${\rm HU~e\text{-}ISSN~1787\text{-}2413}$

Global Hölder estimates for hypoelliptic operators with drift on homogeneous groups

Yuexia Hou, Xiaojing Feng, and Xuewei Cui

GLOBAL HÖLDER ESTIMATES FOR HYPOELLIPTIC OPERATORS WITH DRIFT ON HOMOGENEOUS GROUPS

YUEXIA HOU, XIAOJING FENG, AND XUEWEI CUI

Received 19 December, 2011

Abstract. Let X_0, X_1, \ldots, X_q be left invariant real vector fields on the homogeneous group G, satisfying Hörmander's condition on \mathbb{R}^N . Assume that X_1, \ldots, X_q are homogeneous of degree one and X_0 is homogeneous of degree two. In this paper we consider the following hypoelliptic operator with drift

$$L = \sum_{i,j=1}^{q} a_{ij} X_i X_j + a_0 X_0,$$

where (a_{ij}) is a $q \times q$ positive constant matrix and $a_0 \neq 0$, and obtain Global Hölder estimates for L on G by establishing several estimates of singular integrals.

2000 Mathematics Subject Classification: 20D15; 35B65; 35C15

Keywords: homogeneous group, singular integral, global Hölder estimate

1. Introduction

Let G be a homogeneous group and $X_0, X_1, ..., X_q$ be left invariant real vector fields on $\mathbb{R}^N(q < N)$. Assume that $X_1, ..., X_q$ are homogeneous of degree one and X_0 is homogeneous of degree two, satisfying Hörmander's condition

$$rank \mathcal{L}(X_0, X_1, ..., X_q)(x) = N, x \in \mathbb{R}^N,$$

where $\mathcal{L}(X_0, X_1, ..., X_q)$ denotes the Lie algebra generated by $X_0, X_1, ..., X_q$. In this paper we are interested in the following hypoelliptic operator with drift

$$L = \sum_{i,j=1}^{q} a_{ij} X_i X_j + a_0 X_0, \tag{1.1}$$

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10871157 and 11001221); Specialized Research Found for the Doctoral Program of Higher Education (No. 200806990032) and the Mathematical Tianyuan Foundation of China (Grant No. 11126027).

where $a_0 \neq 0, (a_{ij})_{i,j=1}^q$ is a constant matrix satisfying

$$\mu^{-1}|\xi|^2 \le \sum_{i,j=1}^q a_{ij}\xi_i\xi_j \le \mu|\xi|^2, \xi \in \mathbb{R}^q, \tag{1.2}$$

for a constant $\mu > 0$.

Many authors paid attention to the hypoelliptic operator. The outstanding result in [8] points out that Hörmander's condition implies (actually, is equivalent to) the hypoellipticity of L in (1.1). The existence of fundamental solutions for homogeneous hypoelliptic operators on nilpotent Lie groups was investigated by Folland in [6]. Bramanti and Brandolini in [2] proved the uniqueness of homogeneous fundamental solutions for L. Let us note that L includes the classic Laplace operator and parabolic operator on Euclidean spaces. Another special case of L is

$$L_{1} = \sum_{i,j=1}^{q} a_{ij} \, \partial_{x_{i}x_{j}}^{2} + \sum_{i,j=1}^{n} b_{ij} x_{i} \, \partial_{x_{j}} - \partial_{t},$$

where $(x,t) \in \mathbb{R}^{n+1}$, $X_0 = \sum_{i,j=1}^n b_{ij} x_i \partial_{x_j} - \partial_t$ and $X_i = \partial_{x_i}$, $i = 1,2,\ldots,q$, $(a_{ij})_{i,j=1}^q$ is a positive matrix in R^q , (b_{ij}) is a constant matrix with a suitable upper triangular structure. Note that L_1 belongs to a class of Kolmogorov-Fokker-Planck ultraparabolic operators. The operator L_1 appears in many research fields, for instance, in stochastic processes and kinetic models (see [3–5]), and in mathematical finance theory (see [1,12]). After the previous study on L_1 in [9,10], the authors of [7,11,13] established an invariant Harnack inequality for the non-negative solution of $L_1u = 0$ by applying the mean value formula. With the theory of singular integral, Polidoro and Ragusa in [14] concluded some Morrey-type imbedding results and gave a local Hölder continuity of the solution.

The aim of the paper is to prove global Hölder estimates on the homogeneous group G for L by applying the properties of the fundamental solution for L and several estimates of singular integrals on the homogeneous space. The method here is inspired by that used in [14]. Our results reflect the relations between the Morrey norms of Lu and Hölder exponents for u and X_iu , $i=1,2,\ldots,q$. In order to state our main results, we first introduce the definition of Morrey space.

Definition 1. For $p \in (1, \infty), \lambda \in [0, Q)$, the Morrey space on homogeneous group G is defined by

$$L^{p,\lambda}(G) = \{ g \in L^{p}_{loc}(G) : ||g||_{L^{p,\lambda}(G)} < \infty \},$$

where

$$||g||_{L^{p,\lambda}(G)} = \left(\sup_{r>0, x\in G} \int_{B_r(x)} \frac{1}{r^{\lambda}} |g(y)|^p dy\right)^{1/p},$$

 $B_r(x)$ and Q will be given in (2.1) and (2.2), respectively. Here $L^{p,0}(G) = L^p(G)$.

The main results of this paper are as follows. For the case $\lambda \neq 0$, we have

prem 1. (1) If $1 , <math>Q - 2p < \lambda < Q - p$, then there exists a positive constant $c = c(p,\lambda)$ such that for every $u \in C_0^{\infty}(G)$ and any $x,z \in C_0^{\infty}(G)$ $G, x \neq z$

$$\frac{|u(x) - u(z)|}{\|z^{-1} \circ x\|^{\theta}} \le c \|Lu\|_{L^{p,\lambda}(G)}, \tag{1.3}$$

where $\theta = \frac{2p+\lambda-Q}{p}$; (2) If $1 , <math>Q - p < \lambda < Q$, then there exists a positive constant $c = c(p,\lambda)$ such that for every $u \in C_0^{\infty}(G)$ and any $x,z \in G$, $x \neq z$,

$$\frac{|X_{i}u(x) - X_{i}u(z)|}{\|z^{-1} \circ x\|^{\theta}} \le c \|Lu\|_{L^{p,\lambda}(G)},$$
(1.4)

where $i = 1, \dots, q$ and $\theta = \frac{p + \lambda - Q}{p}$.

For $\lambda = 0$, we have the following results, which restores the known result previously proved in [1].

ark 1. (1) Assume $\frac{Q}{2} . Then there exists a positive constant <math>c = c(p)$ such that for every $u \in C_0^{\infty}(G)$ and any $x, z \in G$, $x \neq z$, Remark 1.

$$\frac{|u(x) - u(z)|}{\|z^{-1} \circ x\|^{\theta}} \le c \|Lu\|_{L^{p}(G)}, \tag{1.5}$$

where $\theta = \frac{2p-Q}{p}$;
(2) Assume p > Q. Then there exists a positive constant c = c(p) such that for every $u \in C_0^{\infty}(G)$ and any $x, z \in G, x \neq z$,

$$\frac{|X_{i}u(x) - X_{i}u(z)|}{\|z^{-1} \circ x\|^{\theta}} \le c \|Lu\|_{L^{p}(G)}, \tag{1.6}$$

where $i = 1, \dots, q$ and $\theta = \frac{p-Q}{p}$.

The plan of the paper is as follows: in Section 2 we introduce some knowledge of homogeneous group and related lemmas. Estimates of two integral operators are proved. Section 3 is devoted to the proof of the main result.

2. Preliminary

Given a pair of mappings:

$$[(x, y) \mapsto x \circ y] : \mathbb{R}^N \times \mathbb{R}^N \mapsto \mathbb{R}^N; [x \mapsto x^{-1}] : \mathbb{R}^N \mapsto \mathbb{R}^N,$$

which are smooth, it follows that \mathbb{R}^N with these mappings forms a group, and the identity is the origin. If there exist $0 < \omega_1 \le \omega_2 \le \ldots \le \omega_N$, such that the dilations

$$D(\lambda): (x_1,\ldots,x_N) \mapsto (\lambda^{\omega_1}x_1,\ldots,\lambda^{\omega_N}x_N), \lambda > 0,$$

are group automorphisms, then the space \mathbb{R}^N with this structure is called a homogeneous group and denoted by G.

Definition 2. We define a homogeneous norm $\|\cdot\|$ in G by the following way: if for any $x \in G$, $x \neq 0$, it holds

$$||x|| = \rho \Leftrightarrow |D(1/\rho)x| = 1,$$

where $|\cdot|$ denotes the Euclidean norm; also, let ||0|| = 0.

It is not difficult to derive that the homogeneous norm satisfies

- (1) $||D(\lambda)x|| = \lambda ||x||$ for every $x \in G, \lambda > 0$;
- (2) there exists $c(G) \ge 1$, such that for every $x, y \in G$,

$$||x^{-1}|| \le c ||x||$$
 and $||x \circ y|| \le c (||x|| + ||y||).$

In view of the above properties, it is natural to define the quasidistance d:

$$d(x,y) = \left\| y^{-1} \circ x \right\|.$$

The ball with respect to d is denoted by

$$B(x,r) \equiv B_r(x) = \{ y \in G : d(x,y) < r \}.$$
 (2.1)

Note B(0,r) = D(r)B(0,1), therefore

$$|B(x,r)| = r^{Q} |B(0,1)|, x \in G, r > 0,$$

where

$$Q = \omega_1 + \ldots + \omega_N. \tag{2.2}$$

We will call that Q is the homogeneous dimension of G. In general, $Q \ge 3$.

Definition 3. A differential operators Y on G is said homogeneous of degree $\beta(\beta > 0)$, if for every test function φ ,

$$Y(\varphi(D(\lambda)x)) = \lambda^{\beta}(Y\varphi)(D(\lambda)x), \lambda > 0, x \in G;$$

A function f is called homogeneous of degree α , if

$$f((D(\lambda)x)) = \lambda^{\alpha} f(x), \lambda > 0, x \in G.$$

Remark 2. Clearly, if Y is a differential operators of homogeneous of degree β and f is a function of homogeneous of degree α , then Yf is homogeneous of degree $\alpha - \beta$.

Lemma 1. ([2]) The operator L possesses a unique fundamental solution $\Gamma(\cdot)$, such that for every test function $u \in C_0^{\infty}(G)$ and every $x \in G$, it holds

(1)
$$\Gamma(\cdot) \in C^{\infty}(G \setminus \{0\});$$

- (2) $\Gamma(\cdot)$ is homogeneous of degree 2-Q;
- (3) $u(x) = (Lu * \Gamma)(x) = \int_{\mathbb{R}^N} \Gamma(y^{-1} \circ x) Lu(y) dy;$ (4) $X_i u(x) = \int_{\mathbb{R}^N} X_i \Gamma(y^{-1} \circ x) Lu(y) dy.$

Remark 3. If we set $\Gamma_i = X_i \Gamma_i = 1, \dots, q$, then it is obvious from Remark 2 that $\Gamma_i(\cdot)$ is homogeneous of degree 1-Q.

Proposition 1. ([2]) Let $f \in C^1(\mathbb{R}^N \setminus 0)$ is a homogeneous function of degree $\lambda < 1$. Then there exist two constants c = c(G, f) > 0 and M = M(G) > 1, such that for any x, y satisfying $||x|| \ge M ||y||$,

$$|f(x \circ y) - f(x)| + |f(y \circ x) - f(x)| \le c ||y|| ||x||^{\lambda - 1},$$

where $c = c(G, f) \sup_{z \in \Sigma_N} |\nabla f(z)|$, Σ_N is the unit sphere of \mathbb{R}^N .

From Proposition 1, it follows

Lemma 2. If $K \in C^1(G \setminus \{0\})$ is a homogeneous function of degree $\alpha < 1$ with respect to the group $(D(\lambda))_{\lambda>0}$, then there exist two constants c>0 and M>1, such that if $\|x\| \ge M \|x^{-1} \circ z\|$, then

$$|K(z) - K(x)| \le \frac{c \|x^{-1} \circ z\|}{\|x\|^{1-\alpha}}.$$

By Lemma 1 and Lemma 2, we have immediately

Lemma 3. For every $x, y, z \in G$, it holds

(1) there exists a constant c > 0, such that

$$\Gamma(y^{-1} \circ x) \le \frac{c}{\|y^{-1} \circ x\|^{Q-2}};$$

 $\Gamma_i(y^{-1} \circ x) \le \frac{c}{\|y^{-1} \circ x\|^{Q-1}}.$

(2) there exist two constants c > 0 and M > 1, such that if $\|y^{-1} \circ x\| \ge M \|x^{-1} \circ z\|$,

$$\left| \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) \right| \le \frac{c \|x^{-1} \circ z\|}{\|y^{-1} \circ x\|^{Q-1}};$$
$$\left| \Gamma_i(y^{-1} \circ x) - \Gamma_i(y^{-1} \circ z) \right| \le \frac{c \|x^{-1} \circ z\|}{\|y^{-1} \circ x\|^{Q}}.$$

Now let us introduce two integral operators. For $p \in (1, \infty)$ and $\lambda \in [0, Q)$, fixed $z \in G$ and $\sigma > 0$, we define for every $g \in L^{p,\lambda}(G)$ that

$$T_{\alpha}g(x) = \int_{\|y^{-1} \circ x\| \ge \sigma \|z^{-1} \circ x\|} \frac{g(y)}{\|y^{-1} \circ x\|^{Q-\alpha}} dy, \alpha \in [0, Q);$$

$$T^{\beta}g(x) = \int_{\|y^{-1} \circ x\| < \sigma \|z^{-1} \circ x\|} \frac{g(y)}{\|y^{-1} \circ x\|^{Q-\beta}} dy, \beta \in (0, Q).$$

Lemma 4. If $\lambda + p\alpha < Q$, then there exists $c = c(p, \lambda, \alpha, \sigma) > 0$, such that

$$|T_{\alpha}g(x)| \le c \|g\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{p\alpha+\lambda-Q}{p}};$$
 (2.3)

if $\lambda + p\beta > Q$, then there exists $c = c(p, \lambda, \beta, \sigma) > 0$, such that

$$\left| T^{\beta} g(x) \right| \le c \|g\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{p\beta + \lambda - Q}{p}}.$$
 (2.4)

Proof. We follow the idea of Polidoro and Ragusa in [14]. If $\lambda + p\alpha < Q$, then it obtains by decomposing the domain of integration and applying the Hölder inequality that

$$\begin{split} |T_{\alpha}g(x)| &\leq \sum_{k=1}^{\infty} \int_{2^{k-1}\sigma \|z^{-1}\circ x\| \leq \|y^{-1}\circ x\| < 2^{k}\sigma \|z^{-1}\circ x\|} \frac{g(y)}{\|y^{-1}\circ x\|^{Q-\alpha}} dy \\ &\leq \sum_{k=1}^{\infty} \left(\frac{1}{2^{k-1}\sigma \|z^{-1}\circ x\|} \right)^{Q-\alpha} \int_{B_{2^{k}\sigma \|z^{-1}\circ x\|}(x)} |g(y)| dy \\ &\leq \sum_{k=1}^{\infty} \left(\frac{1}{2^{k-1}\sigma \|z^{-1}\circ x\|} \right)^{Q-\alpha} \left(\int_{B_{2^{k}\sigma \|z^{-1}\circ x\|}(x)} |g(y)|^{p} dy \right)^{\frac{1}{p}} \\ &\left| B_{2^{k}\sigma \|z^{-1}\circ x\|}(x) \right|^{\frac{p-1}{p}} \\ &\leq c \sum_{k=1}^{\infty} \left(\frac{1}{2^{k-1}\sigma \|z^{-1}\circ x\|} \right)^{Q-\alpha} \left(2^{k}\sigma \|z^{-1}\circ x\| \right)^{\frac{\lambda}{p}} \|g\|_{L^{p,\lambda}(G)} \\ &\left(2^{k}\sigma \|z^{-1}\circ x\| \right)^{\frac{(p-1)Q}{p}} \\ &\leq c \|g\|_{L^{p,\lambda}(G)} \|z^{-1}\circ x\|^{\frac{p\alpha+\lambda-Q}{p}} \sum_{k=1}^{\infty} \left(2^{\frac{p\alpha+\lambda-Q}{p}} \right)^{k}. \end{split}$$

So (2.3) is proved, since the above series is convergent. Similarly, if $\lambda + p\beta > O$, then

$$\begin{split} \left| T^{\beta} g(x) \right| &\leq \sum_{k=1}^{\infty} \int_{2^{-k} \sigma} \left\| z^{-1} \circ x \right\| \leq \left\| y^{-1} \circ x \right\| < 2^{1-k} \sigma} \frac{g(y)}{\left\| y^{-1} \circ x \right\|^{Q-\beta}} dy \\ &\leq \sum_{k=1}^{\infty} \left(\frac{1}{2^{-k} \sigma} \left\| z^{-1} \circ x \right\| \right)^{Q-\beta} \int_{B_{2^{1-k} \sigma}} \left| g(y) \right| dy \end{split}$$

$$\leq \sum_{k=1}^{\infty} \left(\frac{1}{2^{-k} \sigma \|z^{-1} \circ x\|} \right)^{Q-\beta} \left(\int_{B_{2^{1-k} \sigma \|z^{-1} \circ x\|}(x)} |g(y)|^{p} dy \right)^{\frac{1}{p}} \\
\left| B_{2^{1-k} \sigma \|z^{-1} \circ x\|}(x) \right|^{\frac{p-1}{p}} \\
\leq c \sum_{k=1}^{\infty} \left(\frac{1}{2^{-k} \sigma \|z^{-1} \circ x\|} \right)^{Q-\beta} \left(2^{1-k} \sigma \|z^{-1} \circ x\| \right)^{\frac{\lambda}{p}} \|g\|_{L^{p,\lambda}(G)} \\
\left(2^{1-k} \sigma \|z^{-1} \circ x\| \right)^{\frac{(p-1)Q}{p}} \\
\leq c \|g\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{p\beta+\lambda-Q}{p}} \sum_{k=1}^{\infty} \left(2^{\frac{Q-p\beta-\lambda}{p}} \right)^{k}.$$

This proves (2.4).

Remark 4. In particular, when $\lambda = 0$, we see that if $p\alpha < Q$, then there exists a constant $c = c(p, \alpha, \sigma) > 0$, such that

$$|T_{\alpha}g(x)| \le c \|g\|_{L^{p}(G)} \|z^{-1} \circ x\|^{\frac{p\alpha - Q}{p}};$$
 (2.5)

if $p\beta > Q$, then there exists a constant $c = c(p, \beta, \sigma) > 0$, such that

$$\left| T^{\beta} g(x) \right| \le c \|g\|_{L^{p}(G)} \|z^{-1} \circ x\|^{\frac{p\beta - Q}{p}}.$$
 (2.6)

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. (1) With the help of (3) in Lemma 1 and Lemma 3, we know that there exist constants c > 0 and M > 1 such that

$$|u(x) - u(z)| = \left| \int_{\mathbb{R}^{N}} \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) Lu(y) dy \right|$$

$$\leq \int_{\mathbb{R}^{N}} \left| \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) \right| |Lu(y)| dy$$

$$\leq \int_{\|y^{-1} \circ x\| \ge M \|x^{-1} \circ z\|} \left| \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) \right| |Lu(y)| dy$$

$$+ \int_{\|y^{-1} \circ x\| < M \|x^{-1} \circ z\|} \left| \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) \right| |Lu(y)| dy$$

$$\leq \int_{\|y^{-1} \circ x\| \ge M \|x^{-1} \circ z\|} \left| \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) \right| |Lu(y)| dy$$

$$+ \int_{\|y^{-1} \circ x\| < M \|x^{-1} \circ z\|} \left| \Gamma(y^{-1} \circ x) - \Gamma(y^{-1} \circ z) \right| |Lu(y)| dy$$

$$\begin{split} & + \int_{\|y^{-1} \circ x\| < M \|x^{-1} \circ z\|} \left| \Gamma(y^{-1} \circ z) \right| |Lu(y)| dy \\ & \leq \int_{\|y^{-1} \circ x\| \geq M \|x^{-1} \circ z\|} \frac{c \|x^{-1} \circ z\|}{\|y^{-1} \circ x\|^{Q-1}} |Lu(y)| dy \\ & + \int_{\|y^{-1} \circ x\| < M \|x^{-1} \circ z\|} \frac{c}{\|y^{-1} \circ x\|^{Q-2}} |Lu(y)| dy \\ & + \int_{\|y^{-1} \circ x\| < M \|x^{-1} \circ z\|} \frac{c}{\|y^{-1} \circ z\|^{Q-2}} |Lu(y)| dy. \end{split}$$

Noting that if $||y^{-1} \circ x|| \ge M ||x^{-1} \circ z||$, then

$$||y^{-1} \circ x|| \ge M ||x^{-1} \circ z|| \ge \frac{M}{c} ||z^{-1} \circ x||;$$

if $||y^{-1} \circ x|| < M ||x^{-1} \circ z||$, then

$$||y^{-1} \circ x|| < Mc ||z^{-1} \circ x||$$

and

$$||y^{-1} \circ z|| \le c (||y^{-1} \circ x|| + ||x^{-1} \circ z||) < c (M ||x^{-1} \circ z|| + ||x^{-1} \circ z||)$$

= $c (1 + M) ||x^{-1} \circ z||,$

it follows

$$|u(x) - u(z)| \leq \int_{\|y^{-1} \circ x\| \geq \frac{M}{c} \|z^{-1} \circ x\|} \frac{c \|x^{-1} \circ z\|}{\|y^{-1} \circ x\|^{Q-1}} |Lu(y)| dy$$

$$+ \int_{\|y^{-1} \circ x\| < Mc \|z^{-1} \circ x\|} \frac{c}{\|y^{-1} \circ x\|^{Q-2}} |Lu(y)| dy$$

$$+ \int_{\|y^{-1} \circ z\| < c(1+M) \|x^{-1} \circ z\|} \frac{c}{\|y^{-1} \circ z\|^{Q-2}} |Lu(y)| dy$$

$$\stackrel{=}{=} I_1 + I_2 + I_3.$$

Applying Lemma 4 ($\alpha=1$ and $\sigma=\frac{M}{c}$) and noting $\lambda+p< Q$, there exists a constant $c=c(p,\lambda,\sigma)>0$ such that

$$I_1 \leq c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\| \|z^{-1} \circ x\|^{\frac{p+\lambda-Q}{p}} = c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{2p+\lambda-Q}{p}};$$
 from Lemma 4 ($\beta=2$ and $\sigma=Mc$; $\beta=2$ and $\sigma=c(1+M)$, respectively) and $\lambda+2p>Q$, it follows

$$I_2 \le c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{2p+\lambda-Q}{p}}$$

and

$$I_3 \le c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{2p+\lambda-Q}{p}}.$$

In conclusion, we deduce (1.3).

(2) We know from (4) in Lemma 1 and Lemma 3 that there exist two constants c > 0 and M > 1 such that

$$\begin{split} |X_{i}u(x) - X_{i}u(z)| &= \left| \int_{\mathbb{R}^{N}} \Gamma_{i}(y^{-1} \circ x) - \Gamma_{i}(y^{-1} \circ z) Lu(y) dy \right| \\ &\leq \int_{\mathbb{R}^{N}} \left| \Gamma_{i}(y^{-1} \circ x) - \Gamma_{i}(y^{-1} \circ z) \right| |Lu(y)| dy \\ &\leq \int_{\left\| y^{-1} \circ x \right\| \geq M \left\| x^{-1} \circ z \right\|} \left| \Gamma_{i}(y^{-1} \circ x) - \Gamma_{i}(y^{-1} \circ z) \right| |Lu(y)| dy \\ &+ \int_{\left\| y^{-1} \circ x \right\| \leq M \left\| x^{-1} \circ z \right\|} \left| \Gamma_{i}(y^{-1} \circ x) - \Gamma_{i}(y^{-1} \circ z) \right| |Lu(y)| dy \\ &\leq \int_{\left\| y^{-1} \circ x \right\| \geq M \left\| x^{-1} \circ z \right\|} \left| \Gamma_{i}(y^{-1} \circ x) - \Gamma_{i}(y^{-1} \circ z) \right| |Lu(y)| dy \\ &+ \int_{\left\| y^{-1} \circ x \right\| \leq M \left\| x^{-1} \circ z \right\|} \left| \Gamma_{i}(y^{-1} \circ x) \right| |Lu(y)| dy \\ &\leq \int_{\left\| y^{-1} \circ x \right\| \leq M \left\| x^{-1} \circ z \right\|} \frac{c \left\| x^{-1} \circ z \right\|}{\left\| y^{-1} \circ x \right\|^{Q}} |Lu(y)| dy \\ &+ \int_{\left\| y^{-1} \circ x \right\| \leq M \left\| x^{-1} \circ z \right\|} \frac{c}{\left\| y^{-1} \circ x \right\|^{Q-1}} |Lu(y)| dy \\ &+ \int_{\left\| y^{-1} \circ x \right\| \leq M \left\| x^{-1} \circ z \right\|} \frac{c}{\left\| y^{-1} \circ x \right\|^{Q-1}} |Lu(y)| dy \\ &+ \int_{\left\| y^{-1} \circ x \right\| \leq M \left\| x^{-1} \circ z \right\|} \frac{c}{\left\| y^{-1} \circ z \right\|^{Q-1}} |Lu(y)| dy. \end{split}$$

Let us remark that if $||y^{-1} \circ x|| \ge M ||x^{-1} \circ z||$, then

$$||y^{-1} \circ x|| \ge \frac{M}{c} ||z^{-1} \circ x||;$$

if $\|y^{-1} \circ x\| < M \|x^{-1} \circ z\|$, then

$$||y^{-1} \circ x|| < Mc ||z^{-1} \circ x||$$

and

$$||y^{-1} \circ z|| \le c (||y^{-1} \circ x|| + ||x^{-1} \circ z||) < c (M ||x^{-1} \circ z|| + ||x^{-1} \circ z||)$$

= $c (1 + M) ||x^{-1} \circ z||$.

It implies

$$|X_{i}u(x) - X_{i}u(z)| \leq \int_{\|y^{-1} \circ x\| \geq \frac{M}{c} \|z^{-1} \circ x\|} \frac{c \|x^{-1} \circ z\|}{\|y^{-1} \circ x\|^{Q}} |Lu(y)| dy$$

$$+ \int_{\|y^{-1} \circ x\| < Mc \|z^{-1} \circ x\|} \frac{c}{\|y^{-1} \circ x\|^{Q-1}} |Lu(y)| dy$$

$$+ \int_{\|y^{-1} \circ z\| < c(1+M) \|x^{-1} \circ z\|} \frac{c}{\|y^{-1} \circ z\|^{Q-1}} |Lu(y)| dy$$

$$\stackrel{=}{=} I_{4} + I_{5} + I_{6}.$$

Applying Lemma 4 ($\alpha = 0$ and $\sigma = \frac{M}{c}$) and $\lambda < Q$, there exists a constant $c = c(p, \lambda, \sigma) > 0$ such that

$$I_4 \leq c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\| \|z^{-1} \circ x\|^{\frac{\lambda-Q}{p}} = c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{p+\lambda-Q}{p}};$$
 from Lemma 4 ($\beta=1$ and $\sigma=Mc$; $\beta=1$ and $\sigma=c(1+M)$, respectively) and $\lambda+p>Q$, it gets

$$I_5 \le c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{p+\lambda-Q}{p}}$$

and

$$I_6 \le c \|Lu\|_{L^{p,\lambda}(G)} \|z^{-1} \circ x\|^{\frac{p+\lambda-Q}{p}}.$$

In conclusion we reach to (1.4).

REFERENCES

- [1] E. Barucci, S. Polidoro, and V. Vespri, "Some results on partial differential equations and Asian options," *Math. Models Methods Appl. Sci.*, vol. 11, no. 3, pp. 475–497, 2001.
- [2] M. Bramanti and L. Brandolini, "L^p estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups," Rend. Sem. Mat. Univ. Pol. Torino, vol. 58, pp. 389–433, 2000.
- [3] S. Chandrasekhar, "Stochastic problems in physics and astronomy," *Rev. Mod. Phys.*, vol. 15, pp. 1–89, 1943.
- [4] S. Chapman and T. G. Cowling, The mathematical theory of nonuniform gases, 3rd ed. Cambridge: Cambridge University Press, 1990.
- [5] J. J. Duderstadt and W. R. Martin, *Transport theory*, ser. A Wiley-Interscience Publication. New York: John Wiley & Sons, 1979.
- [6] G. B. Folland, "Subelliptic estimates and function spaces on nilpotent Lie groups," *Ark. Mat.*, vol. 13, pp. 161–207, 1975.
- [7] N. Garofalo and E. Lanconelli, "Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type," *Trans. Am. Math. Soc.*, vol. 321, no. 2, pp. 775–792, 1990.
- [8] L. Hörmander, "Hypoelliptic second order differential equations," Acta Math., vol. 119, pp. 147–171, 1967.
- [9] L. P. Kuptsov, "Fundamental solutions for a class of second-order elliptic-parabolic equations," *English Transl. Differential Equations*, vol. 8, pp. 1269–1278, 1972.

- [10] L. P. Kuptsov, "Mean value theorem and a maximum principle for Kolmogorov's equation," English Transl. Math. Notes, vol. 15, pp. 280–286, 1974.
- [11] E. Lanconelli and S. Polidoro, "On a class of hypoelliptic evolution operators," *Rend. Sem. Mat. Univ. Pol. Torino*, vol. 52, pp. 29–63, 1994.
- [12] A. Pascucci, "Hölder regularity for a Kolmogorov equation," *Trans. Am. Math. Soc.*, vol. 355, no. 3, pp. 901–924, 2003.
- [13] A. Pascucci and S. Polidoro, "On the Harnack inequality for a class of hypoelliptic evolution equations," *Trans. Am. Math. Soc.*, vol. 356, no. 11, pp. 4383–4394, 2004.
- [14] S. Polidoro and M. A. Ragusa, "Sobolev-Morrey spaces related to an ultraparabolic equation," *Manuscr. Math.*, vol. 96, no. 3, pp. 371–392, 1998.

Authors' addresses

Yuexia Hou

Northwestern Polytechnical University, Department of Applied Mathematics; Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Xi'an, Shaanxi, 710129, China *E-mail address:* houyuexia@126.com

Xiaojing Feng

Northwestern Polytechnical University, Department of Applied Mathematics; Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Xi'an, Shaanxi, 710129, China *E-mail address:* fxj467@mail.nwpu.edu.cn

Xuewei Cui

Northwestern Polytechnical University, Department of Applied Mathematics; Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Xi'an, Shaanxi, 710129, China *E-mail address:* c88xw@163.com