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Abstract. In this paper, we consider fractional Hardy-Hénon parabolic equations driven by frac-
tional Brownian motion. The local existence and uniqueness of L mild solutions are proved.
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1. INTRODUCTION

Stochastic partial differential equations driven by fractional Brownian motion have
attracted much attention. Tindel et al. [1 1] studied linear stochastic evolution equa-
tions driven by infinite-dimensional fractional Brownian motion with Hurst para-
meter in the interval H € (0,1). A sufficient and necessary condition for the existence
and uniqueness of the solution is established. Maslowski and Nualart [10] studied
nonlinear stochastic evolution equations in a Hilbert space driven by a cylindrical
fractional Brownian motion with Hurst parameter H > % and nuclear covariance
operator. Caraballo et al. [3] investigated the existence, uniqueness and exponential
asymptotic behavior of mild solutions to a class of stochastic delay evolution equa-
tions perturbed by a fractional Brownian motion. Ahmed and Ragusa [1], Chadha
and Bora [4], Khan et al. [7] studied some other fractional stochastic equations about
the controllability, stability and fractional analysis. Clarke and Olivera [5] studied a
semilinear heat equation driven by a Hilbert space-valued fractional Brownian mo-
tion, existence and uniqueness of local L? mild solutions are shown.

In this paper, we study the Cauchy problem

(1.1)
u(0) = o,
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BY 4.0.

{3zu(t) = —(=8)*u(e) + x| Mu(@)|P~ u(t) + B (1), t >0,
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where u C R, p > 1, up € L4(R?), y> 0, (—A)¥?(0 < o < 2) is the fractional
Laplacian, B (¢) is a fractional Brownian motion defined on some complete probab-
ility space (Q, 7 ,PP) with Hurst parameter H € (1,1).

When v = 0, existence results of L” mild solutions for the problem (1.1) without
noise was studied in Weissler [12]. In the case y € (0,min(2,d)), Ben Slimene, Tay-
achi and Weissler [2] investigated local well-posedness, global existence and large
time behavior for the problem (1.1) without noise. When o0 =2 and v € (0,2), Maj-
doub and Mliki [9] studied the problem (1.1) on R? (d = 2 or 3), they obtained the
local existence and uniqueness of mild L? solution. The purpose of this paper is to
investigate the existence and uniqueness of mild solutions to the equation (1.1). The
main results are obtained by using the contraction principle.

Definition 1. A process u: Q x [0,T] is called a mild solution of equation (1.1) if
(1) ueC([0,T];RY),

2
Q, ! Q,
ale) = [[e Il ()
) 0 (1.2)
—l—/ e_(t_sx_A)a/deH(s),
0
with probability one, where e~ (=8)* i the linear fractional heat semigroup.
Theorem 1. Let d > 1 be an integer and let
0 <Y< min(a,d), (1.3)
11
max | —,— | <H <1, (1.4)
2'q
dp d(p—1
max (p,(p)> <g<w. (1.5)
d—y o—y

Given @ € L1(RY), then there exist T > 0 such that (1.1) has a unique mild solution
u € C([0,T]; L4 (R4)).

The paper is organized as follows. In Section 2, some basic notations and pre-
liminary facts on stochastic integrals for fractional Brownian motion and smoothing
effect for the fractional heat semigroup are given. In Section 3, we give the main
results of this paper.

2. PRELIMINARIES

2.1. Fractional Brownian motion

Let (Q, F,P) be a complete probability space.
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Definition 2. A centered Gaussian process {B(¢), ¢ > 0} is called fractional
Brownian motion (fBm) of Hurst index H € (0, 1) if it has the covariance function

1
Ry (1,5) = E[B"(1)B" (s)] = §(f2H +52H — | =),
In the following, we assume % < H < 1. Consider the square integrable kernel

t
Ku(t,s) = CHS%_H/ (M*S)H_%MH‘%du,
S

HQH_1) } 2 andt > s.

where CH = [m

Then

E)KH t Hﬁ% H_3
af(ts)-q;(;) (1—s)"3,

Consider a fBm {B(¢), + € [0,T]}. We denote by { the set of step functions on
[0,T]. Let # be the Hilbert space defined as the closure of { with respect to the
scalar product

(Ljo.): Ljo.s)) o = Ru(,5).
Define the linear operator K}; from  to L*([0, T]) by

(K79)(s /(p tsdt

The operator K}; is an isometry between { and L2( [0,77]) that can be extended to the
Hilbert space .
Consider the process W = W(z), € [0, T] defined by

W (1) =B ((Ki) ' 1o)-

Then W is a Wiener process and B has the integral representation

zﬂmmmww @1

We have the following relationship between the Wiener integral with respect to fBm
and the Wiener integral with respect to the Wiener process W

[ o198 ) = [ (Kig)s)aw ), 2

for every t € [0,T] and @1y, € # if and only if K;;¢ € L*([0,T]). As in [11], we
define the standard cylindrical Brownian motion in X as

oo

B (1) =) e (1), (2.3)

n=0

where {e,}>_, is a complete orthonormal basis in X and B are real, independent
fBm’s.
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Let f be a deterministic function with values in £,(X,Y), the space of Hilbert-
Schmidt operators from X to Y. We make the following assumptions on f.

(i) Foreachx € X, f(-)x € LP([0,T];Y), for p > 4,
(i) o fo fo 1£8)] oo | £ oo |s — 12 2dsdr < oo,
where 0y = H(2H — 1). The stochastic integral of f with respect to B is defined by

/ f(s)dBf (s Z / f(s)e,dpH (s) Z(Kern)(s)dBn(s), (2.4)

n=1

where B, is the standard Brownian motion used to represent B as in (2.1) and the
series (2.4) is finite if

ZHKH fen)l 2oy ZHernH}[HY <o (2.5)

2.2. Smoothing effect

Let 1 < g < o and denote L7(R?) the space of functions with the norm |||, =

(Jralf (x)|9dx)'/4. Fort > 0, e (=8 denotes the linear fractional heat semigroup
defined by (see [8])

—t(—A)
(@ = [ Galtx=y)r(r)d 2.6)
where G, is the fractional heat kernel
1 . a
— ix-E—t[g] d
Gy (t,x) = T /Rde d§, t >0, xeRY, 2.7)

and f € LY(R?), g € [1,00) or f € Co(RY).
We recall the space-time estimate for the fractional semigroup on Lebesgue spaces,
_d(1
le N ul, < & (2.8)

for 1 <s;<sp<oo,t>0anducL(RY).
Given A > 0, we define the dilation operator D) by D;®(x) = ¢(Ax) for all
¢ € S(R?). This operator is extended by duality to §'(R9).
Lemma 1. D) has the following properties:
(i) Dy (e M1 g) = et (=8 (D, ) for all ¢ € S'(RY),
(ii) Dr(D19) =@ forall ¢ € S'(RY),
(i) [|DA®ll, =17 ||@]l, for all 9 € L (RY), r > 1,
(iv) Dp(QW) = Dr@DyV for all ,v,¢y € L}, (RY),
) Dy([-[7") = A7 -[7Y for all y> 0.

Proof. It is obvious that (ii)-(v) hold. We only prove (i). By (2.6) and (2.7),

e N (Dro(n)) / Ga(t,x =) (Dr9(y))dy
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1 i(x—v)-E— o
= an)in /R /R SN Gy dEdy.  (2.9)
On the other hand,
A0 (AN
e A% (—A) Z(P(X) _ /Rd Ga(x(xt’x_y)(p(y>dy

1 e
h (2n)d/2/Rd /Rd NS g (y)dedy,  (2.10)

then
Dy (M1 g) = z,tl)d /R /]R SRS () dEdy
27t1)d/ /]Rd/Rd =281 o (M)A dEdz
2n1)d/ /Rd/w i o(dz)dndz. @.11)
By (2.9) and (2.11), (i) holds. O

Lemma 2. Let d > 1 be an integer and 0 <y < d. Let q; € (1,00 and g € (1,00]

such that
1 vy 1
0<—<-+—<1
@ d q
Then there exists a constant C > 0 depending on o, d y,ql,qz such that

a/2 2 N R 4
e V() gy < ot~ @l ) "y, 2.12)

Proof. Setm = % and let €,8 > 0 satisfy

1 1 1 1
e<m — < ——+—< +—<1.
@~ m+8 q T m—¢ q
In fact, from the following estimate (2.15), we can see that it is reasonable to choose
such € and d. Consider the following decomposition

17 =iy, yi € L7H(RY), yy € LTO(RY).
By the Holder inequality, we have
Il < Willm—ellullg, (2.13)

where
1 1

r m—E&E q1

and

”WQMHQ < ”WZHm-i-SHMHt]U (2-14)
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where

111

= + —.
r m—i—S q1
By the Minkowski inequality, (2.8), (2.13) and (2.14),
(A2 . (A2 (A2
le™ (1) gy < lle™ Y (W) [lg, + [le™ ™ (wau) g,

< CH\VU"HH +C”\V2uHr2
< C(lwilm—e + [[W2llmrs)lullg, - (2.15)

Thus

(A2
le” (M) g, < Clend¥,q1,02) lullg, -

_xcxt(_A)(x/z )a/z

(p:Dle 1~

By (i) and (i1) in Lemma 1, e 1 D, @, then

eV g=D 1D o 216

o

for all ¢ € §'(R?). From (2.12) and (2.16), it follows that
[X./Z _
HDtée A Dt—é(‘ | )qu §C((Xad7%6h»612)”””qr

This together with (iii) in Lemma 1 yield that

__d_ lX/2 _
ez |le YD (M) g, < C(0d Yo, 02) Julg,-

-

By (iv) and (v) in Lemma 1,

_d v (A2 .

il V(D u)llg, < C(0d, Y gq1,q2)|ullg-
Replacing u by D 1u

_d v i A\O/2 _

e le AT M) g, < C(0d,Y,q1,2) 1D, ullg,

_d
SC((X,d,'Y,C[],C[Q)t o ||MH‘II'

Therefore

_ o/2 d1 1y Y
e (1) gy < Cloud, Y, qi,qa)t @ o @)~ ],
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3. RESULTS
Consider the linear problem
diz(t) = —(—A)*?2(t) +9,B (1), 1 > 0,
{2(0) =0,

the mild solution is

!
(1) = / =N gpH ()
0

389

3.1

For H >} and H > %, by the result in [6], z € C([0,T],L¢(R?)). For B > 0 and

1 < r < oo to be fixed later, define

L(T) =max( sup_[|z(t)llg, sup P[lz(t)],).
t€[0,T) t€(0,T]

3.2)

Proof of Theorem 1. Let g satisfy (1.5) and 1 < g < o. Then there exists r > ¢

such that
1 Y 1 d—vy
gp dp ~r  dp
Let

; d(p—1)
Since g > 0=y , then

This together with (3.3) and (3.4) yield that
Bp < 1.
Letp >0,M>0,T > 0and ¢ € LY(R?) such that
lolly <p,

Yy _dp-1)

K
max(cl,l)p+L(T)+7MPT1*a @ <M,
p

dip—=1) _y

p-1pl-fE -1
KMPT\TV " @ —a <,

where K is a positive constant to be fixed later.
Define

X = {ucC([0,T);LY(RY)) NC((0,T]; L (R));

Nl <M, Bu(r)|], < MY.
trel?&);]ﬂu()ﬂq_ tg%&’;] [u(®)| <M}

(3.3)

(3.4)

3.5

(3.6)

(3.7)
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Endowed with the metric

d(u,v) =max( sup ||u(t) —v(t)llg, sup P[lu(t) —v(1)||,),
t€[0,T] 1€(0,7]

(X,d) is a complete metric space. Given u € X, set
(A2 RN T _
Folu) 1) = e "4+ [ 00 () () s
t
+/ ef(l‘fs)(7A)OL/2dBPI(S>7 (38)
0

Let ¢,y € LY(R?), u,v € X. For q; = %, g2 = g, by Lemma 2 and the Holder inequal-
ity,

[[Fo(u) (1) = Fy(v) (1) lg

<[l " o= wlq
+ [ eI )l )~ ) ) s
<10Vl +C [ (=9 E 50l P ut) = ) ()] ds
! dp_1y_ XY
< lp—wlly+Cap [ (=) 85D E vl (™ + vl
<llo-wl,+ <2C2pMp1/0t(t—S)g(€;)gﬂsﬁpds> d(u,v).
By (3.4),
| Fola)(t) = Fy (1)
< lo—wl+ (2capmr =45 [T

d(

QI
SIS
|
Q=
53
a
=
=
o
a
N——
U
—~
<
<
~

Since r > g > ) , then

d(p— dp 1 dp 1
1—1—L>0, CR_Hyp X S22y Y
o ag a'r ¢ o o

We note Bp < 1 and recall the Beta function

B(x,y) /’Cx —1)ldt, x,y >0,

therefore

d(p 1)

| Fo()(2) = Fy()(0)lly < 0 —Wlly+CsMP T4 d(u,v), (3.9)
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where
: d(E-1)-1 P
Cy=2Cp | (1—1) o'rma/ ag PPdy (3.10)
0

is a finite positive constant.
For s = g < 52 =r, by (2.8),

VYT _di_1
le A (@ =), < o & lo — |, = Cur P lo . (3.11)
For g = é, q2 =r, by (3.11), Lemma 2 and the Holder inequality,

| Fp () (1) = Ry () (0)l
< e Y (o),
[ e IS X)) = o) ()

_ ! _dp_1y_ ¥ _ _
<Cit B||<P—W||q+Cz/O(f—S) &m0 u(s) |7 us) — [v(s) P (s)| - ds

_ ! _dp_1y_Y _ _
< CuPlo—wly+ Cap (=5 4Dl ™ + 12

Qlx

t
< cuPlo—vil+ (2cm [0
Then
P Fo(u)(1) — Ry (9) (1)

<Cillo—vl, + <2C2PMP 8 [yt ks des)d<u )

(Ir)}')lsﬁpds> d(u,v).

dip-1) v

1
= Cillp =yl + (2copmr- i1 [ <1—r>a“”””df>d<u,v>
0

dp-1) 1 )
=ClH<P—qu+<2Csz” et / (1—r)3<”)3rﬁpdr) d(u,v)
0

d(p 1)

=Cillo—ylly+CaMP~' T "5 "o d(u,v), (3.12)
where
1
C4:2C2p/ (1—1)a(F=D-arPrar (3.13)
0
is a finite positive constant. By (3.9) and (3.17),
d(p—1)
d(Fy(u), Fy(v)) < max(C1, 1)@ — yllg+ KMP' T ™ 6 d(u,v),  (3.14)

where K = max(Cs,Cy).
By (3.14), we see that for u € X, Fy(u) € C([0,T];L4(R?)) NC((0,T];L"(RY)).
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Given u € X, by (3.8), (3.2), we have

e o)l < el [ e S W) Pt s+ 200
<ll0ll+C: [ (=) 4L ulo) P o) s+ L(T)
< p+L(T) +CoM? /Ot(r—s)i(fé)ls—ﬁpds
ot L(T)+ g;MpTl&‘“’&q”_ (3.15)

Similarly, by (3.11) and Lemma 2, we have

|Fo@)(@)], < lle~ g+ / e A - 17 a5 P ()] s+ 120,
< Cipt P+Com? /Ot(t—s)_gt(lr’_l)_gs_ﬁpds+ z(2)I,- (3.16)

Then

P Fop(w) (1)]l; < Cip + (CszlB /0 I —s>i<fi>lsﬁpds) +P (1)),

y_dp-1)

C 3
:C1p+L(T)+2—4M”T1 o« (3.17)
P

where Cy is the same as in (3.13).
By (3.16), (3.17) and (3.6), we get Fy(u) € X. That is F, maps X into X.
Letting @ = y in (3.14), we have

Al Y_ d(p-1)
d(Fo(u),Fe(v)) < KMP™'T "o " d(u,v). (3.18)
By (3.7), we conclude that Fy is a contraction mapping from X into X. Therefore Fy
has a unique fixed point in X, which is the mild solution of (1.1). O
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