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Abstract. A module M is called ef-extending if every closed submodule which contains essen-
tially a finitely generated submodule is a direct summand of M. In this paper, we prove some
properties of rings via ef-extending modules and essentially finite injective modules. It is shown
that a module M is an ef-extending module and whenever M = H ⊕K with H essentially finite,
then H is essentially finite K-injective if and only if for essentially finite submodules N1,N2 of
M with N1 ∩N2 = 0, there exist submodules M1,M2 of M such that Ni is essential in Mi (i = 1,2)
and M1 ⊕M2 is a direct summand of M. A ring R is right co-Harada if and only if R is right (or
left) perfect with ACC on right annihilators and R⊕R is ef-extending as a right R-module, iff
R is right (or left) perfect and R(N)

R is an ef-extending module. Some properties of ef-extending
modules over excellent extension rings are considered.
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1. INTRODUCTION

The class of injective modules and their generalizations have been researched and
developed (in [4,13–15]). The structure of rings through the properties of the classes
of these modules has been considered. One of the important generalizations of the
injective module class is the extending (or C1, CS) module class. It can be said that
this class of modules has been strongly researched and developed over the past dec-
ades. Many authors have given many important properties and characteristics of this
class of modules. In addition, QF-rings and co-Harada rings have been studied via
extending modules ([3, 5, 6, 16]). In 1991, Thuyet and Wisbauer ([17]) introduced
the concept of ef-extending modules. This is a generalization of the class of extend-
ing modules. Then the authors also gave many properties of this class of modules.
Continuing this work, the authors Quynh, Thuyet, Chien ([2,16]) have obtained more
properties of the class of ef-extending modules.
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
BY 4.0.
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In this paper, we give some other properties of ef-extending modules and the rel-
atively injective of modules.

Firstly, we introduce the essentially finite N-injective modules. A module M is
called essentially finite N-injective if any homomorphism from every essentially finite
submodule of N to M can be extended to a homomorphism from N to M. We study
the property of modules that whenever M = M1 ⊕M2 is a direct sum of submodules
M1 and M2, then M2 is essentially finite M1-injective. It is shown that an essentially
finite ef-extending module M satisfies C3 if and only if, whenever M = M1 ⊕M2 is a
direct sum of submodules M1 and M2, then M2 is essentially finite M1-injective (Pro-
position 4). We also prove that a module M is an ef-extending module and whenever
M = H ⊕K with H essentially finite, then H is essentially finite K-injective if and
only if for essentially finite submodules N1,N2 of M with N1 ∩N2 = 0, there exist
submodules M1,M2 of M such that Ni is essential in Mi (i = 1,2) and M1 ⊕M2 is a
direct summand of M (Proposition 5).

Secondly, we characterize the structure of co-Harada rings and show that a ring
R is right co-Harada if and only if R is right (or left) perfect with ACC on right
annihilators and R⊕ R is ef-extending as a right R-module, iff R is right (or left)
perfect and R(N)

R is an ef-extending module (Theorem 1). The structure of rings in
which the direct sum of any two ef-extending right R-modules is ef-extending are
considered. It is shown that if R has property the direct sum of any two ef-extending
right R-modules is ef-extending and E(RR) =

⊕
i∈I

Ei where Ei is indecomposable for

all i ∈ I, then R is a right Artinian ring whose uniform right R-modules have length
at most two (Theorem 8).

Finally, we study ef-extendingmodules over excellent extension rings and show
that if M is a right S-module and MR is an ef-extending module, then MS is an ef-
extending module (Theorem 2). On the other hand, if M is a right R-module and
(M ⊗R S)S is an ef-extending module then MR is an ef-extending module (Theorem
3).

Throughout this paper, R will denote an associative ring with unit and Mod-R the
category of unital right R-modules. We write MR (resp., RM) to denote that M is a
right (resp., left) R-module. Unless otherwise mentioned, by a module we will mean a
right R-module. We denote the Jacobson radical of a ring R by J(R) and the injective
hull of M by E(M). If A is a submodule of M, we denote by A ≤ M. A submodule
K of M is essential in M if K ∩L ̸= 0 for every non-zero submodule L of M. In this
case, M is called an essential extension of K and we write K ≤e M. A submodule C of
M is closed in M if C has no proper essential extension in M. A module M is called
uniform if M ̸= 0 and every non-zero submodule of M is essential in M. A submodule
N of M is called small in M, denote by N ≪ M whenever for any submodule L of M,
N +L = M implies L = M. A module M is called a small module if M is small in
E(M). If M is not a small module, we say that M is non-small. We denote the radical
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of a right R-module by Rad(M). We refer to [1, 4, 10] for any undefined notion used
in the text.

2. DIRECT SUM OF EF-EXTENDING MODULES ARE EF-EXTENDING

A module M is called essentially finitely generated (essentially finite for short) if
M contains a finitely generated submodule that it is essential in M ([4, page 60]). A
submodule N of M is called an essentially finite submodule if N is an essential finite
right R-module.

Lemma 1. Every direct summand of an essentially finite module is essentially
finite.

Proof. Let M = N ⊕N′ be an essentially finite module. Call H = m1R+m2R+
· · ·+mkR an essential submodule of M. Write mi = ni + n′i with ni ∈ N and n′i ∈ N′

for all i = 1,2, . . . ,k. This shows that K = n1R + n2R + · · ·+ nkR is an essential
submodule of N. In fact, for every nonzero element y of N, there is x in R such that
yx is nonzero in H, and so yx = m1r1 +m2r2 + · · ·+mkrk for some ri in R. It follows
that yx = n1r1 + n2r2 + · · ·+ nkrk is nonzero in K. We deduce that K is essential in
N. □

Let M and N be right R-modules. We define M to be essentially finite N-injective
if any homomorphism from every essentially finite submodule of N to M can be
extended to a homomorphism from N to M. We say to a module M is essentially
finite quasi-injective if M is essentially finite M-injective.

Proposition 1. Let M and N be right R modules.

(1) Any direct product ∏I Mi is essentially finite N-injective if and only if every
Mi is essentially finite N-injective.

(2) If M is essentially finite N-injective, then M is essentially finite K-injective
and essentially finite N/A-injective for all submodules A and K of N with A
finitely generated.

Proof. (1) Let M = ∏I Mi. For each i ∈ I, let πi : M → Mi be the canonical projec-
tion and ιi : Mi → M be the inclusion map.

Assume that M is essentially finite N-injective. Let C be an essentially finite sub-
module of N and ψ : C → Mi be a homomorphism. Let ι : C → N be the inclusion
map.

Mi

0 C N-

6
ψ

-ι
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Since M is essentially finite N-injective, there is a homomorphism α : N → M such
that αι = ιiψ. Call γ = πiα. It follows that γι = ψ. Thus, Mi is essentially finite
N-injective.

Conversely, assume that Mi is essentially finite N-injective for all i ∈ I. Let C be an
essentially finite submodule of N, ι : C → N be the inclusion map and ψ : C → M be a
homomorphism. For each i ∈ I, since Mi is essentially finite N-injective, there exists
a homomorphism hi : M → Mi such that hiι = πiψ. Consider the homomorphism
h : M → ∏i∈I Mi defined by h(m) = (hi(m))i∈I for all m ∈ M. Then, hι = ψ. We
deduce that M is essentially finite N-injective.

(2) Let f : U → M be a homomorphism from an essentially finite submodule U of
K to M. Since M is essentially finite N-injective, f is extended to a homomorphism
g : N → M. It follows that g|K : K → M is an extension of f . Thus, M is essentially
finite K-injective.

Next, we show that M is essentially finite N/A-injective with each finitely gen-
erated submodule A of N. Let f : X/A → M be a homomorphism from an essen-
tially finite submodule X/A of N/A to M. Call A1 = (a1 +A)R+(a2 +A)R+ · · ·+
(ak +A)R an essential submodule of X/A. One can check that a1R+ a2R+ · · ·+
akR + A is essential in X and so X is an essentially finite submodule of N. Let
π : N → N/A be the natural projection. Since M is essentially finite N-injective,
there is a homomorphism g : N → M such that g is an extension of f ◦ π|X . Then,
g(A) = ( f ◦π|X)(A) = 0 so that there exists a homomorphism h : N/A → M such that
h◦π = g. For each x ∈ X , we have

h(x+A) = (h◦π)(x) = g(x) = ( f ◦π|X)(x) = f (x).

It is shown that h is an extension of f . We deduce that M is essentially finite N/A-
injective. □

Corollary 1. Let M be an essentially finite quasi-injective right R-module. Then,
every essentially finite submodule of M that is isomorphic to a direct summand of M
is itself a direct summand of M.

Proof. Let A be an essentially finite submodule of M that is isomorphic to a direct
summand B of M. Since M is essentially finite M-injective, B is essentially finite
M-injective by Proposition 1(1) and so A is essentially finite M-injective.

A

0 A M-

6
1A

-ι

It follows that there is a homomorphism f : M →A such that g◦ι= 1A with ι : A→M
the inclusion map. Therefore, ι splits and so A is a direct summand of M. □
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A nonzero module M does not contain an infinite direct sum of nonzero submod-
ules if and only if there exists a positive integer n such that M contains an essential
submodule of the form U1 ⊕U2 ⊕ ·· · ⊕Un for some uniform submodules Ui of M.
Furthermore, the integer n is an invariant of the module M called the uniform dimen-
sion or Goldie dimension and denoted by dim(M). If M = 0 we write dim(M) = 0.

Proposition 2. Let M be a right R-module.
(1) If M is a right R-module with finite Goldie dimension, then M is quasi-

injective if and only if M is essentially finite quasi-injective.
(2) If M = M1 ⊕M2 is essentially finite quasi-injective then M1 is essentially

finite M2-injective.

Proof. (1) Assume that M is a right R-module with finite Goldie dimension. Let
f : A → M be a homomorphism from a submodule A of M to M. It is well-known that
every submodule of a right R-module with finite Goldie dimension has finite Goldie
dimension. Then, A is an essentially finite submodule of M. We have that M is quasi-
injective and obtain that f is extended to an endomorphism of M. We deduce that M
is quasi-injective.

(2) Assume that M = M1 ⊕M2 is essentially finite quasi-injective. Then, M1 is
essentially finite M-injective by Proposition 1(1). Again by Proposition 1(2) we have
that M1 is essentially finite M2-injective. □

Corollary 2. Let M be a right R-module. If M is a Noetherian module, then M is
quasi-injective if and only if M is essentially finite quasi-injective.

Proof. Since every Noetherian right R-module has finite Goldie dimension, M is
quasi-injective if M is essentially finite quasi-injective by Proposition 2. □

Recall that a right R-module M is called Zelmanowitz regular if, every finitely
generated submodule of M is projective and is a direct summand of M ([18]). Note
that RR is a Zelmanowitz regular module if and only if R is a von Neumann regular
ring.

Lemma 2. If M is a Zelmanowitz regular module, then M is essentially finite
quasi-injective.

Proof. Let H be an essentially finite submodule of M. Then, there is a finitely
generated submodule I of M such that I is essential in H. We have that M is Zel-
manowitz regular and obtain that I is a direct summand of M and so, it is a direct
summand of H. This implies that H = I is a direct summand of M. We deduce that
every homomorphism from H to M can be extended to an edomorphism of M. Thus,
M is essentially finite quasi-injective. □

From Lemma 2, we have the following example of an essentially finite quasi-
injective module which is not quasi-injective.
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Example 1. Let D be a division ring and DV be a left D-vector space of infinite
dimension. Take R = EndD(V ). It is well-known that R is von Neumann regular but
not right self-injective. By Lemma 2, RR is essentially finite quasi-injective.

Lemma 3. Let M = M1 ⊕M2 be a direct sum of submodules M1 and M2. Then,
the following conditions are equivalent:

(1) M2 is essentially finite M1-injective.
(2) For each essentially finite submodule N of M with N ∩M2 = 0, there exists a

submodule M′ of M containing N such that M = M′⊕M2.

Proof. (1)⇒ (2). For i = 1,2, let πi : M −→ Mi denote the canonical projection.
Consider the following diagram with N an essentially finite submodule of M:

0 N M1

M2

-

?

β

-α ppppppp	
φ

where α = π1|N , β = π2|N . It is easy to see that α is a monomorphism, and so
N ∼= α(N) ≤ M1. By (1), there exists a homomorphism φ : M1 −→ M2 such that
φα = β. Let M′ = {x+ φ(x)|x ∈ M1}. One can check that M = M′⊕M2 and N is
contained in M′.

(2) ⇒ (1). Let K be an essentially finite submodule of M1, and f : K −→ M2 a
homomorphism. Put L = {y− f (y) | y ∈ K}. Since K is essentially finite, L is also
an essentially finite submodule of M with L∩M2 = 0. By (2), M = L′⊕M2 for some
submodule L′ of M containing L. Let π : M −→ M2 denote the canonical projection
(for the direct sum M = L′⊕M2). Let f̄ = π|M1 : M1 −→ M2 and, for any y ∈ K, we
have f̄ (y) = f̄ (y− f (y)+ f (y)) = f (y). It means that f̄ is an extension of f and so
M2 is essentially finite M1-injective. □

Corollary 3. Let M = M1 ⊕M2 be a direct sum of submodules M1,M2. If M2 is
essentially finite M1-injective, then for every essentially finite closed submodule N of
M such that N ∩M1 is essential in M1 and N ∩M2 = 0,M = N ⊕M2.

Proof. Let K be an essentially finite closed submodule of M such that K ∩M1 is
essential in M1 and K ∩M2 = 0. We have K ∩M1 = K ∩ ((K ∩M1)⊕M2). It follows
that K ∩M1 is essential in K. By Lemma 3, there exists a submodule M′ of M such
that M = M′⊕M2 and K ≤ M′. Next, we show that K is essential in M′. In fact, let
x = m1 +m2 be a nonzero element of M with mi ∈ Mi. If m1 is nonzero, there exists
r in R such that m1r ∈ K ∩M1 is nonzero. It follows that xr = m1r+m2r ∈ K ⊕M2
is nonzero. From this, we deduce that there exists y ∈ R such that xy ∈ K ⊕M2 is
nonzero. It is shown that K ⊕M2 is essential in M. On the other hand, we have that
K = M′∩ (K ⊕M2) and obtain that K is essential in M′. But, K is closed in M, and
so K = M′. □
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Recall that a module M is extending (resp., ef-extending) if every closed (resp.,
essentially finite closed) submodule of M is a direct summand of M (see [4, 17]).

Example 2. Let D be a division ring and V a left D-vector space of infinite dimen-

sion. Take S = EndD(V ) and R =

(
S S
S S

)
. It is well-known that S is a von Neumann

regular ring. One can check that RR is ef-extending but not extending.

It is well-known that a module M is extending if every submodule of M is essential
in a direct summand of M. We have a similar situation for ef-extending modules.

Proposition 3. The following conditions are equivalent for a right R-module M:
(1) M is ef-extending.
(2) Every essentially finite submodule of M is essential in a direct summand of

M.

Proof. (1)⇒ (2). Let N be an essentially finite submodule of M. Then, N contains
a finitely generated submodule which is essential in N. Call H a maximal essential
extension of N in M. One can check that H is an essentially finite closed submodule
of M. By (1), H is a direct summand of M.

(2)⇒ (1). Let C be an essentially finite closed submodule of M. By (2), there is
a direct summand K of M such that C is essential in K. We have that C is closed and
obtain that C = K is a direct summand of M. □

Corollary 4. Let M be a right R-module with finite Goldie dimension or finitely
cogenerated. Then, M is an extending module if and only if M is an ef-extending
module.

Corollary 5. Let M be a finitely generated ef-extending right R-module. Assume
that

(1) every local direct summand of M is a direct summand, or
(2) End(M) does not contain an infinite set of orthogonal idempotents.

Then M is an extending module.

Proof. Assume that every local direct summand of M is a direct summand, or
End(M) does not contain an infinite set of orthogonal idempotents. Then, M is a
direct sum of uniform submodules by [17, Corollary 2.3]. Moreover, we have that M
is finitely generated and obtain that M has finite Goldie dimension. We deduce that
M is extending by Corollary 4. □

Recall that a module M satisfies C3 if, M1 ⊕M2 is a direct summand of M for any
two direct summands M1 and M2 of M with M1 ∩M2 = 0.

Lemma 4 ([5, Lemma 6]). The following statements are equivalent for a right
R-module M.

(1) M satisfies C3.
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(2) For all direct summands P and Q of M with P∩Q = 0, there exists a submod-
ule P′ of M such that M = P⊕P′ and Q ≤ P′.

Proposition 4. An essentially finite ef-extending module M satisfies C3 if and
only if whenever M = M1 ⊕M2 is a direct sum of submodules M1,M2, then M2 is
essentially finite M1-injective.

Proof. (⇒). Assume that M is ef-extending satisfying C3. Let N be an essentially
finite submodule N of M with N ∩M2 = 0. Since M is ef-extending, there exists a
direct summand N′ of M such that N is essential in N′. Clearly N′ ∩M2 = 0. By
Lemma 4, M = M′⊕M2 for some submodule M′ such that N′ ≤ M′, and so N ≤ M′.
Thus M2 is essentially finite M1-injective by Lemma 3.

(⇐) Assume that M2 is essentially finite M1-injective whenever M = M1⊕M2. By
Lemma 3 and Lemma 4, M satisfies C3. □

Corollary 6. If M = M1 ⊕M2 is an essentially finite ef-extending right R-module
satisfying C3, then Mi is essentially finite M j-injective for all i, j ∈ {1,2}, i ̸= j.

Proposition 5. The following conditions are equivalent for a right R-module M:
(1) For essentially finite submodules N1,N2 of M with N1 ∩N2 = 0, there exist

submodules M1 and M2 of M such that Ni is essential in Mi (i = 1,2) and
M1 ⊕M2 is a direct summand of M.

(2) M is an ef-extending module and whenever M = H ⊕K with H essentially
finite, then H is essentially finite K-injective.

Proof. (1)⇒ (2) Let N be an essentially finite submodule of M. Call N′ a comple-
ment of N in M. Then, N ∩N′ = 0. Take K a finitely generated submodule of N′ and
so N ∩K = 0. By (1), there are submodules M1 and M2 of M such that N is essential
in M1, K is essential in M2 and M1 ⊕M2 is a direct summand of M. It follows that M
is an ef-extending module. Next, we show that if M has a decomposition M = H ⊕K
with H essentially finite, then H is essentially finite K-injective. In fact, let L be an
essentially finite submodule of M with L∩H = 0. By (1), there are submodules P and
Q of M such that L is essential in P, H is essential in Q and P⊕Q is a direct summand
of M. We have that H is closed and obtain that H = Q. Write M = P⊕Q⊕W . Then,
M = H ⊕ (P⊕W ) and L ≤ P⊕W . By Lemma 3, H is essentially finite K-injective.

(2)⇒ (1) Let N1 and N2 be essentially finite submodules of M with N1 ∩N2 = 0.
Call L a finitely generated submodule of M such that L is essential in N1. Let C be
a complement of L in M, and so N1 ∩C = 0. By Zorn’s lemma, take D a maximal
essential extension of N1 in M. One can check that D∩C = 0, D is closed and L is
essential in D. By (2), M = D⊕D′ for some submodule D′ of M. Moreover, from
the essentiality of N1 in D, it immediately infers that N2 ∩D = 0. Again, by (2) and
Lemma 3, we have a decomposition M = D⊕D” with D” a direct summand of M
containing N2. Since M is an ef-extending module, D” is also an ef-extending module.
By Proposition 3, N2 is essential in a direct summand W of D”. Write D” =W ⊕W ′.
Then, M = D⊕W ⊕W ′ with N1 essential in D and N2 essential in W . □
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Note that the direct sum of two direct summands which are ef-extending is not
necessarily ef-extending.

Example 3. Let p be a prime number. Then Z-modules Z/pZ, Z/p3Z are ef-
extending. But Z-module M = Z/pZ⊕Z/p3Z is not ef-extending because
(1+ pZ, p+ p3Z)Z is a closed submodule of M (which contains a finitely gener-
ated, essential submodule) and it is not direct summand of M.

Proposition 6. Let M = M1 ⊕M2 be a direct sum of submodules M1 and M2.
Assume that the following conditions hold:

(1) every closed submodule K of M with K ∩M1 essential in K is a direct sum-
mand of M;

(2) every essentially finite closed submodule L of M with L∩M1 = 0 is a direct
summand of M.

Then M is ef-extending.

Proof. Let N be an essentially finite closed submodule of M. If N∩M1 = 0, we are
done. Otherwise, there exists a closed submodule H of N such that N∩M1 is essential
in H. Then, H is closed in M and H ∩M1 = N ∩M1 is essential in H. By (1), H is a
direct summand of M. Take M = H ⊕H ′, and so N = H ⊕ (N ∩H ′). It follows that
N ∩H ′ is a closed submodule of N, and so it is closed in M. By Lemma 1, N ∩H ′ is
an essentially finite closed submodule of M. We have (N ∩H ′)∩M1 = 0 and obtain,
from (2), that N ∩H ′ is a direct summand of M. We write H ′ = (N ∩H ′)⊕L. Thus,
M = H ⊕H ′ = H ⊕ (N ∩H ′)⊕L = N ⊕L. □

Corollary 7. Assume that M = M1 ⊕ M2 with M1 is extending and M2 is ef-
extending. If one of the following conditions holds, then M is ef-extending.

(1) M2 is M1-injective and M1 is essentially finite M2-injective.
(2) M2 is essentially finite M1- injective and every closed submodule K of M such

that K ∩M2 = 0, is a direct summand of M.

Proof. Assume that M2 is M1-injective and M1 is essentially finite M2-injective.
Firstly, we show that the condition (1) in Proposition 6 is satisfied. Let K be a

closed submodule of M with K∩M1 an essential submodule of K. Then, K∩M2 = 0.
Sine M2 is M1-injective, there exists a decomposition M = L⊕M2 such that L contains
K. It follows that K is closed in L and L ∼= M1 an extending module. We deduce that
K is a direct summand L, and so it is a direct summand of M.

Next, we show that the condition (1) in Proposition 6 is satisfied. Let N be an
essentially finite closed submodule of M with N ∩M1 = 0. Since M1 is essentially
finite M2-injective, there is a submodule H of M such that M = H ⊕M1 and N ≤ H.
Then, N is an essentially finite closed submodule of H and H ∼= M2 is an ef-extending
module. We deduce that N is a direct summand of H. Thus, N is a direct summand
of M. From Proposition 6, we deduce that M is an ef-extending module.

Case (2) has a similar proof. □
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Lemma 5. Let A and B be uniform modules with local endomorphism rings such
that M = A⊕B is ef-extending. Let C be a submodule of A and f : C → B a homo-
morphism. Then the following hold.

(1) If f cannot be extended to a homomorphism from A to B, then f is a mono-
morphism and B is embedded in A.

(2) If any monomorphism B → A is an isomorphism, then B is A-injective.
(3) If B is not embedded in A, then B is A-injective.

Proof. (1). Suppose f cannot be extended to A. Let

U = {x− f (x)|x ∈C} ≤ A⊕B.

Then U ∼= C is a uniform submodule of M and clearly U ∩B = 0. Hence there is
a direct summand U∗ of M such that U is essential in U∗. By the Krull-Schmidt-
Azumaya Theorem ([1, Corollary 12.7]), we have M = A⊕U∗ or M =U∗⊕B. Sup-
pose that M = B⊕U∗. Let π : B⊕U∗ → B be the projection. For every c ∈ C, we
have c = f (c)+ c− f (c) and so (π|A)(c) = π( f (c)+ c− f (c)) = f (c). It is shown
that π|A : A→B is an extension of f : C →B, a contradiction to our assumption. Thus
M = A⊕U∗ which implies that f (x) ̸= 0 for all x ̸= 0, i.e., f is a monomorphism. We
have U∗∩B = 0 and obtain that B is embedded in A.

(2). As in the proof of (1), given any homomorphism f : C → B with C a submod-
ule of A. Suppose that M = A⊕U∗. Let ψ : A⊕U∗ → A be the projection. Then,
clearly ψ|B is a monomorphism (because U is essential in U∗, hence an isomorphism
by the hypothesis). It follows easily that M = B⊕U∗, so that, as in (1) f can be
extended to a homomorphism from A to B. It follows that B is A-injective.

(3). It is clear by (1). □

A module M is called a non-cosmall module if M is a homomorphic image of a
projective module P whose kernel is not essential in P. A ring R is called right co-
Harada (or co-H) if it satisfies ACC on right annihilators and every non-cosmall right
R-module contains a non-zero projective direct summand ([6]). We have a character-
ization of right co-Harada via ef-extending.

Theorem 1. Let R be a ring. Then, the following statements are equivalent.
(1) R is right co-Harada.
(2) R is right (or left) perfect with ACC on right annihilators and R⊕R is ef-

extending as a right R-module.
(3) R is right (or left) perfect and R(N)

R is an ef-extending module.

Proof. (1)⇒ (2),(3) are clear.
(2) ⇒ (1). Let R be a right perfect ring. We need only show that E(RR) is Σ-

injective (i.e., E(RR)
(I) is injective for every index set I). Since R has ACC on right

annihilators, it suffices to show that E(RR) is projective. Let e be any primitive idem-
potent of R. Suppose that eR is non-small. Then for any primitive idempotent f of R,
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assume that h : eR → f R is a monomorphism, if eR ∼= A = h(eR)< f R. Since f R has
only maximal, small submodule in f R. Thus A ≪ f R and so A ≪ E(A). Moreover,
there exists E(A) ∼= E(eR). It implies that eR ≪ E(eR). This is a contradiction. It
means that h(eR) = f R and so h is an isomorphism. Note that eR and f R are uniform
modules. Since (R⊕R)R is ef-extending, eR⊕ f R is ef-extending, too. By Lemma 5,
eR is f R- injective. It is shown that eR is injective as a right R-module. Now suppose
that eR is small. Since R is right perfect, there is a projective cover ϕ : P → E(eR),
where P =⊕IPi each Pi, is indecomposable projective. If Pj is small for some j ∈ I,
then ϕ(Pj) is small in E(eR) by [10, Lemma 4.2]. Let P=Pj⊕Q, then E(eR)=ϕ(Q).
But Ker(ϕ) is small in P, so it follows that Q = P, a contradiction. Thus each Pi is
non-small, hence injective. It is easy to see that, because eR is projective, eR can be
embedded into a finite direct sum of the Pi. Therefore E(eR) is projective. We write
RR = e1R⊕ ·· · ⊕ ekR⊕ f1R⊕ ·· · ⊕ fnR, where {ei}k

i=1 ∪{ f j}n
j=1 is a complete set

of orthogonal primitive idempotents of R, in which each eiR is a non-small module
(i = 1, . . . ,k), each f jR is a small module ( j = 1, . . . ,n). Therefore E(RR) is project-
ive. Thus R is semiprimary and Soc(RR) is essential in RR by [6, Theorem 6]. This
implies that R⊕R is extending as a right R-module by Corollary 4. Thus R is right
co-Harada by [3, Theorem II].

Now, we assume that R is left perfect. It follows that Soc(RR) is essential in RR,
and so RR is finitely cogenerated. It follows that (R⊕R)R is extending by Corollary
4. From [15, Theorem 3.7], it infers that R is right co-Harada.

(3) ⇒ (2). By (3), Rn is ef-extending for each n ∈ N . We will prove that R has
ACC on right annihilators. Now we claim that E(RR)

(N) is injective. Since R is right
perfect, RR = e1R⊕·· ·⊕ekR⊕ f1R⊕·· ·⊕ fnR, where {ei}k

i=1∪{ f j}n
j=1 is a complete

set of orthogonal primitive idempotents of R such that:
• eiR is non-small for all i = 1,2, . . . ,k.
• f jR is small for all j = 1,2, . . . ,n.

By proving the same (2) ⇒ (1), we have eiR is injective for all i = 1,2, . . . ,k and
obtain that E(RR) is projective. For any j = 1,2, . . . ,n, since R is right ef-extending,
f jR is uniform and so E( f jR) is indecomposable. Moreover E( f jR) is projective,
there is i ∈ {1,2, . . . ,k} such that E( f jR)∼= eiR. From this, it is easy to see that

E(RR) = (⊕I1e1R)⊕·· ·⊕ (⊕Ik ekR),

where Ii are finite sets. Then, we have

E(RR)
(N) ∼= ((⊕I1e1R)⊕·· ·⊕ (⊕Ik ekR))(N) ∼= (e1R⊕ e2R⊕·· ·⊕ ekR)(N).

Note that (e1R⊕ e2R⊕·· ·⊕ ekR)(N) is isomorphic to a direct summand of R(N)
R and

each eiR is injective and indecomposable. We have that R(N)
R is ef-extending and

obtain that (e1R⊕ e2R⊕ ·· · ⊕ ekR)(N) is ef-extending. Thus, by [4, Lemma 8.10],
E(RR)

(N) ∼= (e1R⊕ e2R⊕ ·· · ⊕ ekR)(N) is self-injective, and so it is injective. This
implies that R has ACC on right annihilators.
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It is similar if R is left perfect. Note that E(RR) is projective by Corollary 4 and
[15, Theorem 3.3]. □

Corollary 8 ([6, Theorem 3]). Let R be a ring. Then the following statements are
equivalent.

(1) R is right co-Harada.
(2) R is right perfect and R(N)

R is an extending module.

Proposition 7. Let R be a right nonsingular ring. Then the following statements
are equivalent.

(1) R is right co-Harada.
(2) R is right (or left) perfect and R⊕R is ef-extending as a right R-module.

Proof. By Lemma 6, Theorem 7 in [3]. □

Lemma 6. The following statements are equivalent:
(1) The direct sum of any two uniform modules is ef-extending.
(2) Any uniform self-injective module has length at most 2.
(3) Any direct sum of uniform modules is extending.

Proof. (1)⇒ (2). Consider any uniform injective module U . Suppose x ∈ Rad(U)
and T is a maximal nonzero submodule of xR. Then, U and xR/T have local en-
domorphism rings and U ⊕ xR/T is ef-extending by assumption. Hence the map
f : xR → xR/T can be extended to f̄ : U → xR/T by Lemma 5. However
xR ≤ Rad(U) ≤ Ker f̄ , which yields a contradiction. We conclude that Rad(U) is
semisimple and hence simple.

Assume that K1 and K2 are two distinct maximal submodules of U . Then any
monomorphism f : Ki → K j is onto for i, j ∈ {1,2}, since f extends to a mono-
morphism of U which has to be an automorphism. So the endomorphism rings of
K1 and K2 are local. Now Ki ⊕K j is extending for i, j ∈ {1,2} and hence K1 is both
K2-injective and K1-injective by Lemma 5. We have K1 +K2 =U and obtain that K1
is U-injective and hence it is a direct summand in U , a contradiction.

(2)⇒ (3). By [4, 13.1].
(3)⇒ (1). Obvious. □

Proposition 8. Assume that R has property the direct sum of any two ef-extending
right R-modules is ef-extending and E(RR) =

⊕
i∈I

Ei where Ei is indecomposable for

all i ∈ I. Then R is a right Artinian ring whose uniform right R-modules have length
at most two.

Proof. Assume that E(RR) =
⊕
i∈I

Ei where Ei is indecomposable for all i ∈ I. Then,

Ei is a uniform module for every i ∈ I. Let {Vi}i∈I1 be any nonempty family of
injective hulls of simple modules. Call V =⊕iVi. Then the module

M = E(RR)⊕V
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is extending by Lemma 6, hence quasi-injective by [4, Lemma 8.10]. Therefore V is
a quasi-injective module which is E(RR)-injective. Thus, V is injective. This implies
that R is right Noetherian.

By the above argument, every injective module is a direct sum of uniform modules.
Since by Lemma 5, each uniform module has length at most two, every injective is a
direct sum of injective hulls of simple modules. This proves that R is right Artinian.
Hence the proof is complete. □

Corollary 9. Assume that R has finite Goldie dimension and the direct sum of any
two ef-extending right R-modules is ef-extending. Then, R is a right Artinian ring
whose uniform right R-modules have length at most two.

3. EF-EXTENDING MODULES AND EXCELLENT EXTENSIONS

When R is a subring of the ring S, and R and S have the same identity 1, the ring S
is a right excellent extension of R if

(1) SR and RS are free modules with a basis {1 = a1,a2, ...,an} such that
aiR = Rai for i = 1, ...,n.

(2) For any submodule AS of a module MS, if AR is a direct summand of MR, then
AS is a direct summand of MS.

Excellent extensions were introduced by Passman ([11]). Let R be an associative
ring with identity and let G be a finite multiplicative group. Then the crossed product
R ∗G is an associative ring constructed from R and G analogous. If |G|−1 ∈ R, then
R∗G is a right excellent extension of R (in [7] and [12]).

Through this section, the ring S is a right excellent extension of R.

Lemma 7 ([8, Proposition 1.6], [7, Proposition 1.1]). Let AS be a submodule of an
S-module M. Then

(1) AS is closed in MS if and only if AR is closed in MR.
(2) AS is essential in MS if and only if AR is essential in MR.

Lemma 8 ([9, Lemma 2.4]). Let AR be a submodule of MR. Then AR is a closed
submodule of MR if and only if (A⊗R S)S is a closed submodule of (M⊗R S)S.

Theorem 2. Let M be a right S-module. If MR is an ef-extending module then MS
is an ef-extending module.

Proof. Let MR be an ef-extending module. Let AS be a closed submodule of MS
which contains essentially a finitely generated submodule TS. By Lemma 7, AR is a
closed submodule of MR and TR is essetial in AR. Take T = t1S+ t2S+ · · ·+ tkS. One
can check that TR is generated by {tia j|1 ≤ i ≤ k,1 ≤ j ≤ n}. We have that MR is
an ef-extending module and obtain that AR is a direct summand of MR. Since S is a
right excellent extension of R, AS is a direct summand of MS. We deduce that MS is
an ef-extending module. □
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Theorem 3. Let M be a right R-module. If (M ⊗R S)S is an ef-extending module
then MR is an ef-extending module.

Proof. Let (M ⊗R S)S be an ef-extending module. Let AR be a closed submodule
of MR which contains essentially a finitely generated submodule TR. By Lemma 8,
(A⊗R S)S is a closed submodule of (M ⊗R S)S. We have that (T ⊗R S)S is a finitely
generated submodule of (A⊗R S)S. On the other hand, we have

(T ⊗R S)R = (T ⊗a1)⊕ (T ⊗a2)⊕·· ·⊕ (T ⊗an),

(A⊗R S)R = (A⊗a1)⊕ (A⊗a2)⊕·· ·⊕ (A⊗an).

Note that T ⊗ ai ∼= T ⊗R R ∼= T and A⊗ ai ∼= A⊗R R ∼= A for all i = 1,2, . . . ,n. One
can check that (T ⊗ ai)R is essential in (A⊗ ai)R for all i = 1,2, . . . ,n. It follows
that (T ⊗R S)R is essential in (A⊗R S)R, and so (T ⊗R S)S is essential in (A⊗R S)S by
Lemma 7. Since (M⊗R S)S is an ef-extending module, (A⊗R S)S is a direct summand
of (M ⊗R S)S. Then, (A⊗R S)R is a direct summand of (M ⊗R S)R. We have that
(A⊗1)R is a direct summand of (M⊗R S)R and (A⊗1)R ≤ (M⊗1)R and obtain that
(A⊗1)R is a direct summand of (M⊗1)R. We deduce that A is a direct summand of
M. Thus, MR is an ef-extending module. □

An R-module M is called finitely Σ-ef-extending if every finite direct sum of copies
of M is ef-extending. The ring R is called right finitely Σ-ef-extending if RR is finitely
Σ-ef-extending ([17]).

Theorem 4. Let S be a right excellent extension of R. Then R is right finitely
Σ-ef-extending if and only if S is right finitely Σ-ef-extending.

Proof. Suppose RR is finitely Σ-ef-extending. Then for any k > 0, (Sk)R ∼= (Rnk)R
and so (Sk)S is ef-extending by Theorem 2. For the converse, suppose SS is finitely
Σ-ef-extending. Then for any k > 0, (Rk ⊗R S)S ∼= (Sk)S is ef-extending. By Theorem
3, (Rk)R is ef-extending. □

It can easily be checked that the theorem still holds (with the same proof) if “fi-
nitely Σ-ef-extending” is replaced by “coutably Σ-ef-extending” or “Σ-ef-extending”.

Corollary 10. Let S be a right excellent extension of R.
(1) Every right R-module is ef-extending if and only if every right S-module is

ef-extending.
(2) Every singular right R-module is ef-extending if and only if every singular

right S-module is ef-extending.
(3) Every nonsingular right R-module is ef-extending if and only if every nonsin-

gular right S-module is ef-extending.

Proof. It follows immediately by Theorem 2 and 3. □
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