the exponential-type
operators.

The Post-Widder operators for n € N and x € [0,0) considered by D.V. Widder
[12] is defined as:

n+l [ n
B = (M) /O Ve 2 (h)dA.

n! \x

Following [12], For x € [0, ) and a parameter p > 0 Rathore and Singh [ 10] proposed
an integral representation of Post-Widder operators as:

L LAYALARNY P PET ]
Pn,p(fﬁ,X)—(Hp)!(x) /0 AP FB(M)dA.
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Recently, for x € [0,e0) and p > 0 using laplace transformation M. Herzog [5] defined
the semi exponential Post-Widder operators as:

n—1
=
n oo (%) L4 (21/npu)
NiePh /
Following [5], an alternative approach of semi exponential Post-Widder operators is
given by U. Abel at al. [2] which is defined as:

P . _ n'" - (np)m 1 /DO n+m—1 —%
B, (@) = mgo Torrm Jo X TBMd (LD

m!

WP (@;x) = @(L)dA.

nu
e

and an alternative form of operators (1.1) is defined as follows:

PP (@ix) = /w (M‘)ze?zﬂ (2\/np7u>m(k)d7u. (1.2)
’ 0

ePxxn p
Where I, represents the modified Bessel function of first kind. For more literature
related to this article we may refer [1,4,6,9,11].

In this article, we study some fundamental properties of the operators (1.1), in-
cluding the rate of convergence using modulus of continuity, Lipschitz-type space,
and weighted space.

2. BASIC PROPERTIES

In this section, we discuss some useful lemmas and results.

Remark 1. For p > 0, if we denote Hy, , = Phm(er:x), e,(A) =N, r=1,2,3-,x>0
then

RHP,, (x) = x(px+ m)HE, (x) + 2HY, (x).

Lemma 1. Using the Remark 1, the moments of the operators P° e could be writ-
ten as:

PP (eosx) =1,
X

PP (e1:x) = —(n+px),

B (e2;x) = ;Cz [n+n*+2px +2pnx + p*x?] ,

PP (e3:x) = ;Cz [2n 4 3n% +n® + 6px + 9pnx + 3pn’x + 6p°x> 4 3p2nx’ 4 p*x*]
PP (ea;x) = ij [6n+ 11n% + 61> +n* + 24px + 4dpnx + 24pn’x + 4pn’x+ 36p7°

+30p%nx? + 6p*n’x* + 12p3x° + 4p3nx’ —|—p4x4] .
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Lemma 2. Central moments of the operators fP,ﬁ m» With the help of Lemma 1, are
as follows

20, (0 i) = O
?,ﬁm((X—x)z;x) = nz [n+2px+p2x2] ,
EP,‘Zm((K—x)3;x) = ;i [211—4n3 +6px+3pnx—6pn2x+6p2x2 + p3x3] ,
T,ﬁm((h—x)4;x) = f; [6n+3n2 + 24px + 20pnx

+36p%x* + 6p*nx® + 12p°x” 4 p*x?] .

Lemma 3. Using Lemma 2, we have

[38)

2 2
PP (A —x)%x) = ;C—z (n+2px+pia?) < % (1+20x+p%?) < X r(lX)’

and

x*(x)
n?2 "’

28, ((h—x)*:x) < C

where, C is a large positive constant and Y(x) = x(1 + px). Moreover
lim n®?, (A—x);x) =px*, and limn®?,, (A—x)*x) =x.
n—oo ’ n—oo ?
Lemma 4. For the operators Py, and ® € [0,0), we have
B (@:x)] < [[@]],

where norm of the function on the positive half real line is given by ||®| =
sup [@(x)].

x€[0,00)

Proof. From (1.2) and Lemma 1, we have

n & (np)” 1 o L a
2P, (®3x)| < /M*’"‘ o)A < ||®].
| mm( x)| < e—pxxnm; m! T(n+m) Jo e+ |[®()|dA < @]

O

Theorem 1. Let @ € Cp[0,%0), then lim P}, (®;x) = ®(x), uniformly in every

n—oo
closed interval in [0, o).

Proof. From Lemma 1, Bf (e0;x) = 1, Prm(Aix) =x, BYm(A2;x) = x%, as n — oo,

Therefore by the Bohman-Korovkin theorem, we get 2} (m());x) = ®(x) as n — oo,
uniformly in every closed subinterval of [0, o). O
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3. MAIN RESULTS

Here, we assess the rate of convergence by using the Ditzian-Totik modulus of
smoothness 0yr(®,d) and Peetre’s K—functional Kyy(®,8), 0 <7y < 1. For ® €
Cg[0,0) and y(x) = x(1 + px), the Ditzian-Totik modulus of smoothness is explained

as
O)xv((D,S) = Sup Sup ’m <x+ l% (‘x)> - <x_ lx (x))
0<i<d izxy 6[0 ) 2 2

)

and the Peetre’s K—functional is defined as
= j — ol = 8|lyYo’
(0, 8) (;gvaY{Hfﬁ ol —dllx"¢[l},
where Wy is a subspace of all real valued functions defined on [0,c0), and @ € Wy

which is locally absolutely continuous with norm ||®Y¢'|| < eo. In [3, Theorem 2.1.1],
there exists a constant D > 0 such that

D' o(®,8) < Kp(®,8) < Doy (®,9). (3.1)

Theorem 2. For ® € Cg[0,00) then, we have

2—y X
| B0, (®;x) —®(x)| < Doy (GS;X \/75 )) :

Proof. For ¢ € Wy, and calling the representation

A
x)+ / @' (s)ds
X
Applying P}, and using Holder’s inequality, we have
A
22, (009:2) ~ 90| < 22 ([
X

A ds
< lloYo' || PP / .
= Hm ¢ ||-(Pn,m <‘ ; XY(S) ,x>

L Sy N
<|®'¢’|| B}, —x| / — 1 sx]. 3.2)
x X(s)
Letl = xx % , now first we simplify expression /
A ds 1 1
IS/ + <2‘f ‘< >
/S <1+px 1+p7u>‘ Vi 1+px 1+pA

h—x| [ 1 1
<2 NG 1+px+1+px ' 3-3)
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Now, we use the inequality [p+¢|* < |p|*+1g|¥, 0<7y<1 then from (3.3), we get

hods |! —x 1 1
/ds <prih = . - (3.4)
© X(s) 2 \(I+px)2  (14ph):

From (3.2) and (3.4) and using Cauchy inequality, we get

!fP,E’,m(@(%);X)—(P(X)\SWfP,E’.,m<I7»—XI<( L );x)

X2 1+ px)
_ 2 1
© o \(I+px)

2
—~
—_
_|_
ke
>)
~—
S

8=

(Bhm (A=2)%))

=2

(20, (L —0%0)) (28, (1 +px>v;x))z) .

From Lemma 2, we may write

(22, ((K—x)z;x))% < X ) (3.5)

where % (x) = x(1+ px).
For x € [0,00), B ((1+pL)~Y;x) — (14 px)~¥ as n — oo. Thus for € > 0, we
find a number ny € N such that

B, (1+pA)";x) < (1+px)Y+e, foralln> n.
By choosing € = (1 + px)~Y, we obtain
P20, (1+pA);x) <2(14px)”", forall n> ny. (3.6)
From (3.5) and (3.6), we have
2
X) [ _ _ _1
22 (0(0)52) ~000)] < 2012 (1700 Ve H14pn) )

<21+ x/i)Hchp’H;ﬁx”(x)- (3.7)
We may write
|0, (@(L):x) —®(x)| < | B, (@A) —@(A):x)]
+ |20, (0(M);x) — 0(x) | + [@(x) — @ (x)]
<2|[@ — @[ + | B, (@(A);x) — 9(x)|. (3.8)

From (3.7) and (3.8) and for sufficiently large n, we obtain

22 (@(0):5) ~ (0| < 2@ 0] +27 (1+V2) e/l =2 ()

3.9

_ 1 _ 1
<Ci{[[w—of +x’ Y(X)%HXY(P/H}SCKXL (m;xz Y(X)\/ﬁ>,
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where C; = max{2,2*(1++/2)} and C = 2C;. From (3.1) and (3.9) we may conclude
the required result. ([l

Let C5[0, %) be the class of all absolutely continuous and bounded functions equip-
ped with the norm ||®|| = sup{|®(x)| : x € [0,%0)}. Then, K-functional in terms of
modulus of smoothness is given by:

K (@,8) = inf {—oll+Clle"[},

where { > 0 and W? = {@ € CB[0,) : ¢, ¢" € CB[0,0)}. Now, we find a constant
Cp > 0 such that

K (,8) < Comn(®,/0), (3.10)

where

0)2(65,\/@): sup  sup |®(x+20) —20(x+ ») +O(x)|
0<X0Sﬁx€[0,w)

is known as second order modulus of smoothness of @ € CB[0, ).

Theorem 3. For real valued continuous function @ € CB[0,), we have
22,,(@5x) ~®(x)| < Cown(@,8) + @ (@]~ (n-+px)] ).

Proof. For any real and continuous function § € CB[0, ), by Taylor’s expansion,
we have

60 = &)+ (A-0E () + [ (=58 G.11)
Consider an auxiliary operators associated with ?,‘Z m
B, (@:x) = B2,,(@:x) =@ (= (n+p2) ) +0(x), (3.12)
for @(A) = 1, we have Bf,,(1;x) = 1, and for (L) = A
B0, (hsx) = BP,, (Asx) — g (n+px) +x = x.
Immediately, we may write
20, ((A—x);x) =0.

Now, applying the operators fi’,ﬁ mon (3.11) and using (3.12), we have

P20 (560) ~&08) = (b 0008 0+ B2 [0 98 (1050

=g ([ 0o s

i
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— 0, < / m(x—s)g"(s)ds;x) _ / e (% (-4 p) € (5)as.
Now,

|@5m<&-x>—&<x>rsf£m(< ORLAE ) > Coron) 1

1
< Z
-2

2 (0 -5%) + (2 p0) | 171 < LI

where
= % 20, (A—x)%x) + (% (n—i—px))2 )

Again, from equation (3.11) and (3.12), we have

gﬁm(m;x):sr;g (@:x)+8 (= (n4p¥)) ~B(x)
= B0, (®—8):x) + 2, (&) +8 (= (1+px) ) —6()
izf, (@=8):x) — (@—E) (1) + B, (E:2) ~E(x)
+8 (% (n+px)) ~O().

Now, we have

22,,(@:) ~ B(x)| < B[ +L[1E"] + [@ (° (n+p2)) ~B()
<2 -8+ LIE") + o (@] (n+px)|)

< ZKZ(Q,C)—&—w(tD;‘%(n—i—px)‘) .

In the view of (3.10), we get the required result. g

Let x € (0,0) and A € [0,o], as we can see in Ozarslan and Duman [7], the
Lipschitz type space is explained as:

Lipjy(a) {‘”60[0 I o) — o) <m 2=

i = , 00| : —0x)| < 5

b (A+x)8

In the following theorem, we obtain the rate of convergence of the operators fl’,ﬁ m for
functions in Lipj, ().

}, where 0 < a0 < 1.

Theorem 4. Let ® € Lipy,(a) and o € (0, 1]. Then for all x € (0,0), we have

X (n +2px+ p2x2) > :

n2

122, (@ (1)) — () §M<
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Proof. From the Lemma 4, we have

B0, (B():x) — B)| < 22, (IB() — B()|:x) < MEP,, < A= )

(A+x)2
M
< PP (A —x|%x). (3.13)
X2
Taking p = = and q = 5~ and applying Holder’s inequality, we obtain
o 20
P (@) (A —x|%x) < {2 (yx—x|2;x)}?{zp,gm(1ﬁ;x)} ’
<{®, (A—x*x)}?. (3.14)

On combining (3.13), (3.14) and using the Lemma 2, we get the required result. []

For ¢,d > 0, Ozarslan and Aktuglu [8] considered the Lipschitz-type space with
two parameters, as follows

o (Cvd) . |7\‘_x|(x )

Li oa)=(®meCl0,~): |[oA)—0Ox)|<M—r-— ],

pii”a) = (e clo.) ) —mto) < o2
where M is a positive constant and 0 < o0 < 1.

Theorem 5 (Point-wise Estimate). For f € Lip\s™ (). Then, for all x > 0, we
have
x(x)
PP (®;x) —O(x)| < M— .
22,(@:2) -0 <ML
Proof. First we prove the theorem for oo = 1. Then for ® € Lip,(‘fl’d)(l) and x €
[0,00), we have

120,,(@:x) —B(0)| < D, (|B() — B(2)]:3) < M{T,f,m (M) }

M
S —— B, (A—x[x).
(ex?+dx)z 7

By applying Cauchy-Schwartz inequality and using Lemma 3

M 1
B0 (@:%) = B(x)| < ———{ B, (A —xsx)}2 <M (
(cx?+dx)?
This shows that result is true for a0 = 1. Next we prove the stated result for 0 < a0 < 1,
we have

1
() \?
cx?+dx )

M
| PP, (@ x) — @ (x)] < mflﬁm (A —x%x).
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Assume p = é, q= ﬁ, on applying the Holder’s inequality, we have
PP (@:x) —0(x)| < ——— (PP (IA—x|:x))?.
22(025) =000 < (g (B (A —x)
Again, by Cauchy-Schwartz inequality and Lemma 3 required result follows. O

Theorem 6. Let ® € [0,00) and second order derivative of ® exists in [0,0), then
we have

lim n [ B0, (®;x) —®(x)] = X (po (x) + @ (x))

n—oo
Proof. Using Taylor’s series expansion, we write
(A—x)?
2!
where 7i(A,x) — 0 as A — x. Applying B5 (. : x) on both the sides of (3.15), we get

B(\) = B(x) + (A — )@ (x) + ®" (x) + h(A,x) (A —x)2, (3.15)

2, (@) —0(x):x) =0 (1) 8L, (A —x);x) + m;(zx)

+ T,ﬁm (h(k,x)(?» —x)z;x) .

From the Lemma 2 and applying the lim, we get
n—oo

U4 ((K—x)z;x)

lim n®P, (®(A) —®(x);x) = ' (x) ’}iigonT,ﬁm (A—x);x)

n—oo

o’ (x)

+
i p )2
—i—r}grolon?mm (R(A,x) (A —x)*;x) . (3.16)

. P 2.
’}gr.}on?n’m (A—x)%x)

From Theorem 1, Lemma 2 and using cauchy-Schwarz inequality in the last term of
(3.16), we have

lim n®?, (h(A,x)(A—x)%x) = 0. (3.17)
n—oo ’
Using Lemma 2 and (3.16) , (3.17), required result follows. ]

4. BOUNDED VARIATION

In the next theorem, we estimate the operators’ convergence rate (1.1). Let @ €
DBV [0,00) be a continuous function taken from the class of absolutely continuous
functions DBV(0,0) and having a derivative @' on the interval (0,c0) coincides a.e.
with a function which is of bounded variation on every finite partition of [0,c0). It
can be observed that for all @ € DBV [0,0), we have

o(x) =0(c) +/ng(s)ds, x>c>0,
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where g(s) is a function of bounded variation on every finite subinterval of [0,eo).
We may write the operators (1.1) in alternate form as

B(@5) = [ KD M)A, @)
: 0 ;
where
i n" m 1 lnqtm 1 7@
- erx” ['(n+m) '

Now we define an auxiliary functlon ®, by
oA —o@x") if0O<A<ux,
o (M) =<0 if A =x,
oA —o(x") ifx<A<oo.

Lemma 5. For x € (0,0) and sufficiently large n, we have
(1) Since 0 <y < x, therefore

n(x,y) / K (x,A)d
(2) If x <z < oo, then
= X (x)
_ — P
1 T]n(va) _/Z %,nz(xv;\’)d]" < n(Z—X)Z.

Proof. By simple computations and using Lemma 2 and Lemma 3 we get required
results. U

% (x)
(x y)?

Theorem 7. Let @ € DBV(0,0) then for all x € (0,0) and sufficiently large n, we
have

2,(@:) ~ o) s%(m’<x+>+m’<x*>)f,f,m«x—x);x)

X v / (x)

V@) |+ e

\f s \[

2 X 2 X X
+Xn)(c2) ®(21) — B(x) - |+ My, 0% (,355( )

Where \/2(x) denotes the total variation of ® on [a,b] and

M(y,r,x) = M2Y (/w(k—x)zrﬂgfm(x, k)dk) ’

0
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Proof. Using the operator (4.1) for all x € [0,00), we obtain

20 /mxx ®(x)) dA

—/( mxx/m ds> 4.2)

For ® € DBV [0, ), we can write
0/(s) = 5(@ () + /() + 6,(0) + 5 (0() T ))sgn()

+5.(s) (@ — %(m’(f) (). 4.3)

Where
1, s=x;

Oy(s) =
x(5) {0, 5 #£ X.
It can be easily seen that

/Om < /xk (“"@ - % (@' (") +65’(x‘))> 8x(s)ds> &P, (6, 1) A = 0.

Using the equation (4.1),we obtain
o / A
/0 < : %(m/(ﬁ) +m/(x))ds> i]glff,n(x7 A)dA
= % (GS’(x*) —l—(rj’(x*)) LPrﬁm ((x—2A):x).

Again using (4.1), we have

/oo< x;( '(xh) —w’(x_))sgn(s—x)ds> KD, (r, A)dA

—/ 5 X)) (A=) K2, (v, A)dk
< 3 ‘GJ ) =@ (x)|[(BP, (x—A)%5x)) 2.
From (4.2), (4.4) and Lemma 3, we have
80,,(0:) - 0(0) < 5 (0/() + () B, (v~ 1))

(4.4)

B —



378 S. KUMAR AND N. DEO

We obtain
8,(0:2) ~ B00)| < 3 (0/() 4006 )) 2L, (1))
+ ;X();) @' (") + ' (x7) |+ A (x) +An(x).  (@45)
Where
) =| [ ([ wis1as) K mdsan.
and

Ap(x) =

([ o) weutnian]

Now applying Lemma 5, integrating by parts and taking y = x —

X

-, we get

)= | [ [ o105 ) aumuayan| = | oy

< [ a0 r-+ [ e a0 0

:/Ox_ﬁnn(x,k)\m;(kﬂkor/x M) @, (1) dA
=~
Since N, (x,A)| < 1 and @) (x) = 0, we get

[ menlemla= [ nn[el0) - o] a

b

Again using Lemma 5 and substituting A = x — .

N , 2(x) [ ; A 2(x Vv~ ,
/0 \[T]n(x,l)‘mx(k){dkg X()/O v (|(5 (7\‘)| an < X ( )/1 \/((D )ds

n

Therefore,

\X/X(w;)) +% ( \Z(m;)) . (4.6)
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Now we observe, integration by parts and applying Lemma 5, we have

2(x) = /xw K (x, 1) </xk(5;(s)ds> d\
xlx K (2, 1) (/;GJ}(S)dS) dk‘ + ’/: K (X, ) (/;m)’c(s)ds> dk‘

< Byi(x) + Bpa(x), 4.7

xzx Ko (5, 1) (/x”m;(s)ds) dk' ’
 Konle) </xk“’;(s)ds) dx’ .

Applying integration by parts, using (4.3) and Lemma 5. Since 1 —n,(x,A) <1
substituting A = x+ %, we have

<

where,

B (x) =

2x 2x
) =| [ 05 (1 -nx20) - [T (1 -nate Ao <x>d>~]
<|[M @@ -0l -mw2or+ [eml-ne
Zx n
<2600~ )|+ [ @] 1) o
+/+ﬁ A1 =M, 1)) dA
< I’l)(C2 |@(2x) — —xml(x+)|+/x+\xﬁ \x/(m’ dA
x A
2 [ Vi@
+5 /w e
2(, T
<2020 - o) /(x| + 2\ (@)
G R W
+= /xw (x_x)z\x/(mx)dx (4.8)
2, ot 2( ) Wl ¥ FE
<L o0t ')+ -V @)+ ED Y V@)
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And
x+)ds) K (x, X)d?\.‘

9=/ (/ o
()| P, (xxdx+/ x| () &P, (6, )
@m’(ﬁ).

Vn

<], o6
<M / ATKP, (x, A)dh -+ [@(x)| / &P, (x, A)dA+
2x

It is obvious that
A<2(A—x) and x<A—x, when A>2x.

Applying Holder’s inequality, we get
v
¥ ox2(x 1
2) "+ L g0+ \/;xoc)m’(x*)

By (x) < M2Y ( /0 KD () ) +o 2
<m0+ £ o)+ B, @9
From (4.8) and (4.9), we get
Ana(x) < X;f;) 0(22) ~ 0 ()| + \+/
ol , \/zx(x)ﬁjl()ﬁ'). .10)
U

\/‘}x-‘r}c
")+ M( y,rx) 5
nx

m=1 x

On combining (4.5)-(4.7) and (4.10), we get required result

1000 = T
] /
I ! —  flx]
1 /
800 - 1 /
1 / -- n=2
1 /
1 /
600 - I /I S . =10
! /
! ’
1
400 - i // P n=50
! / -7 ]
/ 4 Pid ]
200 / Vi -7
/ P -~
,/ ’// _,/”
0= PAAES S B n I I
2 4 6 8 10

FIGURE 1.
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1000

800

600

400

200

FIGURE 2.
1000 [ 7
| / i
L 1 4
N £ 1
L [x] / |
800 - h i
L 1/ 4
I . ] |
| / i
600 ,’ -
: - - n=10 ,, :
400 |-

200 -

FIGURE 3.

Example 1. The Graphical representation of the convergence of the operators
EP,E . (f(2);x) to the test function f(x) = x> —x+ 1 are given in the Figure-1 for § =
5, and n ={2,10,50}. Figure-2 shows the convergence of the operators T;E L (f(1):x)
for B =2, and n = {2,10,50}. And Figure-3 represents the convergence of the oper-
ators ’.PrE i (f(t);x) for =1, and n = {2,10,50}. From the graphical representation
we easily seen that the operators converges fast when [ decreases.



382 S. KUMAR AND N. DEO

REFERENCES

[1] U. Abel and V. Gupta, “Rate of convergence of exponential type operators related to p(x) = 2532
for functions of bounded variation,” Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM,
vol. 114, no. 4, pp. Paper No. 188, 8, 2020, doi: 10.1007/s13398-020-00919-y.

[2] U. Abel, V. Gupta, and M. Sisodia, “Some new semi-exponential operators,” Rev. R. Acad.
Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, vol. 116, no. 2, pp. Paper No. 87, 12, 2022, doi:
10.1007/s13398-022-01228-2.

[3] Z.Ditzian and V. Totik, Moduli of smoothness, ser. Springer Series in Computational Mathematics.
Springer-Verlag, New York, 1987, vol. 9, doi: 10.1007/978-1-4612-4778-4.

[4] V. Gupta and M. T. Rassias, Moments of linear positive operators and approximation, ser. Spring-
erBriefs in Mathematics. Springer, Cham, 2019. doi: 10.1007/978-3-030-19455-0.

[5] M. Herzog, ‘“Semi-exponential operators,” Symmetry, vol. 13, no. 4, 2021, doi:
10.3390/sym13040637.

[6] K. Lipi and N. Deo, “General family of exponential operators,” Filomat, vol. 34, no. 12, pp. 4043—
4060, 2020, doi: 10.2298/i120120431.

[71 M. A. Ozarslan and O. Duman, “Local approximation behavior of modified SMK operators,”
Miskolc Math. Notes, vol. 11, no. 1, pp. 87-99, 2010, doi: 10.18514/mmn.2010.228.

[8] M. A. Ozarslan and H. Aktuglu, “Local approximation properties for certain King type operators,”
Filomat, vol. 27, no. 1, pp. 173-181, 2013, doi: 10.2298/FIL13011730.

[9] R.S. Phillips, “An inversion formula for Laplace transforms and semi-groups of linear operators,”
Ann. of Math. (2), vol. 59, pp. 325-356, 1954, doi: 10.2307/1969697.

[10] R. K. S. Rathore and O. P. Singh, “On convergence of derivatives of Post-Widder operators,”
Indian J. Pure Appl. Math., vol. 11, no. 5, pp. 547-561, 1980.

[11] A. Tyliba and E. Wachnicki, “On some class of exponential type operators,” Comment. Math.
(Prace Mat.), vol. 45, no. 1, pp. 59-73, 2005.

[12] D. V. Widder, The Laplace Transform, ser. Princeton Mathematical Series, vol. 6.  Princeton
University Press, Princeton, N. J., 1941.

Authors’ addresses

Sandeep Kumar

Delhi Technological University, Department of Mathematics, Bawana Road, Delhi 110042, India

Current address: Department of Mathematics, Maitreyi College, University of Delhi, Delhi 110021,
India

E-mail address: sandeepkumardps@gmail.com, skumarl@maitreyi.du.ac.in

Naokant Deo

(Corresponding author) Delhi Technological University, Department of Mathematics, Bawana
Road, Delhi 110042, India

E-mail address: naokantdeo@dce.ac.in


http://dx.doi.org/10.1007/s13398-020-00919-y
http://dx.doi.org/10.1007/s13398-022-01228-2
http://dx.doi.org/10.1007/978-1-4612-4778-4
http://dx.doi.org/10.1007/978-3-030-19455-0
http://dx.doi.org/10.3390/sym13040637
http://dx.doi.org/10.2298/fil2012043l
http://dx.doi.org/10.18514/mmn.2010.228
http://dx.doi.org/10.2298/FIL1301173O
http://dx.doi.org/10.2307/1969697

	1. Introduction
	2. Basic Properties
	3. Main Results
	4. Bounded Variation
	References

