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Abstract. In this paper, we propose a finite difference technique for approximating solutions of
first-order Volterra delay integro-differential equation. The presented numerical method acquires
a second-order convergence in discrete maximum norm. The derived results are numerically
validated in test problems to support the theoretical analysis.
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1. INTRODUCTION

After Volterra’s establishment, the Volterra integro-differential Equations (VIDEs)
appeared [13]. It then arise in a variety of physical applications such as diffusion
process, heat transfer, glassforming process, neutron diffusion, nanohydrodynamics
[24]. Detailed information about VIDEs in literature can be found in biology, engin-
eering and physics applications books [23].

In this work the following Volterra delay integro-differential equation (VDIDE) is
being analyzed:

u′(t)+a(t)u(t)+b(t)u(t − r)+
t∫

t−r

K(t,s)u(s)ds = f (t), t ∈ I, (1.1)

u(t) = ϕ(t), −r ≤ t ≤ 0. (1.2)

I = (0,T ] = ∪m
p=1Ip, Ip = {t : rp−1 < t ≤ rp},1 ≤ p ≤ m and rs = sr, for 0 ≤ s ≤

m, Ī = [0,T ], I0 = [−r,0]. a(t) ≥ 0, f (t),b(t)(t ∈ Ī),ϕ(t)(t ∈ I0) and K(t,s)((t,s) ∈
Ī × Ī) given functions, r is a constant delay. Moreover, we will assume that a,b, f ∈
C(Ī),ϕ ∈C2(I0) and ∂2K

∂s2 ∈C(Ī2)(s = 0,1,2).
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Integral equations (IEs) play an essential role in applied mathematics, since they
arise from various biological, physical and engineering problems. They can be used
to model various processes occurring in viscoelasticity, elasticity, diffraction prob-
lems, hydrodynamics, stochastic processes, epidemic studies [18], scattering in
quantum mechanics, dynamical systems, scattering of time-harmonic acoustic waves
[20], etc. Many initial value problems (IVPs) and boundary value problems involving
ordinary differential equations and partial differential equations can also be rewritten
as IEs. Many efforts have been made over time to study the solvability and character-
istics of these equations [12], as well as approaches for approximating their solutions
[22].

There has been a rise in interest in integro-differential equations (IDEs) in recent
years, with various studies focusing on developing more advanced and efficient ap-
proaches [21]. The IDEs be an important branch of modern mathematics. Engineer-
ing, electrostatics, mechanics, elasticity theory, potential and mathematical physics
are just a few of the fields where it commonly occurs.

Researchers have gradually developed an interest in the field of Volterra/Fredholm
IEs during the last fifty years and significant efforts have been made to numerically
solve them. The numerical solution to IEs can be found using [7]. There were also
numerous notable research in the field of IDEs. [11], for example, investigated the
numerical solution of non-linear IDEs using the meshless approach.

The Fredholm integro-differential equations (FIDEs) are solved using a different
kind of analytical and computational approaches in the literature [8].

Many physical processes of interest are described by delay differential equation
(DDE) in biology [9], medicine, chemistry, physics, engineering and economics,
among other fields [14]. The initial-boundary value problem for a linear pseudo-
parabolic equation (PPE) with delay is addressed in [4]. The stability bounds for
the investigated problem are obtained using the method of energy estimates.The one
dimensional initial-boundary problem for a PPE with time delay in the second spa-
tial derivative is considered in [1]. In this work constructed a higher order differ-
ence approach to solve the problem numerically and obtained an error estimate for
its solution. [6] discusses a singularly perturbed IVP for a quasilinear second-order
DDE. An exponentially fitted difference scheme constructed in an equidistant mesh
with first-order uniform convergence in the discrete maximum norm. The singularly
perturbed IVP for a linear first-order VIDE with delay is addressed in [15]. The au-
thors develop and analyze a numerical method with uniform convergence in the small
parameter. The differential part of the problem is discretized using implicit difference
rules, and the integral part is discretized using composite numerical quadrature rules.
Established layer-adapted mesh error estimations for the approximate solution.

In recent years, the numerical solution of VDIDEs has gotten a lot of attention [2].
In [3] the researchers not only examined the stability inequalities of VDIDEs with a
given order of derivatives, but also considered the high-order form of the VDIDEs.
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For approximating solutions of second-order Fredholm-Volterra IEs, the author of
[16] recommends a straightforward numerical approach. The method is based on
Picard iteration and uses an appropriate quadrature formula. The author shows the
existence and uniqueness of the solution under certain conditions and provides error
estimates for the approximation. In terms of Taylor polynomials around any point,
[17] presents a Taylor approach for finding the approximate solution to high-order
linear Volterra-Fredholm IEs under mixed conditions. [5] give an overview of ap-
proximating techniques for VDIDEs and other similar problems.

Singularly perturbed Volterra/Fredholm IDEs appear in many scientific applica-
tions. [19] reviewed the literature on Volterra integral and IDEs that are singularly
perturbed. The IVP for a quasilinear VDIDE with small parameter is studied in [25].
The method of integral identities is used to design and analyze a fitted difference
scheme using exponential basis functions and interpolating quadrature rules with the
weight and remainder term in integral form. The authors shown that the method
displays first-order uniform convergence in perturbation parameter. [10] provide a
comprehensive discussion of several strategies for the Volterra/Fredholm integral or
IDEs.

The current article is divided into four sections and deals with a numerical approx-
imation of the first-order VDIDE. In the Introduction, works in the area of IDEs were
compared and newer studies were presented. Further, the authors construct the abso-
lutely stable finite difference scheme in an equidistant mesh. The composite middle
rectangle rule was used for the integral term of (1.1). The approximate problem’s
stability bounds are addressed in Section 3. In the discrete maximum norm, the au-
thors shown that the method has a second-order accuracy. The paper concludes with
numerical examples.

2. THE CONSTRUCTION OF DIFFERENCE SCHEME

We introduce the uniform mesh ωN0 on

Ī : ωN0 = {ti = ih, i = 1,2, ...,N0;h = T/N0 = r/N}
(for simplicity we suppose that T/r is integer; i.e., T = mr), which contains N mesh
points at each subinterval Ip(1 ≤ p ≤ m) :

ωN,p = {ti : (p−1)N +1 ≤ i ≤ pN}, 1 ≤ p ≤ m,

and consequently

ωN0 =
m⋃

p=1

ωN,p.

To simplify the notation, we get gi = g(ti) for any function g(t) and yi represent an
approximation of u(t) at ti. Also, for any mesh function gi defined on ωN0 we use

gt̄,i =
gi −gi−1

h
, g(0.5)i =

1
2
(gi +gi−1) , gi− 1

2
= g

(
ti− 1

2

)
= g

(
ti −

h
2

)
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and discrete maximum norms

∥g∥∞,p ≡ ∥g∥∞,ωN,p = max
ω̄N,p

|g(t)|, ∥g∥∞,N0 ≡ ∥g∥∞,ωN0
.

Setting t = ti− 1
2

in (1.1) we have

u′
(

ti− 1
2

)
+a

(
ti− 1

2

)
u
(

ti− 1
2

)
+b

(
ti− 1

2

)
u
(

ti− 1
2
− r

)
+

ti− 1
2∫

ti− 1
2
−r

K
(

ti− 1
2
,s
)

u(s)ds = f
(

ti− 1
2

)
, (1 ≤ i ≤ N0) . (2.1)

Next, we use the relations

u′
(

ti− 1
2

)
= ut̄,i +R(1)

i , R(1)
i =− h2

24
u′′′(ξ(1)i ), ξ

(1)
i ∈ (ti−1, ti), (2.2)

u
(

ti− 1
2

)
= u(0,5)i +R(2)

i , R(2)
i =−h2

8
u′′(ξ(2)i ), ξ

(2)
i ∈ (ti−1, ti), (2.3)

u
(

ti− 1
2
− r

)
= u(0,5)i−N +R(3)

i , R(3)
i =−h2

8
u′′(ξ(3)i ), ξ

(3)
i ∈ (ti−1−N , ti−N). (2.4)

For the integral term of (2.1), after applying composite rectangle rule, we have
ti− 1

2∫
ti− 1

2
−r

K
(

ti− 1
2
,s
)

u(s)ds = h
i−1

∑
j=i−N+1

K
(

ti− 1
2
, ti
)

ui +R(4)
i ,

where

R(4)
i =

h2r
24

d2

ds2

(
K
(

ti− 1
2
,(ξ

(4)
i

)
u
(

ξ
(4)
i

))
, ti− 1

2
− r < ξi < ti− 1

2
. (2.5)

Consequently we get the exact relation for u(ti)

ut̄,i +ai− 1
2
u(0.5)i +bi− 1

2
u(0.5)i−N +h

i−1

∑
j=i−N+1

Ki− 1
2 , j

u j = fi− 1
2
−Ri, (2.6)

with remainder term

Ri = R(1)
i +ai− 1

2
R(2)

i +bi− 1
2
R(3)

i +R(4)
i , 1 ≤ i ≤ N0,

where R(k)
i (k = 1,2,3,4) are defined by (2.2), (2.3), (2.4) and (2.5), respectively.

Based on (2.6), we propose the following difference scheme for approximating (1.1)-
(1.2):

yt̄,i +ai− 1
2
y(0.5)i +bi− 1

2
y(0.5)i−N +h

i−1

∑
j=i−N+1

Ki− 1
2 , j

y j = fi− 1
2
, 1 ≤ i ≤ N0, (2.7)

yi = ϕi, −N ≤ i ≤ 0. (2.8)
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3. STABILITY BOUND AND ERROR ESTIMATE

Lemma 1. Consider the following difference problem:

vt̄,i +Aiv
(0.5)
i = Fi, 1 ≤ i ≤ N, (3.1)

v0 = µ (3.2)

with ti = x0 + ih, h = (X − x0)/N,Ai ≥ 0. Let | Fi |≤ Fi and Fi a nondecreasing
function. Then the solution of (3.1)-(3.2) satisfies

|vi| ≤ |µ|+(X − x0)Fi, 1 ≤ i ≤ N. (3.3)

Proof. The difference equation can be written as

vi =
2−hAi

2+hAi
vi−1 +

2h
2+hAi

Fi.

From here, it follows that
|vi| ≤ vi−1 +h|Fi|.

Therefore,

|vi| ≤ |v0|+h
i

∑
j=1

|Fj| ≤ |v0|+ ihFi,

which implies the validity of (3.3). □

Let zi = yi − ui. Then the error of approximate solution zi by (2.7) and (2.8) will
be

zt̄,i +ai− 1
2
z(0.5)i +bi− 1

2
z(0.5)i−N +h

i−1

∑
j=i−N+1

Ki− 1
2 , j

z j = Ri, 1 ≤ i ≤ N0, (3.4)

zi = 0, −N ≤ i ≤ 0. (3.5)

Lemma 2. The error function zi will satisfy

∥z∥∞,N0 ≤

[
1+ r

(
∥b∥∞,Ī +T K̄

)
er2T K̄

]m
−1

∥b∥∞,Ī +T K̄
∥R∥∞,N0 , (3.6)

where K̄ = max
I×I

|K(t,s)| .

Proof. For ti ∈ ωN,p, we have

|Ri −bi− 1
2
z(0.5)i−N −h

i−1

∑
j=i−N+1

Ki− 1
2 , j

z j| ≤ ∥R∥∞,N,p +∥b∥∞,Ī∥z∥∞,p−1 +hK̄
i

∑
j=i−N+2

|z j−1|

≤ ∥R∥∞,p +∥b∥∞,Ī∥z∥∞,p−1 +T K̄∥z∥∞,p−1 +hK̄
i

∑
j=(p−1)N+1

|z j−1|
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≤ ∥R∥∞,ωN0
+(∥b∥∞ +T K̄)∥z∥∞,p−1 +hK̄

i

∑
j=(p−1)N+1

|z j−1|.

Then after applying Lemma 1 to (3.4) on ωN,p we get

|zi| ≤ |z(p−1)N |+ r∥R∥∞,N0 + r
(
∥b∥∞,Ī+T K̄

)
∥z∥∞,p−1 + rhK̄

i

∑
j=(p−1)N+1

|z j−1|,

so

|zi| ≤ r∥R∥∞,N0 +
(
1+ r∥b∥∞,Ī+T K̄

)
∥z∥∞,p−1 + rhK̄

i

∑
j=(p−1)N+1

|z j−1|.

From here, by using the difference analogue of Gronwall’s inequality, we arrive at

|zi| ≤ reK̄r2ti∥R∥∞,N0 +
[
1+ r

(
∥b∥∞,Ī +T K̄

)]
eK̄r2ti∥z∥∞,p−1.

Therefore we have the first-order difference inequality of the form

∥z∥∞,p ≤ A∥z∥∞,p−1 +B (3.7)

with

A = 1+ r
(
∥b∥∞,Ī +T K̄

)
er2T K̄ , (3.8)

B = rer2T K̄∥R∥∞,N0 .

Resolving (3.7), by taking into consideration (3.8) we arrive at

∥z∥∞,p ≤
Ap −1
A−1

B, 1 ≤ p ≤ m,

which proves (3.6). □

Lemma 3. Let be fulfilled the assumptions above and u ∈ C3[0,T ]. Then for the
truncation error Ri, the following estimate holds:

∥R∥∞,ωN0
≤Ch2.

Proof. From explicit expressions of R(k)
i (k = 1,2,3,4), it is not hard to observe

that ∥R(k)∥∞,ωN0
≤Ch2. This, along with (2.2), (2.3), (2.4) and (2.5) give the desired

result. □

Theorem 1. Let u the solution of (1.1)-(1.2) and y the solution of (2.7)-(2.8).
Under the assuming conditions the solution of difference problem (2.7)-(2.8) second-
order uniformly convergent to the solution of (1.1)-(1.2):

∥y−u∥∞,ω̄N0
≤Ch2.

Proof. It is evidently from Lemma 2 and Lemma 3. □
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4. NUMERICAL RESULTS

In this section, we present a numerical results which illustrate the presented method.

Example 1. Consider the test problem:

u′ (t)+
2
3

u(t)− 1
3

t∫
t−1

u(s)ds =−1
3
+

1
3

t − 1
2
(1− e−

2t
3 ), t ∈ (0,2],

u(t) = 1, −1 ≤ t ≤ 0.

The exact solution is

u(t) =

{
e−

2
3 t , 0 ≤ t ≤ 1,

e
1
3 (t−1)−e1−t

2 −1+ e−
2
3 t + e−

2
3 (1−t), 1 ≤ t ≤ 2.

We define the exact errors
eN = ∥y−u∥

∞,ω̄N0
,

where y is the approximate solution of u for the various values of N. Experimental
rates of convergence are computed by

pN =
ln
(
eN/e2N

)
ln2

.

From Table 1 we observe that the experimental rate of convergence is monotonically
increasing towards 2, so in agreement with the theoretical analysis from Theorem 1.

TABLE 1. The numerical results for the test problem.

N = 64 N = 128 N = 256 N = 512 N = 1024
0.031121 0.008514 0.002250 0.000572 0.000144

1.87 1.92 1.98 1.99

The graph of the exact and approximation solution of Example 1 in the interval I1
is given in the graphs below:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Numerical Results of Example 4.1 for I
1

Exact solution

Solution for N=64
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The graph of the exact and approximation solution of Example 1 in the interval I2
is given in the graphs below:

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Numerical Results of Example 4.1 for I
2

Exact solution

Solution for N=64

Example 2. Consider the IVP

u′(t)+ tu(t)+u(t −1)+
t∫

t−1

etsds = sin
πt
4
, t ∈ (0,2],

u(t) =
√

1− t, −1 ≤ t ≤ 0,

whose exact solution is not available. Using the double mesh method, we evaluate
errors in the computed solution and convergence rates. We calculate another approx-
imate solution y2N on a mesh that is obtained by uniformly bisecting the original
mesh ω̄N0 . We calculate the errors for various values of N by

EN =
∥∥yN − y2N

∥∥
∞,ω̄N0

.

Furthermore, the experimental convergence rates are calculated in the same way as
in Example 2.

TABLE 2. The numerical results for the test problem.

N = 64 N = 128 N = 256 N = 512 N = 1024
0.048089 0.013620 0.003675 0.000958 0.000243

1.82 1.89 1.94 1.98

5. CONCLUSION

We have considered the numerical approximation of first-order VDID problem.
In discrete maximum norm, the method has a second-order accuracy. The obtained
theoretical results have been tested on particular problems. The method given here
can be used to solve more complex linear and nonlinear VDIDEs.
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