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Abstract. Radical classes of rings are studied which, while not hereditary, are closed with respect
to ideals of some kind: maximal, prime and finite index ideals among others. In some, but not all
cases, the ideal property is characterized by the corresponding class of factor rings; for instance
maximal ideals are characterized by the simple rings. Such characterizations sometimes make
it possible to prove results for several types of ideal simultaneously. Several results concerning
hereditary radicals are generalized to various types of relatively hereditary ones, e.g. if R is
hereditary then for I ◁A we have R (I) = I∩R (A) and hereditary classes define hereditary lower
radical classes. In the construction of some examples, use is made of A-radical classes and this
leads to some consideration of radical classes of abelian groups.
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1. INTRODUCTION

Although stronger versions of the hereditary property for radical (and other) class-
es of rings, e.g. left hereditary (hereditary for left ideals) and strongly hereditary
(hereditary for subrings) have been extensively studied, almost no attention has been
given to weak versions of hereditariness for rings or other structures. Thus nothing
seems to be known about radical classes which are hereditary for maximal ideals, or
for prime ideals for example.

In fact to our knowledge the only weak hereditary property for radical classes of
rings that has been studied previously is that considered by Sands [13]: he defined a
radical class R to be radically hereditary if for every A ∈ R we have U(A) ∈ R for
every radical class U.

For other structures the story is similar. In a paper by the second author written
over half a century ago [4] the radical classes of abelian groups which are hereditary
© 2025 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
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http://dx.doi.org/10.18514/MMN.2025.4569
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


164 E. COJUHARI AND B. GARDNER

for pure subgroups were described and there were some results for other types of sub-
groups (generalized purity) in [6]. A different characterization of the pure-hereditary
radical classes – as kernels of tensor product functors – was later given in [15]. On
the other hand, nothing seems to be known in the case of groups. Radical classes of
groups which are hereditary for characteristic or fully invariant subgroups might be
worth looking at.

For a radical class R with semi-simple class S , the hereditariness of R is equival-
ent to each of the following.

(1) R (I) = I∩R (A) for every ideal I of every ring A.
(2) S is closed under essential extensions.
(3) R is hereditary for essential ideals.

Also the hereditary property is preserved under the lower radical construction in
the sense that if M is a hereditary class, then its lower radical class L(M ) is also
hereditary.

Among other things we shall seek generalizations of (1)-(3) and the lower radical
result to classes with weaker properties. For example the analogue of (1) holds for
radical classes which are hereditary for maximal, prime or finite index ideals, while
that of (3) holds in the maximal and finite index cases but the prime case remain
open. If a class is hereditary for maximal or finite index ideals then its lower radical
class has the same property and again the prime case is open. On the other hand,
if a class is hereditary for persistent ideals or radically hereditary, its lower radical
class need not enjoy the same property. Some of our examples of relatively hereditary
radical classes are obtained as intersections of A-radical classes and hereditary radical
classes. Using some results from the literature and such examples we are then able
to deduce a couple of “sporadic” results: normal radical classes and lower radical
classes defined by zerorings are hereditary for ideals of finite index.

Some types of relative hereditariness can be treated simultaneously by means of
the following concept.

For a non-empty class C of non-zero rings which is hereditary for non-zero ideals
an ideal I of a ring A is called a C← ideal if A/I ∈ C .

When C is the class of simple (respectively prime, respectively non-zero finite)
rings, the C← ideals the maximal(respectively prime, respectively finite index) ideals
(with the last not including the whole ring).

We prefer not to use the term C ideal (by analogy with prime ideals and prime
rings) because of conflict with the usage “R -ideal” meaning an ideal in a radical class
R , and to some extent with similar terminology elsewhere. On occasion we impose
an extra condition on the class C – that it be closed under non-zero homomorphic
images – in order to prove something, but it remains unknown whether this extra
condition is necessary or not.

Recall that an ideal I of a ring A is essential if I∩ J ̸= 0 for every non-zero ideal J
of A.
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We call an ideal I of a ring A persistent if it satisfies the condition

A◁B⇒ I ◁B.

Since we shall only consider associative rings, persistent ideals include radicals of
rings (by (ADS)), idempotent ideals and semiprime ideals (by the Andrunakievich
Lemma). Every ideal of a ring with identity is persistent as a consequence of a ring
with identity being a direct summand whenever it’s an ideal.

We shall use the following notation:
• I ◁A: I is an ideal of A;
• I ◁′ A: I is a prime ideal of A;
• I ◁m A: I is a maximal ideal of A;
• I ◁ f i A: I is an ideal of A with finite index;
• I ◁• A: I is an essential ideal of A;
• I ◁p A: I is a persistent ideal of A.

Expressions such as “R is hereditary for maximal ideals” mean, of course, that if A
is in R then so is any maximal ideal of A etc.

A radical class R is said to be radically hereditary (Sands [13]) if for every A ∈R
we have U(A) ∈ R for every radical class U.

The term ”radical class” is always used in the Kurosh-Amitsur sense of a ho-
momorphically closed class R of rings such that each ring A has a largest ideal
R (A) ∈ R and R (A/R (A)) = 0 for each A. Equivalently, a radical class is a non-
empty class which is homomorphically closed, closed under extensions and closed
under unions of ascending chains of ideals,

We also deal with radical classes of abelian groups, which can be defined the same
way mutatis mutandis, but more conveniently as non-empty classes closed under ho-
momorphic images, extensions and direct sums. For unexplained terms and results
pertaining to radical classes of rings, see [9], for abelian groups see [3] and radical
classes of abelian groups are discussed in [8].

The following notation will be used at several places in the paper. The (radical)
class of torsion abelian groups will be called T and that of abelian p-groups (p prime)
Tp. If a ring A is an algebra over a commutative ring K with identity, A∗K will denote
the unital extension of A given by the adjunction of the identity of K, i.e. the ring on
A×K with componentwise addition and multiplication given by

(a,k)(b, ℓ) = (ab+ kb+ ℓa,kℓ).

In several places we need to consider additive groups of rings and ring structures on
abelian groups. There we shall use the following notation.

• (·)+: additive group of a ring;
• (·)0: zeroring (all products zero) on the additive group of a ring and more

generally, on an abelian group.
All rings are associative and “ring” does not mean “ring with identity”.
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2. RESULTS AND EXAMPLES

Proposition 1. A radical class of rings is hereditary for principal ideals if and
only if it is hereditary.

Proof. If R is hereditary for principal ideals then for I ◁A ∈ R , [i] (= principal
ideal of A generated by i) is in R for every i ∈ i and then I = ∑i∈I[i] ∈ R . □

The only other case we are aware of where some sort of relative hereditariness
implies hereditariness is contained in the next result.

Theorem 1. The following conditions are equivalent for a radical class R of
rings.

(i) R is hereditary.
(ii) R is hereditary for essential ideals.

(iii) I ◁A⇒ R (I) = I∩R (A).
(iv) I ◁• A⇒ R (I) = I∩R (A).

Proof.
(i)⇒ (ii): Clearly.
(ii)⇒ (i): If R is hereditary for essential ideals and I◁A∈R , then as 0∩I = 0,

Zorn’s Lemma ensures that A has an ideal M which is maximal with respect
to having zero intersection with I. Then

I ∼= I/(I∩M)∼= (I +M)/M ◁• A/M ∈ R .

(i)⇔ (iii): See [9], p.46, Corollary 3.2.4.
(iii)⇒ (iv): This is clear.
(iv)⇒ (ii): If I ◁• A ∈ R , then R (I) = I∩R (A) = I∩A = I, i.e. I ∈ R .

□

If R is a radical class with semi-simple class S , then R is hereditary if and only
if S is closed under essential extensions. This result is due to Armendariz [1] and
Ryabukhin [12]; see also [9], p.47, Proposition 3.2.6. Hence we have

Corollary 1. For a radical class R with semi-simple class S , the following con-
ditions are equivalent.

(i) I ◁• A and A ∈ R ⇒ I ∈ R .
(ii) I ◁• A and I ∈ S ⇒ A ∈ S .

It would be interesting to know if there are any other kinds of ideal that satisfy the
analogous ”duality”. Of course the conditions of Corollary 1 are equivalent to those
of Theorem 1. Certainly arbitrary ideals don’t satisfy the duality condition. For if
R is a hereditary radical class which is neither {0} nor the class of all rings, S its
semi-simple class, let A,B be non-zero rings in R , S respectively. Then B ∈ S and
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B◁A⊕B but A⊕B /∈ S (though R is hereditary). In the same way, any type of ideal
which includes direct summands fails to satisfy the condition.

Before considering some examples, we introduce an idea which makes it possible
to treat several relatively hereditary properties simultaneously. For a non-empty class
C of non-zero rings which is hereditary for non-zero ideals, an ideal I of a ring A will
be called a C← ideal if A/I ∈ C .

For example, if C is the class of simple (respectively prime, respectively non-zero
finite) rings then the C← ideals are the maximal (respectively prime, respectively
finite index) ideals. We exclude the ring 0 from C so that the ring itself is not a C←
ideal, consistent with the standard usage for maximal and prime ideals.

We now obtain some generalizations of (1) of Section 1.

Theorem 2. Let C be a non-empty class of non-zero rings which is hereditary for
non-zero ideals. Then a radical class R is hereditary for C← ideals if and only if
R (I) = I∩R (A) for every C← ideal I of every ring A.

Proof. “If” is proved by the usual simple argument. If A ∈ R and I is a C← ideal
of A, then R (I) = I∩R (A) = I∩A = I.

“Only if”. Suppose now that R is hereditary for C← ideals. If I is a C← ideal of a
ring A, then

R (A)/(I∩R (A))∼= (R (A)+ I)/I ◁A/I ∈ C .

Hence R (A)/I ∩R (A) = 0 or R (A)/I ∩R (A) ∈ C . In the first case, R (A) = I ∩
R (A)◁ I so R (A)⊆ R (I) and hence

R (A) = R (I) = I∩R (I) = I∩R (A).

In the second case, I∩R (A) is a C← ideal of R (A) ∈ R , so by assumption, I∩R (A)
is in R . Also I∩R (A)◁ I so

I∩R (A)⊆ R (I)⊆ I∩R (A).

Hence R (I) = I∩R (A). □

From our theorem above we can now deduce

Corollary 2. If a radical class R is hereditary for maximal (respectively prime, re-
spectively finite index) ideals, then R (I) = I∩R (A) for every maximal (respectively
prime, respectively finite index) ideal I of every ring A.

We have a generalization of (2) of Section 1 using classes C , but we may need an
extra condition on C .

Theorem 3. If C is a class of non-zero rings which is hereditary for non-zero
ideals and closed under non-zero homomorphic images, then a radical class R is
hereditary for C← ideals if and only if it is hereditary for essential C← ideals.



168 E. COJUHARI AND B. GARDNER

Proof. If R is hereditary for essential C← ideals and I is a C← ideal of A ∈ R ,
then as 0∩ I = 0, Zorn’s Lemma ensures that A has an ideal M which is maximal
with respect to having zero intersection with I. Then

I ∼= I/(I∩M)∼= (I +M)/M ◁• A/M ∈ R . (∗)
and (A/M)/((I +M)/M ∈ C or A/M = (I +M)/M, and hence A = I +M = I⊕M.
In the former case I ∈ R by (∗) and in the latter, I as a direct summand of A, is again
in R . □

Problem 1. Do we need the extra condition in Theorem 3?

Note that special classes of prime rings satisfy the original conditions imposed on
C in Theorem 2 and non-empty classes of simple rings satisfy the conditions of C in
Theorem 3. On the other hand, the approach based on classes C has its limitations,
as some types of ideals can’t be defined in terms of classes of rings.

Proposition 2. There is no class C of rings defining either
(i) the essential ideals or

(ii) the persistent ideals
as the C← ideals.

Proof.
(i): Suppose the essential ideals are the C← ideals for some C . Then for any

prime p we have pZ ◁• Z so Zp = Z/pZ ∈ C . But for any ring R, we have
R⊕Zp/R∼= Zp, while R is a non-essential ideal.

(ii): Suppose there is a class C such the persistent ideals are the C← ideals.
Let A = Z⊕ (Q/Z)0. Then Z is an idempotent ideal of A and therefore a
persistent ideal, so (Q/Z)0 ∈ C .

Now in Q[X ] let

I = {a1X +a2X2 + . . . : a1 ∈ Z, a2, · · · ∈Q}.
Then I is an ideal of (X), the ideal of Q[X ] generated by X . Define

f : (X)→Q+/Z+; b1X +b2X2 + · · · 7→ b1 +Z.
This a surjective abelian group homomorphism with kernel I. If

γ = c1X + c2X2 + . . . , δ = d1X +d2X2 + · · · ∈ (X),

then
γδ = c1d1X2 +(c1d2 + c2d1)X3 + . . . ,

so f (γδ) = 0. If we now view Q/Z as (Q/Z)0 we have f (γδ) = 0 = f (γ) f (δ)
for all γ,δ ∈ (X) so f becomes a ring homomorphism with kernel I and
(X)/I ∼= (Q/Z)0, so I is a C← ideal of (X). But (X)◁Q[X ] and, e.g. 3X ∈ I
but 1

2 3X = 3
2 X /∈ I (though 1

2 ∈ Q[X ]). Hence I is not an ideal of Q[X ] and
consequently not a persistent ideal of (X).
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□

By Theorem 1 radical classes which are hereditary for essential ideals satisfy the
conclusion of Theorem 3, so by Proposition 2 the existence of a class C as in The-
orem 3 is not necessary for the conclusion of that result.

Problem 2. Do the persistent ideals satisfy the conclusion of Theorem 3, i.e. if a
radical class is hereditary for essential persistent ideals, must it be hereditary for all
persidtent ideals?

Proposition 3. If a radical class R contains Z and is hereditary for persistent
ideals, then it is hereditary.

Proof. If A ∈ R then A∗Z ∈ R and if I ◁A then I is a persistent ideal of A∗Z, so
I is in R . □

Proposition 4. Let R be a radical class consisting of idempotent rings such that
each ring in R is an ideal of a ring with identity in R . If R is hereditary for persistent
ideals then it is hereditary.

Proof. If A ∈ R , let A◁B where B has an identity and is in R . For an ideal I of A,
let I∗ be the ideal of B generated by I. Since B has an identity, I∗ is a persistent ideal
and hence is in R . But then I∗ is idempotent, while by the Andrunakievich Lemma
(I∗)3 ⊆ I. Hence I = I∗ ∈ R . □

This is well and good, but we have not yet given any examples of relatively hered-
itary radical classes which are not hereditary. To produce some examples we begin
with A- radical classes.

For every radical class U of abelian groups we get a radical class U∗ of rings by
defining

U∗ = {A : A+ ∈U}.
A radical class R of rings is called an A-radical class it satisfies the condition

A ∈ R and A+ ∼= B+⇒ B ∈ R .

The A-radical classes are precisely the classes U∗ defined above. For all this see [9],
pp.165-166.

Let S be a set of primes, S∗ the multiplicative semigroup generated by S. An
abelian group G is S-divisible if nG = G for all n ∈ S∗, i.e. if it satisfies the condition

((∀g ∈ G)(∀n ∈ S∗))(∃gn ∈ G)(ngn = g).

Clearly G is S-divisible if and only if pG = G for every p ∈ S.
A subgroup H of an abelian group G is S-pure if nH = H∩nG for all n ∈ S∗. This

is not equivalent to the condition pH = H ∩ pG for all p ∈ S; cf. neat subgroups [3].
We call an abelian group S-torsion if each of its elements has order in S∗ and S-
torsion-free if none of its non-zero elements has order in S∗. When S is the set of
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all primes we get the standard notions divisible group, pure subgroup, torsion and
torsion-free group.

Example 1. The class DS of S-divisible abelian groups is a radical class of abelian
groups. We shall consider the A-radical class D∗S .

If I ◁m R ∈D∗S , then R/I is a simple ring in D∗S . Only simple rings of characteristic
0 or a prime not in S are additively S-divisible, and these are also additively S-torsion-
free. But then I+ is an S-pure subgroup of R+ and therefore S-divisible (since R+ is).
Hence I ∈D∗S , so that D∗S is hereditary for maximal ideals.

But unless S = ∅, D∗S is not hereditary; let Z0,Q0 be the zerorings on Z+,Q+

respectively. Then Z0 ◁Q0 ∈D∗S , but Z0 /∈D∗S .
Clearly the intersection of two radical classes which are hereditary for maximal

ideals is itself hereditary for maximal ideals. This gives us a family of examples.
If R is a hereditary radical class of rings then R ∩D∗S is hereditary for maximal

ideals.
We need to be a little cautious with this example. If R contains all nilpotent rings,

or equivalently, if Z0 ∈ R , then we can use the Z0,Q0 example to see that R ∩D∗S is
not hereditary. On the other hand, for the radical class V of regular rings, V ∩D∗S is
also the class of S-torsion-free regular rings and this is hereditary. (See, e.g. [3] for
the additive structure of regular rings.)

Example 2. The radical class D∗S is hereditary for prime ideals. For if I ◁′ A ∈D∗S ,
then A/I is an S-divisible divisible prime ring. But its S-torsion ideal is then contained
in the annihilator and hence is zero. Thus A/I is additively S-torsion-free and we can
argue as in the previous example.

Example 3. The class D∗S is hereditary for ideals of finite index. For if I ◁A ∈D∗S
and A/I is finite, then as A/I ∈D∗S , it must be {p : p /∈ S}-torsion and hence S-torsion-
free.

As with Example 2 we see that for every hereditary radical class R , the class
R ∩D∗S is hereditary for prime ideals and for ideals of finite index.

Problem 3. Is there a radical class which is hereditary for prime ideals but not
maximal ideals or the other way around?

Using a method like that used for the divisible radical and its relatives, we can get
a family of radical classes which are hereditary for ideals of finite index. We shall
make use of the following two assertions concerning abelian groups.

(α) If B is a subgroup of a torsion-free abelian group C and C/B is a torsion
group, then every radical class U of abelian groups which contains B also
contains C. (Corollary 1.2 of [5])

(β) If a radical class of abelian groups contains a group L, it also contains its
torsion subgroup . (Theorem 5.2 of [2])
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The proof of the following result is based on arguments in [5] used to prove that
radical classes of abelian groups are closed under quasi-isomorphisms.

Theorem 4. Every radical class U of abelian groups is hereditary for subgroups
of finite index.

Proof. Let U be a radical class of abelian groups, G a group in U and H a sub-
group with |G/H| = n (finite). Then T (G) ∈ U by (β) and T (H) = H ∩ T (G) ⊆
T (G). Also

T (G)/T (H) = T (G)/T (G)∩H ∼= (T (G)+H)/H ⊆ G/H,

so |T (G)/T (H)| ≤ |G/H| = n, and thus nT (G) ⊆ T (H). From this it is clear that
nTp(G) ⊆ Tp(H) for every prime p, where Tp(G) is the largest p-subgroup of G
and so on. If U contains no non-zero p-groups, then by (β), Tp(G) = 0 and thus
Tp(H) = 0 ∈U. If U contains only the divisible p-groups, then

Tp(G) = nTp(G)⊆ Tp(H)⊆ Tp(G),

so Tp(H) = Tp(G) ∈U (by(β) again). The remaining possibility is that U contains
all p-groups ([2], Theorem 2.6) and then Tp(H) ∈U anyway. Hence T (H) ∈U.

Now H/T (H) = H/(H ∩T (G)) ∼= (H +T (G))/T (G) so we have an exact se-
quence

0→ H/T (H)→ G/T (G)→ G/(H +T (G))→ 0.

Since G is in U, so also is G/(H +T (G)). Also |G/(H +T (G))| ≤ |G/H|= n.
Let f denote the monomorphism from our exact sequence. Then

|(G/T (G)/ f (H/T (H))| ≤ n. Hence

G/T (G)∼= n(G/T (G))⊆ f (H/T (H),

the isomorphism being given by “multiplication by n”. (This is an isomorphism
since G/T (G) is torsion-free.) Clearly n f (H/T (H))⊆ n(G/T (G)), so in the exact
sequence

0→ n(G/T (G))→ f (H/T (H)→ f (H/T (H))/n(G/T (G))→ 0

the first two terms are torsion-free and the third is a torsion group. Moreover
n(G/T (G))∼=G/T (G)∈U, so by (α) we have H/T (H)∼= f (H/T (H))∈U. Since,
as shown above, T (H) ∈U, we have H ∈U and the theorem is proved. □

Corollary 3. Every A-radical class U∗ is hereditary for ideals of finite index.

As with S-divisible rings and maximal ideals, we can now give further examples
of radical classes which are hereditary for ideals of finite index.

Example 4. For every hereditary radical class R of rings and every A-radical class
U∗, R ∩U∗ is a radical class which is hereditary for ideals of finite index.



172 E. COJUHARI AND B. GARDNER

A radical class R is normal if for every Morita context (A,V,W,B) we have
V R (B)W ⊆ R (A). An N-radical class is a radical class which contains all nilpo-
tent rings and is left and right hereditary and left and right strong. For a discussion of
these concepts see pp. 149-158 of [9]. Note that N-radical classes are hereditary.

Jaegermann and Sands have shown that every normal radical class is an intersec-
tion of an N-radical class and an A-radical class. ([11], Theorem 10). Thus as a
consequence we have

Theorem 5. Every normal radical class is hereditary for ideals of finite index.

It was shown in [7] that the lower radical class defined by any class of zerorings
is the intersection of an A-radical class with the prime (= Baer) radical class. This
gives us another result.

Theorem 6. Every class of zerorings defines a lower radical class that is heredit-
ary for ideals of finite index.

3. THE LOWER RADICAL CONSTRUCTION

It was first shown by Hoffman and Leavitt [10] that if a class M of rings is hered-
itary, then so is its lower radical class L(M ). Along with (1)− (3) of Section 1, the
possibility of generalizing this result for relatively hereditary classes is a significant
question.

Here we show that a class which is hereditary for C← ideals determines a lower
radical class with the same property, but at the expense of an extra assumption about
C . In the final section of the paper we shall see examples in which relative hereditary
properties are not preserved under the lower radical construction.

Recall the Tangeman-Kreiling lower radical construction ([14]; see also [9], pp.28-
29).

Let M be a class of rings. We inductively define, for each ordinal γ, a class Mγ as
follows.

M1 is the homomorphic closure of M .
Mµ being defined for all µ < λ,

(i) if λ is a successor ν+1, let Mλ be the class of rings B with an ideal I ∈Mν such
that also B/I ∈Mν, and

(ii) if λ is a limit, let Mλ consist of all rings which are unions of ascending chains
of ideals from various Mµ with µ < λ.

Then the lower radical class L(M ) is the union of all the Mγ.

Theorem 7. Let C be a non-empty class of non-zero rings which is hereditary for
non-zero ideals and closed under non-zero homomorphic images. If a class M of
rings is hereditary for C← ideals, then so is its lower radical class L(M ).
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Proof. If A/I ∈M1 (A∈M ) and J/I is a C← ideal of A/I, then A/J∼= (A/I)/(J/I)
∈ C so J is a C← ideal of A, whence J ∈M , J/I ∈M1 and finally M1 is hereditary
for C← ideals.

If Mν is hereditary for C← ideals and B ∈Mν+1, let A be an ideal of B such that
both A and B/A are in Mν. If I is a C← ideal of B, then

A/A∩ I ∼= (A+ I)/I ◁B/I ∈ C ,

so A/A∩ I ∈ C or A/A∩ I = 0. In the former case A∩ I is a C← ideal of A ∈Mν, so
A∩ I ∈Mν. In the latter, A∩ I = A ∈Mν so in any case we have A∩ I ∈Mν.

Now

B/I ∈ C , so B/(I +A) ∈ C or B/(I +A) = 0. (•)

If it is in C , then (I +A)/A is a C← ideal of B/A ∈Mν whence

I/A∩ I ∼= (I +A)/A ∈Mν.

But then since A∩ I ∈Mν, it follows that I ∈Mν+1. If, on the other hand, B/(I+A) =
0, then

I/A∩ I ∼= (I +A)/A = B/A ∈Mν,

so again I is in Mν+1. This class is therefore hereditary for C← ideals.
Now let λ be a limit ordinal such that Mµ is hereditary for C← ideals for all µ < λ.

Let B be in Mλ. Then B =
⋃

Ix where the Ix form a chain of ideals of B, and for each
x, Ix ∈Mµx for some µx < λ. If J is a C← ideal of B, then J =

⋃
J ∩ Ix where each

J∩ Ix ◁ J. Now

Ix/Ix∩ J ∼= (Ix + J)/J ◁B/J ∈ C ,

so Ix/J∩ Ix ∈ C or Ix/J∩ Ix = 0. If the former, then J∩ Ix is a C← ideal of Ix ∈Mµx

and so J∩ Ix ∈Mµx . On the other hand, if Ix/J∩ Ix = 0, then

J∩ Ix = Ix ∈Mµx .

Since J∩ Ix ∈Mµx for all x, J is in Mλ.
We have now shown that each Mγ is hereditary for C← ideals, and hence the same

is true of the lower radical class L(M ).
□

Again it’s unclear whether we really need the extra hypothesis of non-zero ho-
momorphic closure; (•) indicates the only point of the proof at which we used it.
Meanwhile, as with some other questions, the case of prime ideals remains open. In
the final section we shall show that some relative properties are not preserved by the
lower radical construction.
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4. CONNECTIONS BETWEEN RELATIVE HEREDITARY PROPERTIES

We saw earlier that a radical class is hereditary for essential ideals (respectively
principal ideals) if and only if it is hereditary. If a radical class is hereditary for
maximal ideals, must it be hereditary for prime ideals? This, and similar questions
will be our concern in this section. Our first result connects maximal and finite index
ideals, and its proof relies on several applications of a lemma which we shall soon
prove. First, though, we need some terminology.

For a property (∗) of ideals, let C (∗) be the class of rings B such that if R is a
radical class which is hereditary for (∗)-ideals, I ◁A ∈ R and A/I ∼= B, then I ∈ R .
Then by definition, any radical class which is hereditary for (∗)-ideals is hereditary
for C (∗)-ideals.

This notation will be retained in the following result and its proof.

Lemma 1. Let B be a ring with a finite series

0 = J0 ⊆ J1 ⊆ ·· · ⊆ Jn ⊆ Jn+1 = B

of ideals such that each Ji+1/Ji ∈ C (∗). Then B ∈ C (∗).

Proof. Supposing the assertion is true for n = k, consider a chain

0 = L0 ⊆ L1 ⊆ ·· · ⊆ Lk ⊆ Lk+1 ⊆ Lk+2 = A

of ideals of a ring A such that each Li+1/Li ∈ C (∗). Then

0 = L0 ⊆ L1 ⊆ ·· · ⊆ Lk ⊆ Lk+1

is a chain of ideals of Lk+1 and all the relevant factors are in C (∗), so Lk+1 ∈ C (∗).
Also A/Lk+1 = Lk+2/Lk+1 ∈ C (∗).

Let R be a radical class which is hereditary for (∗)-ideals. If I ◁R ∈ R and R/I ∼=
A, then R has an ideal S such that S/I ∼= Lk+1 and (R/I)/(S/I) ∼= A/Lk+1. Hence
R/S ∼= A/Lk+1 ∈ C (∗), so S ∈ R . But then as S/I ∼= Lk+1 ∈ C (∗) it follows that
I ∈ R . This means that A ∈ C (∗). Since the case n = 0 is clear, we have the result by
induction. □

Corollary 4. If B1,B2, . . . ,Bn ∈ C (∗) (n finite), then B1⊕B2⊕·· ·⊕Bn ∈ C (∗).

Theorem 8. Every radical class which is hereditary for maximal ideals is also
hereditary for ideals of finite index.

Proof. In the notation of the previous two results, let (∗) be the property of maxim-
ality. Then we have to show that all finite rings are in C (∗). We do this by combining
a structure theorem for finite rings with multiple uses of the lemma. Recall that a
finite ring A has a largest nilpotent ideal N and A/N is isomorphic to a finite direct
sum of matrix rings over finite fields.

(i): For each prime p, the zeroring on the cyclic group of order pn is in C (∗)
for n = 1,2,3, . . ..
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If a is a group element of order pn then we have a series

0 =< pna >⊆< pn−1a >⊆ ·· · ⊆< pa >⊆< a >

of cyclic groups with each < pi−1a > / < pia > cyclic of order p, so the
corresponding series

0 =< pna >0⊆< pn−1a >0⊆ ·· · ⊆< pa >0⊆< a >0

of ideals of the zeroring < a >0 has simple factors which are in C (∗) whence
also < a >0∈ C (∗).

(ii): Every finite p-zeroring is in C (∗), as each such ring is a direct sum of
finitely many zerorings on cyclic p-groups.

If R is a nilpotent p-ring with Rn = 0, we have a series

0 = Rn ⊆ Rn−1 ⊆ R2 ⊆ R

of ideals of R for which all factors are zerorings, so
(iii): all finite nilpotent p-rings are in C (∗) for every prime p.

Every finite nilpotent ring is a direct sum of nilpotent p-rings for finitely
many primes p. Hence

(iv): every finite nilpotent ring is in C (∗).
As matrix rings over fields are simple,

(v): all finite direct sums of matrix rings over finite fields are in C (∗).
The result now follows from (iv), (v) and the lemma.

□

We do not know whether radical classes which are hereditary for maximal ideals
must be hereditary for prime ideals or vice versa. Adding ideals of finite index to the
mix gives us the following result.

Theorem 9. If a radical class R is hereditary for both prime ideals and ideals of
finite index, then R is hereditary for maximal ideals.

Proof. If I ◁m A ∈ R then A/I simple so is prime or a finite zeroring and either
implies that I ∈ R . □

Theorem 10. A radical class which is hereditary for ideals of finite index need not
be hereditary for prime ideals.

Proof. Let R be the upper radical class defined by {Z0}. Since Z0 is isomorphic to
all its non-zero ideals, R is the class of rings which don’t have Z0 as a homomorphic
image or, alternatively, the class of rings with no non-zero homomorphisms to Z0.

Let I ◁A ∈ R with n(A/I) = 0 for some integer n ̸= 0 and suppose I /∈ R . Then
(using (ADS)!) we have I/T ∗(I)◁A/T ∗(I) ∈ R and every non-zero homomorphism
from I to Z0 must factor through I/T ∗(I) which accordingly is not in R . Con-
sequently we lose no generality by assuming that I is additively torsion-free.
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Now I ∩ T ∗(A) = T ∗(I) = 0. It follows that A has an ideal M which contains
T ∗(A) and is maximal with respect to having zero intersection with I. Then

I ∼= I/I∩M ∼= (I +M)/M ◁• A/M ∈ R
and

|(A/M)/((I +M)/M)|= |A/(I +M)| ≤ |A/I|= n.
Moreover, as I is in the semi-simple class corresponding to the hereditary radical

class T ∗, its essential extension A/M is also additively torsion-free. Thus we may
assume that A is torsion-free also.

Now nA ⊆ I, so nA ◁ I. Hence there is a surjective homomorphism f : nA→ Z0

(since only the zero map from I to Z0 can take nI to 0, Z0 being torsion-free, and
nI = nA as I+ is a pure subgroup of A+). Define g : A→ Z0 by setting g(a) = f (na)
for all a ∈ A. For all a,b ∈ A we have g(a + b) = f (n(a + b)) = f (na + nb) =
f (na)+ f (nb) = g(a)+g(b). As well, ng(ab) = n f (nab) = f (n2ab) = f (na ·nb) =
f (na) f (nb) = 0 (Z0 is a zeroring!). But Z0 is torsion-free, so g(ab) = 0 = g(a)g(b).
Thus g is a homomorphism (surjective in fact) from A ∈ R to Z0 and with this con-
tradiction we see that R is indeed hereditary for ideals of finite index.

Consider now the ring Z0 ∗Z obtained by the adjunction of the identity of Z to Z0.
As a non-zero ring with identity, this is in R , but it has Z0 as a prime ideal. Hence R
is not hereditary for prime ideals. □

The classes D∗S with S ̸= ∅ have been useful to us and enjoy many relatively
hereditary properties. We end this section by showing that D∗S is not hereditary for
persistent ideals, though it is radically hereditary.

Proposition 5. (i) If A ∈D∗S and I is an idempotent ideal of A, then I ∈D∗S .
(ii) D∗S is radically hereditary.

(iii) D∗S is hereditary for semiprime ideals.
(iv) D∗S is not hereditary for persistent ideals.

Proof.
(i): If

I2 = I ◁A ∈D∗S
and x ∈ I, Then x = i1 j1 + i2 j2 + · · ·+ in jn for some i1, j1, . . . , in, jn ∈ I. For
m ∈ S∗, by the S-divisibility of A there exist a1,a2, . . . ,an ∈ A such that j1 =
ma1, j2 = ma2, . . . , jn = man and then

x = m(i1a1 + i2a2 + · · ·+ inan),

where the bracketed term is in I. Thus I is S-divisible.
(ii): This follows from Lemma 16 of [11].
(iii): Like the proof in Example 2.
(iv): The zeroring Z(p∞)0 is in D∗S , but for p ∈ S, Z(p)0 ∼= {x ∈ Z(p∞)0 : px =

0} is not, though it is a persistent ideal.
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□

5. A USEFUL GROUP

Let V be a two dimensional Q-vector space with basis {x,y}. We define our group
G as a subgroup of V . Let

G =< p−∞x, q−∞y, t−∞(x+ y)>,

where < . > means “group generated by”, p,q and t are distinct primes and p−∞ is
shorthand for a list of all negative powers of p and so on.

For a set S of primes, let Q(S) = {m
n : m∈Z,n∈ S∗}. When S has a single element

p we write Q(p) rather than Q({p}) and when S is the set of all primes, we write Q
as usual. We shall first examine some radical classes of abelian groups and then pass
to radical classes of rings via A-radicals.

Clearly < p−∞x > is p-divisible. On the other hand, routine calculations show that
y and x+ y have zero p-height. Thus G is not p-divisible, so as it has rank 2 we see
that

Q(p)∼=< p−∞x >= Dp(G).

Moreover, Dp(G) is a pure subgroup (by direct calculation or reference to Proposition
1.1 of [5]), so G/ < p−∞x >=< q−∞y, t−∞y > where y is the coset of y. This is
torsion-free of rank 1 and some more routine calculation shows that it is isomorphic
to Q({q, t}). Summarizing, then, we have an exact sequence

0→Q(p)→ G→Q({q, t})→ 0.

Let U denote the lower radical class defined by {Q(p),Q({q, t}). Then G ∈U, but
by arguments like those above for p, we have Q(q) ∼= Dq(G). Comparing the types
of the rational groups concerned, we see that Dq(G) /∈U.

By considering A-radicals, we can use the foregoing to get an informative ex-
ample.

Example 5. For U etc. as above we have
G0 ∈U but D∗q (G0)∼=Q(q) /∈U∗,

so U∗ is not radically hereditary. Furthermore, for primes s ̸= p (including q and t)
U contains non-zero cyclic s-groups and therefore all s-groups. Similarly it contains
all s-groups for s ̸= q, t, including p. It follows that T ⊆U, where T is the class of
torsion groups. Thus for abelian group radicals, U is the lower radical class defined
by the homomorphically closed class{Q(p),Q({q, t}}}∪T .

Proposition 6. For a non-empty set S of primes, every non-zero persistent ideal of
Q(S)0 is isomorphic to Q(S)0.

Proof. Let Q(S)∗ denote the subring of the rationals whose additive group is Q(S).
If H0 ̸= 0 is a persistent ideal of Q(S)0 then H0◁Q(S)0∗(Q)(S)∗. But then, for h∈H,
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p ∈ S and n ∈ Z+ we have (writing elements of Q(S)0 ∗Q(S)∗ as ordered pairs for
clarity),

h
pn = (h,0)(0, p−n) ∈ H0,

so H is S-divisible and therefore has type at least as great of that of Q(S). (For types,
see [3].) The types must therefore be equal so that H ∼=Q(S). □

As T is hereditary, the class {Q(p),Q({q, t}}} ∪ T is hereditary for persistent
ideals, but its lower radical class U is not radically hereditary (and hence not heredit-
ary for persistent ideals). Turning to ring radicals we see that the lower radical class
L({H0 : H ∈ U}) is not radically hereditary though it is determined by a subclass
which is hereditary for persistent ideals. This gives us a two-part theorem.

Theorem 11. A class of rings which is radically hereditary (respectively heredit-
ary for persistent ideals) may define a lower radical class which is not.
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