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Received 19 December, 2011

Abstract. In this paper, nonlocal Cauchy problems for fractional evolution equations involving
Volterra-Fredholm type integral operators are investigated. Some new existence theorems of mild
solutions are presented by using fractional calculus, Hölder inequality, Beta function and fixed
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1. INTRODUCTION

The fractional differential equations has recently been proved to be valuable tools
in the modeling of many phenomena in various fields of engineering, physics, eco-
nomy and science. We can find numerous applications in viscoelasticity, electro-
chemistry, control, porous media, electromagnetic, etc. [8, 11, 12, 14, 22, 23]. There
has been a significant development in fractional differential equations. For more
details on fractional calculus theory, one can see the monographs of Diethelm [9],
Kilbas et al. [17], Lakshmikantham et al. [19], Michalski [24], Miller and Ross [25],
Podlubny [29] and Tarasov [30]. In the last years, the theory of fractional differential
equations attracted the attention of many authors (see for instance [1–7,10,13,15,16,
21, 26, 27, 32, 34, 35] and references therein).

However, to our knowledge, nonlocal Cauchy problems for fractional evolution
equations involving Volterra-Fredholm type integral operators has not been discussed
extensively. Motivated by the above mentioned works (including our papers [6,
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20, 21, 26, 31–33, 35]), the main purpose of this paper is to consider the follow-
ing nonlocal Cauchy problems for fractional evolution equations involving Volterra–
Fredholm type integral operators such as8<:

cD
q
t x.t/D�Ax.t/C t

nf .t;x.t/; .Kx/.t/; .Hx/.t// ;

t 2 J D Œ0;T �; n 2ZC; q 2 .0;1/;

x.0/D g.x/Cx0;

(1.1)

where the fractional derivative cD
q
t is understood here in the Caputo sense, �A W

D.A/! X is the infinitesimal generator of a compact analytic semigroup of uni-
formly bounded linear operators fS .t/ ; t � 0g, the Volterra type integral operator K
and Fredholm type integral operator H are defined by

.Kx/.t/D

Z t

0

k.t; s;x.s//ds; .Hx/.t/D

Z T

0

h.t; s;x.s//ds:

The function f W J �X˛�X˛�X˛!X. or X˛; or X�/ is continuous where X˛ D
D.A˛/, 0� �� ˛ � 1, is a Banach space with the norm kxk˛ D kA˛xk for x 2X˛.
f , k, h and g are specified latter. It is easy to see that term tn appears before the
nonlinear term f . We remark that this term tn will help us to overcome the essential
difficult caused by the singular term .t � s/q�1 in the formula of the solutions due to
the well known Beta function.

In the present paper, we discuss the existence and uniqueness of mild solutions
for system (1.1). Our results cover the cases for the nonlinear term f taking values
in the spaces such as X , X˛, X�, where 0 � � � ˛ � 1, the nonlocal term g is lin-
ear completely continuous or satisfies the Lipschitz continuous condition. The main
techniques used here are Hölder’s inequality, Beta function via Banach contraction
principle, Schauder’s fixed point theorem for compact maps and Sadovskii’s fixed
point theorem for condensing maps.

The rest of this paper is organized as follows. In Section 2, we give some known
preliminary results on the fraction powers of the generator of an analytic compact
semigroup and introduce the mild solution of system (1.1). In Section 3, we study
the existence of mild solutions for system (1.1) by using fractional calculus, Hölder
inequality via Banach contraction principle, Schauder’s fixed point theorem and Sad-
ovskii’s fixed point theorem. At last, an example is given to demonstrate the applic-
ability of our result.

2. PRELIMINARIES

In this section, we introduce some facts about the fractional powers of the gen-
erator of a compact analytic semigroup, the Riemann-Liouville fractional integral
operator that are used throughout this paper.

We denote by X a Banach space with norm k � k and �A W D.A/! X is the
infinitesimal generator of a compact analytic semigroup of uniformly bounded linear
operators fS .t/ ; t � 0g. This means that there exists M > 1 such that kS.t/k �M .
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We assume without loss of generality that 0 2 �.A/. This allows us to define the
fractional power A˛ for 0 � ˛ � 1, as a closed linear operator on its domain D.A˛/
with inverse A�˛ (see [28]).

In the sequel, we will also use klkLp.J;RC/ to denote the Lp.J;RC/ norm of l
whenever l 2 Lp.J;RC/ for some p with 1 � p <1. We will set ˛ 2 Œ0;1� and
denote by C˛, the Banach space C.J;X˛/ endowed with supnorm given by kxk1 D
supt2J kxk˛, for x 2 C˛.

Let us recall the following known definitions. For more details, see [17].

Definition 1. The fractional integral of order 
 with lower limit zero for a function
l is defined as

I 
 l.t/D
1

� .
/

Z t

0

l.s/

.t � s/1�

ds; t > 0; 
 > 0;

provided the right side is point-wise defined on Œ0;1/, where � .�/ is the gamma
function.

Definition 2. The Riemann-Liouville derivative of order 
 with lower limit zero
for a function l W Œ0;1/!R can be written as

LD


t l.t/D

1

� .n�
/

dn

dtn

Z t

0

l.s/

.t � s/
C1�n
ds; t > 0; n�1 < 
 < n:

Definition 3. The Caputo derivative of order 
 for a function l W Œ0;1/! R can
be written as

cD


t l.t/D

LD

�
l.t/�

n�1X
kD0

tk

kŠ
l.k/.0/

�
; t > 0; n�1 < 
 < n:

Remark 1. (i) If l 2 C 1Œ0;1/, then

cD


t l.t/D

1

� .1�
/

Z t

0

l 0.s/

.t � s/

ds D I 1�
 l 0.t/; t > 0; 0 < 
 < 1:

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If l is an abstract function with values in X , then integrals which appear in

Definitions 1 and 2 are taken in Bochner’s sense.

Motivated by Definition 3.1 of [35], we adopt the following concept of mild solu-
tion for our problem.

Definition 4. By the mild solution of system (1.1), we mean that the function
x W J !X˛ which satisfies

x.t/DT .t/Œx0Cg.x/�C

Z t

0

.t�s/q�1snS .t�s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds
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for any t 2 J , where

T .t/D

Z 1
0

�q.�/S.t
q�/d�; S .t/D q

Z 1
0

��q.�/S.t
q�/d�;

and

�q.�/D
1

q
��1�

1
q$q.�

� 1
q /� 0;

where

$q.�/D
1

�

1X
nD1

.�1/n�1��qn�1
� .nqC1/

nŠ
sin.n�q/; � 2 .0;1/:

�q is a probability density function defined on .0;1/, that is

�q.�/� 0; � 2 .0;1/ and

Z 1
0

�q.�/d� D 1:

Remark 2. It is not difficult to verify that for v 2 Œ0;1�,Z 1
0

�v�q.�/d� D

Z 1
0

��qv$q.�/d� D
� .1Cv/

� .1Cqv/
:

The following results are very useful and will be used throughout this paper.

Lemma 1 (Lemma 2.9, [32]). The operators T and S have the following prop-
erties:

(1) For fixed t � 0, T .t/ and S .t/ are linear and bounded operators, that is,
for any x 2X ,

kT .t/xk �Mkxk; kS .t/xk �
M

� .q/
kxk:

(2) fT .t/; t � 0g and fS .t/; t � 0g are strongly continuous.
(3) For every t > 0, T .t/ and S .t/ are also compact operators.
(4) For any x 2X , ˇ 2 Œ0;1� and ˛ 2 Œ0;1�, we have

AS .t/x D A1�ˇS .t/Aˇx; t 2 J;

kA˛S .t/k �
M˛q� .2�˛/

� .1Cq.1�˛//
t�˛q; 0 < t � T:

(5) For fixed t � 0 and any x 2X˛, we have

kT .t/xk˛ �Mkxk˛; kS .t/xk˛ �
M

� .q/
kxk˛:

(6) For a positive number � with 0��� ˛ � 1, fixed t � 0 and any x 2X�, we
have

kT .t/xk˛ � kA
˛��
kMkxk�; kS .t/xk˛ � kA

˛��
k
M

� .q/
kxk�:
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(7) T˛.t/ and S˛.t/, t > 0 is uniformly continuous, that is for each fixed t > 0,
and � > 0, there exists h > 0 such that

kT˛.tC �/�T˛.t/k˛ < "; for tC � � 0 and j�j< h;

kS˛.tC �/�S˛.t/k˛ < "; for tC � � 0 and j�j< h:

where

T˛.t/D

Z 1
0

�q.�/S˛.t
q�/d�; S˛.t/D q

Z 1
0

��q.�/S˛.t
q�/d�:

3. EXISTENCE OF MILD SOLUTIONS

In this section, we give theorems for the existence and uniqueness of the mild
solutions of system (1.1).

We first make the following assumptions.
[Hf1]: f W J �X˛ �X˛ �X˛! X is continuous and there exist m1;m2;m3 > 0

such that

kf .t;x1;x2;x3/�f .t;y1;y2;y3/k�m1kx1�y1k˛Cm2kx2�y2k˛Cm3kx3�y3k˛

for all xi ;yi 2X˛, i D 1;2;3 and t 2 J .
[Hk1]: LetDk D f.t; s/ 2R2I0� s � t � T g. The function k WDk �X˛!X˛ is

continuous and there exists a mk.t; s/ 2 C.Dk;RC/ such that

kk.t; s;x/�k.t; s;y/k˛ �mk.t; s/kx�yk˛

for each .t; s/ 2Dk and x;y 2X˛. We set

K� Dmax
t2J

Z t

0

mk.t; s/ds:

[Hh1]: Let Dh D f.t; s/ 2 R2I0 � s; t � T g. The function h WDh�X˛ ! X˛ is
continuous and there exists a mh.t; s/ 2 C.Dh;RC/ such that

kh.t; s;x/�h.t; s;y/k˛ �mh.t; s/kx�yk˛

for each .t; s/ 2Dh and x;y 2X˛. We set

H� Dmax
t2J

Z T

0

mh.t; s/ds:

[Hg1]: g W C˛!X˛ and there exists a constant lg > 0 such that

kg.x/�g.y/k˛ � lgkx�yk1; for arbitrary x;y 2 C˛:

[H˝]: A constant ˝n;˛;q;T defined by

˝n;˛;q;T DMlgC
M˛q� .2�˛/B.q;nC1/

� .1Cq.1�˛//
T nC.1�˛/q.m1CK

�m2CH
�m3/

satisfies ˝n;˛;q;T < 1, where B.�; �/ denotes Beta function.
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Now we are ready to give our first result which is based on the Banach contraction
mapping principle.

Theorem 1. Assume that [Hf1], [Hk1], [Hh1], [Hg1] and [H˝] are satisfied. If
x0 2X˛ then system (1.1) has a unique mild solution x 2 C˛.

Proof. Define the function � W C˛! C˛ by

.� x/.t/DT .t/Œx0Cg.x/� (3.1)

C

Z t

0

.t � s/q�1snS .t � s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds; t 2 J:

Note that � is well defined on C˛. Now, take t 2 J and x;y 2 C˛. Then we have

k.� x/.t/� .�y/.t/k˛ � kT .t/.g.x/�g.y//k˛

C

Z t

0

.t � s/q�1sn


S .t � s/Œf .s;x.s/; .Kx/.t/; .Hx/.t//

�f .s;y.s/; .Ky/.s/; .Hy/.s//�



˛
ds

�Mkg.x/�g.y/k˛

C

Z t

0

.t � s/q�1snkA˛S .t � s/kkf .s;x.s/; .Kx/.s/; .Hx/.s//

�f .s;y.s/; .Ky/.s/; .Hy/.s//kds;

which according to [Hf1], [Hk1], [Hh1], [Hg1], (4)-(5) of Lemma 1 and Hölder
inequality,gives

k.� x/.t/� .�y/.t/k˛ �Mlgkx�yk1

CM˛qt
�˛q � .2�˛/

� .1Cq.1�˛//
m1

Z t

0

.t � s/q�1snkx.s/�y.s/k˛ds

CM˛qt
�˛q � .2�˛/

� .1Cq.1�˛//
m2

Z t

0

.t � s/q�1snk.Kx/.s/� .Ky/.s/k˛ds

CM˛qt
�˛q � .2�˛/

� .1Cq.1�˛//
m3

Z t

0

.t � s/q�1snk.Hx/.s/� .Hy/.s/k˛ds

�Mlgkx�yk1CM˛qt
�˛q � .2�˛/

� .1Cq.1�˛//
.m1CK

�m2CH
�m3/

�kx�yk1

Z t

0

.t � s/q�1snds

�

�
MlgC

M˛q� .2�˛/B.q;nC1/

� .1Cq.1�˛//
tnC.1�˛/q.m1CK

�m2CH
�m3/

�
�kx�yk1;
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due to Z t

0

.t � s/q�1snds D B.q;nC1/tnCq;

k.Kx/.s/�.Ky/.s/k˛ �K
�kx�yk1 and k.Hx/.s/�.Hy/.s/k˛ �H�kx�yk1.

Therefore, we can deduce that

k� x��yk1

�

�
MlgC

M˛q� .2�˛/B.q;nC1/

� .1Cq.1�˛//
tnC.1�˛/q.m1CK

�m2CH
�m3/

�
�kx�yk1 �˝n;˛;q;T kx�yk1:

Hence, [H˝] allows us to conclude in view of the contraction mapping principle, that
� has a unique fixed point x 2 C˛, and

x.t/DT .t/Œx0Cg.x/�C

Z t

0

.t�s/q�1snS .t�s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds

which is the unique mild solution of system (1.1). �

Our second result uses Schauder’s fixed point theorem.
We assume the following conditions.
[Hf2]: f W J �X˛ �X˛ �X˛ ! X˛ is continuous and there exists a positive

function � 2 Lp.J;RC/ for some p 2 .1
q
;1/ such that

kf .t;x;y;´/k˛ � �.t/

for all x;y;´ 2X˛ and t 2 J .
[Hk2]: The function k WDk�X˛!X˛ is continuous and there existsL1 >0 such

that
kk.t; s;x/�k.t; s;y/k˛ � L1kx�yk˛

for each .t; s/ 2Dk and x;y 2X˛.
[Hh2]: The function h WDh�X˛!X˛ is continuous and there existsL2 > 0 such

that
kh.t; s;x/�h.t; s;y/k˛ � L2kx�yk˛

for each .t; s/ 2Dh and x;y 2X˛.
[Hg2]: g W C˛ ! X˛ is compact continuous and there exist ˇ1 � 0, ˇ2 � 0 such

that
kg.x/k˛ � ˇ1kxk1Cˇ2:

Now we are ready to state and prove the following existence result.

Theorem 2. Assume that the conditions [Hf2], [Hk2], [Hh2], [Hg2] are satisfied.
If x0 2X˛ then system (1.1) has at least one mild solution on J provided that

Mˇ1 < 1:
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Proof. Define the function F W C˛! C˛ by

.F x/.t/DT .t/Œx0Cg.x/�

C

Z t

0

.t � s/q�1snS .t � s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds;

and for n 2ZC, we choose r such that

r �
1

1�Mˇ1

�
M.kx0k˛Cˇ2/

C
M

� .q/
B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

T
pqCnp�1

p k�kLp.J;RC/

�
:

Let Br D fx 2 C˛ j kxk1 � rg. Then we proceed in three steps.
Step 1. We show that FBr �Br . Let x 2Br . Then for t 2 J , using (5) of Lemma

1 and Hölder inequality, we have

k.F x/.t/k˛ � kT .t/.x0Cg.x//k˛

C

Z t

0

.t � s/q�1sn


S .t � s/f .s;x.s/; .Kx/.s/; .Hx/.s//




˛
ds

�M.kx0k˛Ckg.x/k˛/

C
M

� .q/

Z t

0

.t � s/q�1snkf .s;x.s/; .Kx/.s/; .Hx/.s//k˛ds;

which according to [Hf2], [Hg2] and pq > 1 ., .q�1/p
p�1

> �1/, gives

k.F x/.t/k˛

�M.kx0k˛Cˇ1kxk1Cˇ2/C
M

� .q/

�Z t

0

.t � s/q�1sn�.s/ds

�

�M.kx0k˛Cˇ1kxk1Cˇ2/C
M

� .q/

�Z t

0

.t � s/
.q�1/p
p�1 s

np
p�1ds

�p�1
p

�

�Z t

0

�.s/pds

� 1
p

�M.kx0k˛Cˇ1kxk1Cˇ2/C
M

� .q/
B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

� t
pqCnp�1

p k�kLp.J;RC/ � r; for t 2 J:

Hence, we deduce kFxk1 � r .
Step 2. We prove that F is continuous. Let fxmg be a sequence of Br such that

xm! x in Br . It comes from the continuity of k, h and assumptions [Hk2], [Hh2]
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that Z s

0

k.s;�;xm.�//d� !

Z s

0

k.s;�;x.�//d�;Z T

0

h.s;�;xm.�//d� !

Z T

0

h.s;�;x.�//d�

uniformly in s 2 J on C˛. Then,

f .s;xm.s/; .Kxm/.s/; .Hxm/.s//! f .s;x.s/; .Kx/.s/; .Hx/.s// (3.2)

as m!1, because the function f is continuous on J �X˛ �X˛.
Further, one has

g.xm/! g.x/ as m!1 (3.3)

because g is continuous on C˛.
Now for t 2 J , according to [Hf2], [Hg2], (5) of Lemma 1 and Hölder inequality,

we have

k.F xm/.t/� .F x/.t/k˛ � kT .t/.g.xm/�g.x//k˛

C

Z t

0

.t � s/q�1sn


S .t � s/Œf .s;xm.s/; .Kxm/.s/; .Hxm/.s//

�f .s;x.s/; .Kx/.s/; .Hx/.s//�



˛
ds

�Mkg.xm/�g.x/k˛

C
M

� .q/

Z t

0

.t � s/q�1snkf .s;xm.s/; .Kxm/.s/; .Hxm/.s//

�f .s;x.s/; .Kx/.s/; .Hx/.s//k˛ds

�Mkg.xm/�g.x/k˛C
M

� .q/

�Z t

0

.t � s/
.q�1/p
p�1 s

np
p�1ds

�p�1
p

�

 Z t

0

kf .s;xm.s/; .Kxm/.s/; .Hxm/.s//

�f .s;x.s/; .Kx/.s/; .Hx/.s//kpds

! 1
p

�Mkg.xm/�g.x/k˛C
M

� .q/
B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

t
pqCnp�1

p

�

 Z t

0

kf .s;xm.s/; .Kxm/.s/; .Hxm/.s//
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�f .s;x.s/; .Kx/.s/; .Hx/.s//kpds

! 1
p

�Mkg.xm/�g.x/k˛C
M

� .q/
B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

T
pqCnp�1

p

�

 Z T

0

kf .s;xm.s/; .Kxm/.s/; .Hxm/.s//

�f .s;x.s/; .Kx/.s/; .Hx/.s//kpds

! 1
p

:

Therefore, using (3.2), (3.3), [Hf2] and the Lebesgue Dominated Convergence The-
orem, it can easily been shown that

lim
m!1

kFxm�Fxk1 D 0; as m!1:

That is, F is continuous.
Step 3. We show that F is compact. To this end, we use the famous Ascoli-

Arzela’s theorem. We first prove that f.F x/.t/ j x 2Brg is relatively compact in X˛,
for all t 2 J . Obviously, f.F x/.0/ j x 2 Brg is compact. Let t 2 .0;T �. For each
h 2 .0; t/, arbitrary ı > 0 and x 2 Br , we defined the operator Fh by

.Fh;ıx/.t/DT .t/Œx0Cg.x/�CS.h
qı/

Z t�h

0

.t � s/q�1sn

�

�
q

Z 1
ı

��q.�/S..t � s/
q� �hqı/d�

�
f .s;x.s/; .Kx/.s/; .Hx/.s//ds

DT .t/Œx0Cg.x/�

Cq

Z t�h

0

Z 1
ı

�.t � s/q�1sn�q.�/S..t � s/
q�/

�f .s;x.s/; .Kx/.s/; .Hx/.s//d�ds:

From above expression, we can see that the sets f.Fh;ıx/.t/ j x 2 Brg are also re-
latively compact in X˛ since the operator S˛.hqı/, hqı > 0 are compact in X˛.
Moreover, using [Hf2] and Hölder inequality, we have

k.F x/.t/� .Fh;ıx/.t/k˛

� q





Z t

0

Z ı

0

�.t � s/q�1sn�q.�/S..t � s/
q�/

�f .s;x.s/; .Kx/.s/; .Hx/.s//d�ds






˛
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Cq





Z t

0

Z 1
ı

�.t � s/q�1sn�q.�/S..t � s/
q�/

�f .s;x.s/; .Kx/.s/; .Hx/.s//d�ds

�

Z t�h

0

Z 1
ı

�.t � s/q�1sn�q.�/S..t � s/
q�/

�f .s;x.s/; .Kx/.s/; .Hx/.s//d�ds






˛

� q

Z t

0

Z ı

0

�.t � s/q�1sn�q.�/


S..t � s/q�/
�f .s;x.s/; .Kx/.s/; .Hx/.s//




˛
d�ds

Cq

Z t

t�h

Z 1
ı

�.t � s/q�1sn�q.�/


S..t � s/q�/

�f .s;x.s/; .Kx/.s/; .Hx/.s//



˛
d�ds

� qM

Z t

0

Z ı

0

�.t � s/q�1sn�q.�/�.s/d�ds

CqM

Z t

t�h

Z 1
ı

�.t � s/q�1sn�q.�/�.s/d�ds

� qM

�Z t

0

.t � s/q�1sn�.s/ds

�Z ı

0

��q.�/d�

CqM

�Z t

t�h

.t � s/q�1sn�.s/ds

�Z 1
0

��q.�/d�:

It comes from

Z 1
0

��q.�/d� D
1

� .1Cq/
;

and

Z t

0

.t � s/q�1sn�.s/ds �

�Z t

0

.t � s/
.q�1/p
p�1 s

np
p�1ds

�p�1
p
�Z t

0

�.s/pds

� 1
p

� B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

t
pqCnp�1

p k�kLp.J;RC/;
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and for a fixed � 2
�
1; p�1
.1�q/p

�
,

Z t

t�h

.t � s/q�1sn�.s/ds �

�Z t

t�h

.t � s/
.q�1/p
p�1 s

np
p�1ds

�p�1
p
�Z t

t�h

�.s/pds

� 1
p

�

�Z t

t�h

ds

��.p�1/
.��1/p

�Z t

t�h

.t � s/
�.q�1/p
p�1 s

�np
p�1ds

�p�1
�p

k�kLp.J;RC/

� h
�.p�1/
.��1/pB

�
�.q�1/p

p�1
C1;

�np

p�1
C1

�p�1
�p

t
�p..q�1/pCn/

p�1
C1
k�kLp.J;RC/;

that

k.F x/.t/� .Fh;ıx/.t/k˛

� qMB

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

t
pqCnp�1

p k�kLp.J;RC/

Z ı

0

��q.�/d�

C
M

� .q/
B

�
�.q�1/p

p�1
C1;

�np

p�1
C1

�p�1
�p

t
�p..q�1/pCn/

p�1
C1

�k�kLp.J;RC/h
�.p�1/
.��1/p ! 0

as ı! 0C and h! 0C. Therefore, f.F x/.t/ j x 2 Brg is relatively compact in X˛
for all t 2 .0;T � and since it is compact at t D 0 we have the relatively compactness
in X˛ for all t 2 J .

Next, let us prove that F.Br/ is equicontinuous. For 0� t2 < t1 � T , we have

k.F x/.t1/� .F x/.t2/k˛ � k.T .t1/�T .t2//Œx0�g.x/�k˛

C





Z t2

0

.t1� s/
q�1snŒS .t1� s/�S .t2� s/�

�f .s;x.s/; .Kx/.s/; .Hx/.s//ds






˛

C





Z t2

0

Œ.t1� s/
q�1
� t2� s/

q�1�snS .t2� s/

�f .s;x.s/; .Kx/.s/; .Hx/.s//ds






˛

C





Z t1

t2

.t1� s/
q�1snS .t1� s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds






˛

:
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Denote

I1 D k.T .t1/�T .t2//Œx0�g.x/�k˛;

I2 D





Z t2

0

.t1� s/
q�1snŒS .t1� s/�S .t2� s/�

�f .s;x.s/; .Kx/.s/; .Hx/.s//ds






˛

;

I3 D





Z t2

0

Œ.t1� s/
q�1
� .t2� s/

q�1�snS .t2� s/

�f .s;x.s/; .Kx/.s/; .Hx/.s//ds






˛

;

I4 D





Z t1

t2

.t1� s/
q�1snS .t1� s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds






˛

:

Now, we need to check that I1;I2;I3;I4 tend to 0 independently of x 2 Br when
t1! t2.

In fact, by the compactness of the set g.Br/ in view of (2) of Lemma 1, one can
deduce that limt1!t2 I1 D 0 uniformly.

Next for 0 < h < t2, when t2 > 0, we similarly derive

I2 �

Z t2

0

.t1� s/
q�1snkS˛.t1� s/�S˛.t2� s/k˛

�kf .s;x.s/; .Kx/.s/; .Hx/.s//k˛ds

�

Z t2�h

0

.t2� s/
q�1sn�.s/kS˛.t1� s/�S˛.t2� s/k˛ds

C

Z t2

t2�h

.t2� s/
q�1sn�.s/kS˛.t1� s/�S˛.t2� s/k˛ds

� max
s2Œ0;t2�h�

kS˛.t1� s/�S˛.t2� s/k˛

Z t2�h

0

.t2� s/
q�1sn�.s/ds

C
2M

� .q/

Z t2

t2�h

.t2� s/
q�1sn�.s/ds

� max
s2Œ0;t2�h�

kS˛.t1� s/�S˛.t2� s/k˛B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

�t
pqCnp�1

p

2 k�kLp.J;RC/

C
2M

� .q/
h
�.p�1/
.��1/pB

�
�.q�1/p

p�1
C1;

�np

p�1
C1

�p�1
�p

t
�p..q�1/pCn/

p�1
C1

2 k�kLp.J;RC/
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from which we deduce that lim.h;t2/!.0;t1/ I2 D 0 uniformly, since by (7) of Lemma
1.

Using the inequality .x�y/a � xa�ya for any x;y � 0 and a > 1, analogically
we derive

I3 �
M

� .q/

Z t2

0

j.t1� s/
q�1
� .t2� s/

q�1
jsn

�kf .s;x.s/; .Kx/.s/; .Hx/.s//k˛ds

�
M

� .q/

Z t2

0

j.t1� s/
q�1
� .t2� s/

q�1
jsn�.s/ds

�
M

� .q/

�Z t2

0

�.s/pds

� 1
p
�Z t2

0

s
np
p�1 j.t1� s/

q�1
� .t2� s/

q�1
j
p
p�1ds

�p�1
p

�
M

� .q/

�Z t2

0

s
np
p�1

�
.t2� s/

.q�1/p
p�1 � .t1� s/

.q�1/p
p�1

�
ds

�p�1
p

k�kLp.J;RC/

�
M

� .q/

"
B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p
�
t
pqCnp�1

p

2 � t
pqCnp�1

p

1

�p�1
p

C

�Z t1

t2

s
np
p�1 .t1� s/

.q�1/p
p�1 ds

�p�1
p

#
k�kLp.J;RC/

�
M

� .q/
k�kLp.J;RC/

"
B

�
pq�1

p�1
;
.nC1/p�1

p�1

�p�1
p

�

�
t
pqCnp�1

p

2 � t
pqCnp�1

p

1

�p�1
p

C .t1� t2/
�.p�1/
.��1/pB

�
�.q�1/p

p�1
C1;

�np

p�1
C1

�p�1
�p

t
�p..q�1/pCn/

p�1
C1

1

#
:

Thus, limt1!t2 I3 D 0 uniformly.
Finally,

I4 �

Z t1

t2

.t1� s/
q�1snkS .t1� s/f .s;x.s/; .Kx/.s/; .Hx/.s//k˛ds

�
M

� .q/

Z t1

t2

.t1� s/
q�1sn�.s/ds

�
M

� .q/

�Z t1

t2

s
np
p�1 .t1� s/

.q�1/p
p�1 ds

�p�1
p

k�kLp.J;RC/
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�
M

� .q/
.t1� t2/

�.p�1/
.��1/pB

�
�.q�1/p

p�1
C1;

�np

p�1
C1

�p�1
�p

� t
�p..q�1/pCn/

p�1
C1

1 k�kLp.J;RC/;

from which we deduce that limt1!t2 I4 D 0 uniformly.
In summary, we have proven that F.Br/ is relatively compact, for t 2 J , fFx j

x 2 Brg is a family of equicontinuous functions. Hence by the Arzela-Aascoli The-
orem, F is compact. By Schauder fixed point theorem F has a fixed point x 2 Br .
Consequently, system (1.1) has at least one mild solution on J . �

Our next result is based on the following well-known fixed point theorem.

Lemma 2 ([18]). Let � be a condensing operator on a Banach space X . If
� .B/�B for a convex, closed and bounded set B of X , then � has a fixed point in
B.

Now, we assume the following conditions and apply the above fixed point theorem.
[Hf3]: (1) There exists � with 0 � � � ˛ � 1 such that f W J �X˛ �X˛ �X˛!

X� is continuous and there exist L.1/
f
;L
.2/

f
;L
.3/

f
> 0 such that

kf .t;x1;x2;x3/�f .t;y1;y2;y3/k� � L
.1/

f
kx1�y1k˛CL

.2/

f
kx2�y2k˛

CL
.3/

f
kx3�y3k˛

for all xi ;yi 2X˛, i D 1;2;3 and t 2 J .
(2) There exist two positive constants c.1/, d .1/ such that for each .t;x;y;´/ 2

J �X˛ �X˛ �X˛

kf .t;x;y;´/k� � c
.1/.kxk˛Ckyk˛Ck´k˛/Cd

.1/:

[Hk3]: (1) The function k WDk�X˛!X˛ is continuous and there exists a L.1/
k
>

0 such that for .t; s/ 2Dk and x;y 2X˛,



Z t

0

Œk.t; s;x/�k.t; s;y/�ds






˛

� L
.1/

k
kx�yk˛:

(2) There exists a constant L.2/
k
> 0 such that for .t; s/ 2Dk and x;y 2X˛,



Z t

0

k.t; s;x/ds






˛

� L
.2/

k
.1Ckxk˛/:

[Hh3]: (1) The function h WDh�X˛!X˛ is continuous and there exists a L.1/
h
>

0 such that for .t; s/ 2Dh and x;y 2X˛,





Z T

0

Œh.t; s;x/�h.t; s;y/�ds







˛

� L
.1/

h
kx�yk˛:
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(2) There exists a constant L.2/
h
> 0 such that for .t; s/ 2Dh and x;y 2X˛,






Z T

0

h.t; s;x/ds







˛

� L
.2/

h
.1Ckxk˛/:

[Hg3]: g WC˛!X˛ is compact continuous and there exists a nondecreasing func-
tion � WRC!RC such that for all x 2 C˛,

kg.x/k˛ � �.kxk1/; and lim
l!C1

inf
�.l/

l
D ı <1:

Now we are ready to state and prove the following existence result.

Theorem 3. Assume that the conditions [Hf3], [Hk3], [Hh3], [Hg3] are satisfied.
If x0 2X˛ then system (1.1) admits at least one mild solution on J provided that

M

�
ıC
kA˛��k� .n/

� .nCqC1/

�
c.1/.1CL

.2/

k
CL

.2/

h
/
�
T nCq

�
< 1 (3.4)

and
MkA˛��k� .n/

� .nCqC1/
T nCq.L

.1/

f
CL

.2/

f
L
.1/

k
CL

.3/

f
L
.1/

h
/ < 1: (3.5)

Proof. Define the operator � W C˛! C˛ given by (3.1). For each positive number
l , let Bl D fx 2 C˛ j kxk1 � lg then, for each l , Bl is obviously a bounded closed
convex set in C˛.

First, we claim that � .Bl/ � Bl for some l > 0. If it is not true, then for each
l > 0, there would exist xl 2Bl and tl 2 J such that k.� xl/.tl/k˛ > l . However, on
the other hand, by [Hf3], [Hk3] and [Hh3]

l � k.� xl/.tl/k˛ � kT .t/.x0Cg.xl//k˛

C

Z tl

0

.tl � s/
q�1sn



S .tl � s/f .s;xl.s/; .Kxl/.t/; .Hxl/.t//



˛
ds

�M.kx0k˛Ckg.xl/k˛/

C
MkA˛��k

� .q/

�
c.1/.lCL

.2/

k
.1C l/CL

.2/

h
.1C l/Cd .1/

�Z tl

0

.tl � s/
q�1snds

�M.kx0k˛C�.l//

C
kA˛��kM

� .q/

�
c.1/.lCL

.2/

k
.1C l/CL

.2/

h
.1C l/Cd .1/

�
B.q;nC1/t

nCq

l

�M.kx0k˛C�.l//

C
MkA˛��k� .n/

� .nCqC1/

�
c.1/.lCL

.2/

k
.1C l/CL

.2/

h
.1C l/Cd .1/

�
T nCq:
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Dividing both sides by l and taking the lower limit as l!C1, we obtain

1�M

�
ıC
kA˛��k� .n/

� .nCqC1/

�
c.1/.1CL

.2/

k
CL

.2/

h
/
�
T nCq

�
;

which contradicts the expression (3.4). Thus, for some positive number l , � .Bl/ �
Bl .

We decompose � D �1C�2 as

.�1x/.t/DT .t/Œx0Cg.x/�;

.�2x/.t/D

Z t

0

.t � s/q�1snS .t � s/f .s;x.s/; .Kx/.s/; .Hx/.s//ds:

Second, we show that �1 is compact continuous and �2 is a contraction. By [Hg3],
we can infer that �1 is compact continuous on X˛. Next, we prove that �2 is a
contraction on Bl . In fact, for each t 2 J , x;y 2 Bl , by [Hg3] we have

k.�2x/.t/� .�2y/.t/k˛

� kA˛��k
M

� .q/

Z t

0

.t � s/q�1sn


f .s;x.s/; .Kx/.s/; .Hx/.s//
�f .s;y.s/; .Ky/.s/; .Hy/.s//




�
ds

� kA˛��k
M

� .q/

Z t

0

.t � s/q�1sn
�
L
.1/

f
kx.s/�y.s/k˛

CL
.2/

f
k.Kx/.s/� .Ky/.s/k˛CL

.3/

f
k.Hx/.s/� .Hy/.s/k˛

�
ds

� kA˛��k
M

� .q/
.L
.1/

f
CL

.2/

f
L
.1/

k
CL

.3/

f
L
.1/

h
/

Z t

0

.t � s/q�1sndskx�yk1

� kA˛��k
M� .n/

� .nCqC1/
T nCq.L

.1/

f
CL

.2/

f
L
.1/

k
CL

.3/

f
L
.1/

h
/kx�yk1:

Thus,

k�2x��2yk1 �
MkA˛��k� .n/

� .nCqC1/
T nCq.L

.1/

f
CL

.2/

f
L
.1/

k
CL

.3/

f
L
.1/

h
/

�kx�yk1;

which implies that �2 is a contraction by (3.5).
At last, we can conclude that � D �1C�2 is a condensing map on Bl . By Lemma

2, system (1.1) admits at least one mild solution on J . �

4. AN EXAMPLE

In this section, we present an example, which indicate how our theorems can be
applied to concrete problems.
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Consider the following problem:8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

cD
q
t x.t;y/��x.t;y/

D . e�t

etCe�t
C e�t /cos

�
x.t;y/C

R t
0 sin.tC s/x.s;y/ds

C
R T
0 cos.ts/x.s;y/ds

�
;

y 2˝; t;s 2 .0;T �; q D 19
20
;

x.t;y/ jy2@˝D 0; t > 0;

x.0;y/D
R
˝

R T
0 h.t;y/ log.1Cjx.t;�/j

1
2 /dtd�;

(4.1)
where � is the Laplace operator in R3, ˝ � R3 is a bounded domain, @˝ 2 C 3, and
h.t;y/ 2 C.J � N̋ /.

We apply Theorem 2 by taking X D L2.˝/, D.A/ D H 2.˝/
T
H 1
0 .˝/, and

Ax D��x for x 2D.A/ and set ˛ D 0.
Define x.t/.y/ D x.t;y/, .Kx/.t/.y/ D

R t
0 sin.t C s/x.s;y/ds, .Hx/.t/.y/ DR T

0 cos.ts/x.s;y/ds, and

f .t;x.t/; .Kx/.t/; .Hx/.t//.y/

D

�
e�t

et C e�t
C e�t

�
cos

�
x.t/C

Z t

0

sin.tC s/x.s/dsC
Z T

0

cos.ts/x.s/ds
�
.y/;

g.x/.y/D

Z
˝

Z T

0

h.t;y/ log.1Cjx.t;�/j
1
2 /dtd�; y 2˝; x 2 C.J;X/:

Then, A generates a compact analytic semigroup in X with M D 1, and

kf .t;x.t/; .Kx/.t/; .Hx/.t//k � �.t/D

�
e�t

et C e�t
C e�t

�
.mes.˝//

1
2

with � 2Lp.J;RC/, pD 10. Moreover, g is compact (see [20]). Next, using log.1C
a/� a for any a � 0, we deriveZ
˝

log.1Cjx.�/j
1
2 /d� �

Z
˝

jx.�/j
1
2d� � .mes.˝//

3
4 kxk

1
2 �

.mes.˝//
3
4

2
.1Ckxk/

for any x 2X . Hence using kx.t; �/k � kxk1 for any x 2 C.J;X/, we obtain

kg.x/k �
T

2
.mes.˝//

7
4 max
t2J;y2 N̋

jh.t;y/j.1Ckxk1/ ; x 2 C.J;X/:

Thus problem (4.1) can be rewritten as8<:
cD

q
t x.t/D�Ax.t/C t

nf .t;x.t/; .Kx/.t/; .Hx/.t// ;

t 2 J; n 2ZC; q 2 .0;1/;

x.0/D g.x/Cx0:
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Obviously, q D 19
20
> 1
10
D

1
p

. Furthermore, if T and h.t;y/ satisfy

T .mes.˝//
7
4 max
t2J;y2 N̋

jh.t;y/j< 2

then all the assumptions given in Theorem 2 are verified. Therefore, the problem
(4.1) has at least one mild solution.
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