
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 26 (2025), No. 1, pp. 209–227 DOI: 10.18514/MMN.2025.4553

CONVERGENCE ANALYSIS OF THE LEGENDRE WAVELETS
METHOD FOR A CLASS OF FREDHOLM-VOLTERRA

INTEGRO-DIFFERENTIAL EQUATIONS OF
FRACTIONAL-ORDER

MARZIYEH FELAHAT

Received 26 January, 2023

Abstract. In this paper, we develop a Legendre wavelets method for the numerical solution of
Fredholm-Volterra integro-differential equations of fractional order. The Caputo sense is used
to explain the fractional derivative operator. The proposed scheme is verified by presenting
examples that their exact solutions are available. Numerical results show that the approximation
errors decay exponentially in L2-norm.
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1. INTRODUCTION

Many natural phenomena in science and engineering may be modeled using math-
ematical tools in the form of fractional calculus. The integro-differential calculus
theory of fractional order allows explaining the natural phenomena more precisely
[17, 24]. The integro-differential equations of fractional order has many applica-
tions in various scientific fields, such as physics,engineering, economics, biology,
etc. Hence, solving these equations is a crucially important task. Moreover, most of
these problems cannot be thoroughly solved, so finding a proper approximate solu-
tion by implementing numerical methods can be very beneficial. In the last few
decades, some numerical methods have been implemented to solve differential and
fractional integro-differential equations of fractional order; for example, the spec-
tral method [28], reproducing kernel Hilbert space method [5, 14], wavelet method
[18, 19, 27, 30], collocation method [6, 25], fractional differential transform method
[2,4,10], variational iteration method [22], homotopy perturbation method [1,22,26],
and Adomian decomposition method [21].
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BY 4.0.
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In this paper, a new computational method based on the Legendre wavelets is in-
troduced to solve a class of Fredholm-Volterra integro-differential equations of frac-
tional order in the following form: c1y(x)+ c2y′(x) = f (x)+λ

∫ 1
0 p(x, t)Dα1

0+y(t)dt +µ
∫ x

0 q(x, t)Dα2
0+y(t)dt, x ∈ [0,1],

y(0) = c0, 0 < αi < 1, i = 1,2,
(1.1)

where Dα

0+ is the Caputo’s derivative operator of fractional order α, y is an unknown
function, f is a known function on the interval [0,1], p, q are known functions over
the range [0,1]× [0,1], considered to be smooth enough, and c0, c1, c2, λ, µ are
constants.

In [9], the existence and uniqueness of the solution to equation (1.1) are investig-
ated. In [3], the authors use a backward and central-difference formula for approx-
imating solutions at mesh points. Yusefi et al. in [28] apply a Chebyshev-Legendre
spectral method to approximate the solution of equation (1.1).

In this paper, inspired by [11], we develop an approach on the basis of Legendre
wavelet method to solve equation (1.1). Furthermore,we present a precise analysis
on the convergence of this method and examine the convergence of the approximate
solutions with L2-norm.

The rest of the paper is organized as follows. In Section 2, we review some of
the basic definitions and mathematical tools of the fractional calculus theory needed
for later use. We devote Section 3 to introduce the basic definitions of wavelets, the
Legendre polynomials of order m and functions approximation using Legendre wave-
lets. Additionally, in this section, we obtain the integral and derivative operational
matrices of equation (1.1). We investigate the convergence of the approximate solu-
tion of equation (1.1) using the Legendre wavelets method in Section 4. In Section
5, we introduce some numerical examples of Fredholm-Volterra integro-differential
equations of fractional order for describing the proposed algorithm, and in the final
section, we give a brief summary of the paper.

2. PRELIMINARIES

In this section, we review the definitions and auxiliary results regarding fractional
calculus that will be required later in the paper. The properties of the following
fractional integral and derivative operators can be found in [12, 13, 15, 16, 20, 24].

2.1. Riemann-Liouville fractional integral operator

The Riemann-Liouville fractional integral operator of order α, α ≥ 0, on the usual
Lebesgue space L[0,b] is given as follows:

Iα
0+u(x) =

1
Γ(α)

∫ x

0
(x− t)α−1u(t)dt, α > 0, x > 0, (2.1)
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where Γ is the well-known Gamma function, and I0
0+u(x) = u(x) for x > 0. Some of

the important properties of the Riemann-Liouville fractional integral operator are as
follows:

(a1) Iα
0+Iβ

0+u(x) = Iα+β

0+ u(x),

(a2) Iα
0+Iβ

0+u(x) = Iβ

0+Iα
0+u(x),

(a3) Iα
0+xβ = Γ(β+1)

Γ(α+β+1)x
α+β.

2.2. Caputo’s fractional derivative operator

Let m ∈N, then the smallest integer greater than or equal to α, that is, the Caputo’s
fractional derivative operator of order α > 0, is obtained as follows:

Dα
0+u(x) =


Im−α

0+ Dmu(x), m−1 < α < m,

Dmu(x), α = m
(2.2)

for x > 0. A few important features of the Caputo’s fractional derivative operator are
as follows:

(b1) Iα
0+ Dα

0+u(x) = u(x)−∑
m−1
k=0 u(k)(0+) xk

k! ,

(b2) Dα
0+Iα

0+u(x) = u(x),

(b3) Dα
0+xβ =

{
0, β ∈ N∪{0} and β < m,

Γ(β+1)
Γ(β−α+1)x

β−α, β ∈ N∪{0} and β ≥ m.

When α∈N, the Caputo’s differential operator is the same as the ordinary differential
operator. Similar to the ordinary differential operator, Caputo’s fractional differenti-
ation operator is also a linear operator, namely,

Dα
0+

(
C1u1(x)+C2u2(x)

)
=C1Dα

0+u1(x)+C2Dα
0+u2(x),

where C1, C2 are constants.

3. IMPLEMENTATION

Wavelets comprise a class of functions formed by translation and dilation of a
single function called mother wavelet ψ(x) that is given as:

ψa,b(x) =
1√
| a |

ψ(
x−b

a
), a,b ∈ R, a ̸= 0, (3.1)

where a and b are the dilation and translation parameters, respectively.
Limiting a and b to discrete values as a = a− j

0 and b = kb0a− j
0 , where a0 > 1,

b0 > 1, j,k ∈ N, we can find a class of discrete wavelets as follows:

ψ j,k(x) =| a0 |
j
2 ψ(a j

0x− kb0). (3.2)

This set of wavelets forms an orthogonal base for L2(R).
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In particular, when a0 = 2 and b0 = 1,ψ j,k(x) constructs an orthonormal basis, that
is 〈

ψ j,k,ψl,m
〉
= δ jlδkm, (3.3)

where δ jl denotes the Kronecker delta.

3.1. Legendre wavelets

The Legendre polynomial of order m represented by pm(x) is defined on the inter-
val [−1,1] by the following recurrence formula:

p0(x) = 1,

p1(x) = x,

pm+2(x) =
2m+3
m+2

xpm+1(x)−
m+1
m+2

pm(x) m = 0,1,2, . . . .

The Legendre wavelets are given over the range [0,1) as:

ψnm(x) =

 (m+ 1
2)

1
2 2

l
2 pm(2lx−2n+1), n−1

2l−1 ≤ x < n
2l−1 ,

0, otherwise,

where l ∈ N, n = 1,2,3, . . . ,2l−1 and m = 0,1,2, . . . ,M − 1; m denotes the order of
the Legendre polynomial, and M is a positive integer.

3.2. Approximating functions using Legendre wavelets

Every function y with square integrability over the range [0,1] can be expanded in
terms of the Legendre wavelet polynomials as follows:

y(x) =
∞

∑
i=1

∞

∑
j=0

yi jψi j(x), (3.4)

where the Fourier coefficients yi j are given as follows:

yi j =
〈
y(x),ψi j(x)

〉
.

If the infinite series in (3.4) is truncated, equation (3.4) can be rewritten as:

y(x)∼= yN(x) =
2l−1

∑
i=1

M−1

∑
j=0

yi jψi j(x) = Ψ
T (x)Y, (3.5)

where Y and Ψ(x) are two N ×1,(N = 2l−1 ×M) matrices given by

Y = [y10,y11, . . . ,y1M−1,y20,y21, . . . ,y2M−1, . . . ,y2l−10, . . . ,y2l−1M−1]
T ,

Ψ(x) = [ψ10,ψ11, . . . ,ψ1M−1,ψ20, . . . ,ψ2M−1, . . . ,ψ2l−10, . . . ,ψ2l−1M−1]
T .

(3.6)
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Correspondingly, to expand functions including f ∈ L2([0,1]) and k, h ∈ L2([0,1]×
[0,1]) in terms of Legendre wavelet functions, we have:

f (x)∼= fN(x) =
N

∑
i=1

fiψi(x) = Ψ
T (x)F,

k(x, t)∼= kN(x, t) =
N

∑
i=1

N

∑
j=1

ki jψi(x)ψ j(t) = Ψ
T (x)KΨ(t),

h(x, t)∼= hN(x, t) =
N

∑
i=1

N

∑
j=1

hi jψi(x)ψ j(t) = Ψ
T (x)HΨ(t),

(3.7)

where K and H are N ×N matrices, and F is N ×1, given as follows:

K = [ki j]N×N , ki j =

〈
ψi(x),⟨k(x, t),ψ j(t)⟩

〉
, i, j = 1,2, · · · ,N,

H = [hi j]N×N , hi j =

〈
ψi(x),⟨h(x, t),ψ j(t)⟩

〉
, i, j = 1,2, · · · ,N,

F = [ f10, . . . , f1M−1, f20, . . . , f2M−1, . . . , f2l−10, . . . , f2l−1M−1]
T ,

fi j =
〈

f (x),ψi j(x)
〉
, i, j = 1,2, · · · ,N.

In the following, we will apply our method to Fredholm-Volterra integro-differential
equations of fractional order (1.1). First, using the Caputo’s fractional derivative
operator (2.2), equation (1.1) is obtained as follows:

c1y(x)+ c2y′(x) = f (x)+
λ

Γ(1−α1)

∫ 1

0
p(x, t)

∫ t

0

y′(s)
(t − s)α1

ds dt

+
µ

Γ(1−α2)

∫ x

0
q(x, t)

∫ t

0

y′(s)
(t − s)α2

ds dt.
(3.8)

Then, by changing the order of integration in equation (3.8), we have:

c1y(x)+ c2y′(x) = f (x)+
λ

Γ(1−α1)

∫ 1

0
y′(s)

∫ 1

s

p(x, t)
(t − s)α1

dt ds

+
µ

Γ(1−α2)

∫ x

0
y′(s)

∫ x

s

q(x, t)
(t − s)α2

dt ds.
(3.9)

However, we rewrite equation (3.9) as follows:

c1y(x)+ c2y′(x) = f (x)+λ

∫ 1

0
k(x,s)y′(s)ds+µ

∫ x

0
h(x,s)y′(s)ds, (3.10)

where k(x,s) = 1
Γ(1−α1)

∫ 1
s

p(x,t)
(t−s)α1 dt and h(x,s) = 1

Γ(1−α2)

∫ x
s

q(x,t)
(t−s)α2 dt.
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Now, by substituting equations (3.5) and (3.7) into equation (3.10) we obtain

c1Ψ
T (x)Y+ c2Ψ

T (x)DY ∼= Ψ
T (x)F+λ

∫ 1

0
Ψ

T (x)KΨ(s)ΨT (s)DY ds

+µ
∫ x

0
Ψ

T (x)HΨ(s)ΨT (s)DY ds.
(3.11)

Since Ψ(s)ΨT (s)
(

DY
)
= DYΨ(s), where DY is anN ×N matrix, we have

c1Ψ
T (x)Y+ c2Ψ

T (x)DY ∼= Ψ
T (x)F+λΨ

T (x)K
∫ 1

0
DYΨ(s) ds

+µΨ
T (x)H

∫ x

0
DYΨ(s) ds.

(3.12)

Moreover,
∫ 1

0 Ψ(s) ds = w and
∫ x

0 Ψ(s) ds = PΨ(x), where w and P are N × 1 and
N ×N matrices, respectively. Therefore, we have

Ψ
T (x)

[
c1Y+ c2DY

]
∼= Ψ

T (x)F+λΨ
T (x)

(
KDYw

)
+µΨ

T (x)
(

HDYP
)

Ψ(x).
(3.13)

If we assume KDYw = WY and ΨT (x)
(

HDYP
)

Ψ(x) = ΨT (x)UY, where W and U
are N ×N matrices, we can write

Ψ
T (x)

[
c1Y+ c2DY

]
∼= Ψ

T (x)
[
F+λWY+µUY

]
. (3.14)

Now, by replacing ∼= with = in equation (3.14) and using orthonormality of Ψ(x), we
have

c1Y+ c2DY = F+λWY+UY. (3.15)
From equation (3.15), we obtain the following system:(

c1I+ c2D−λW−µU
)

Y = F. (3.16)

Theorem 1 ([11]). To solve Fredholm-Volterra integral equation, the operational
matrix of integration, P, is given as:

PN×N =
1
2l


T S S . . . S
O T S . . . S
O O T . . . S
...

...
...

. . .
...

O O O · · · T

 ,

where O, S and T are square matrices of order M given as follows:

OM×M =


0 0 . . . 0
0 0 · · · 0
...

...
...

...
0 0 0 0

 , SM×M =


2 0 . . . 0
0 0 · · · 0
...

...
...

...
0 0 0 0

 ,
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TM×M =



1
1√
3

0 0 . . . 0 0

−
√

3
3

0

√
3

3
√

5
0 . . . 0 0

0 −
√

5
5
√

3
0

√
5

5
√

7
. . . 0 0

0 0 −
√

7
7
√

5
0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 . . . −
√

2M−1
(2M−1)

√
2M−3

0



.

Theorem 2. To solve Fredholm-Volterra integro-differential equations of frac-
tional order, the operational matrix of ordinary derivative, D, is given as follows:

DN×N = 2l


L O O . . . O
O L O . . . O
O O L . . . O
...

...
...

. . .
...

O O O · · · L

 ,

where O and L are square matrices of order M given by

OM×M =


0 0 . . . 0
0 0 · · · 0
...

...
...

...
0 0 0 0


and

L=



0 0 0 0 . . . 0 0 . . .√
3×1 0 0 0 . . . 0 0 . . .
0

√
5×3 0 0 . . . 0 0 . . .√

7×1 0
√

7×5 0 . . . 0 0 . . .

...
...

...
...

. . .
...

... . . .

0
√
(2i−3)×3 0

√
(2i−3)×7 . . .

√
(2i−3)(2 j−3) 0 . . .√

(2i−1)×1 0
√
(2i−1)×5 0 . . . 0

√
(2i−1)(2 j−1) . . .

...
...

...
...

. . .
...

... . . .


.

Proof. First, we find the operational matrix of ordinary derivative for l = 2 and
M = 3. Next, we obtain the general matrix D. The basis functions ψnm(x), n = 1,2,
m = 0,1,2, and as a result, the matrix

Ψ6×1(x) = [ψ10(x) ψ11(x) ψ12(x) ψ20(x) ψ21(x) ψ22(x)]T
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for l = 2 and M = 3, is obtained as follows:

ψ10(x) =
√

2,

ψ11(x) =
√

6(4x−1),

ψ12(x) =
√

10
[

3
2
(4x−1)2 − 1

2

]
,

 0 ≤ x <
1
2
, (3.17)

and

ψ20(x) =
√

2,

ψ21(x) =
√

6(4x−3),

ψ22(x) =
√

10
[

3
2
(4x−3)2 − 1

2

]
,


1
2
≤ x < 1. (3.18)

By deriving from equations (3.17) and (3.18), we obtain the following equations:

dψ10(x)
dx

= 0

= 0ψ10(x)+0ψ11(x)+0ψ12(x)+0ψ20(x)+0ψ21(x)+0ψ22(x)

= 22
[

0,0,0,0,0,0
]

Ψ6×1(x).

dψ11(x)
dx

= 4
√

3

= 4
√

3ψ10(x)+0ψ11(x)+0ψ12(x)+0ψ20(x)+0ψ21(x)+0ψ22(x)

= 22
[√

3,0,0,0,0,0
]

Ψ6×1(x).

dψ12(x)
dx

= 12
√

10(4x−1)

= 0ψ10(x)+4
√

15ψ11(x)+0ψ12(x)+0ψ20(x)+0ψ21(x)+0ψ22(x)

= 22
[

0,
√

5×3,0,0,0,0
]

Ψ6×1(x).

Similarly, we have

dψ20(x)
dx

= 0

= 0ψ10(x)+0ψ11(x)+0ψ12(x)+0ψ20(x)+0ψ21(x)+0ψ22(x)

= 22
[

0,0,0,0,0,0
]

Ψ6×1(x).
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dψ21(x)
dx

= 4
√

3

= 4
√

3ψ10(x)+0ψ11(x)+0ψ12(x)+0ψ20(x)+0ψ21(x)+0ψ22(x)

= 22
[√

3×1,0,0,0,0,0
]

Ψ6×1(x).

dψ22(x)
dx

= 12
√

10(4x−3)

= 0ψ10(x)+4
√

15ψ11(x)+0ψ12(x)+0ψ20(x)+0ψ21(x)+0ψ22(x)

= 22
[

0,
√

5×3,0,0,0,0
]

Ψ6×1(x).

Therefore, we have
dΨ6×1(x)

dx
= D6×6Ψ6×1(x),

where D6×6 is a square matrix of order 6 that can be structured as a block matrix as
follows:

D6×6 = 22
[

L3×3 O3×3
O3×3 L3×3

]
,

where

L3×3 =

 0 0 0√
3 0 0

0
√

5×3 0

 and O3×3 =

0 0 0
0 0 0
0 0 0

 .

By assuming that the theorem is true for l −1 and M−1, it can be easily shown that
for general l and M, we can write

dΨ6×1(x)
dx

= DN×NΨN×1(x), (N = 2l−1 ×M), (3.19)

where D is a square matrix of order N that can be structured as a block matrix as
follows:

DN×N = 2l


L O O . . . O
O L O . . . O
O O L . . . O
...

...
...

. . .
...

O O O · · · L

 ,

where O and L are square matrices of order M as follows:

OM×M =


0 0 . . . 0
0 0 · · · 0
...

...
...

...
0 0 0 0


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and

L=



0 0 0 0 . . . 0 0 . . .√
3×1 0 0 0 . . . 0 0 . . .
0

√
5×3 0 0 . . . 0 0 . . .√

7×1 0
√

7×5 0 . . . 0 0 . . .

...
...

...
...

. . .
...

... . . .

0
√
(2i−3)×3 0

√
(2i−3)×7 . . .

√
(2i−3)(2 j−3) 0 . . .√

(2i−1)×1 0
√
(2i−1)×5 0 . . . 0

√
(2i−1)(2 j−1) . . .

...
...

...
...

. . .
...

... . . .


.

□

4. ERROR ESTIMATION

In this section, we prove the convergence of the proposed numerical scheme for
fractional Fredholm-Volterra integro-differential equations in L2-norm. We also re-
view some of the properties and elementary lemmas, required for obtaining the main
results.

Lemma 1 ([8]). Assume that u,ω,β ∈ C([0,1]) with β(x) ≥ 0. If u satisfies the
inequality

u(x)≤ ω(x)+
∫ x

0
β(t)u(t)dt, x ∈ [0,1],

then

u(x)≤ ω(x)+
∫ x

0
β(t)

(
ω(t)exp

(∫ x

t
β(s)ds

))
dt, x ∈ [0,1].

In other words, if ω is non-decreasing over[0,1], the inequality mentioned above
reduces to

u(x)≤ ω(x)exp
(∫ x

t
β(s)ds

)
, x ∈ [0,1].

Lemma 2 ([8]). Suppose that k is a given kernel function over [0,1]× [0,1]. If
u ∈ Lp(0,1), for 1 ≤ p ≤ ∞, the integral

K(u(x)) =
∫ x or 1

0
k(x, t)u(t)dt

is well-defined in Lp(0,1), and there exists a γ0 so that

∥Ku∥p ≤ γ0∥u∥p.

Suppose that pN is the interpolation projection operator from L2(0,1) to PN(0,1),
namely, pN : L2(0,1)→PN(0,1) such that, for each u∈ L2(0,1), we have pN(u(x))=
∑

N
j=0 u jψ j(x), and∫ 1

0

(
u(x)− pN(u(x))

)
v(x)dx = 0, ∀v ∈ PN(0,1).
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Moreover, the following inequality for interpolation in Legendre wavelet polynomials
and shifted Gauss-Legendre nodal points r ≥ 1 (or for any fixed r ≤ N) can be easily
written as

∥u− pN(u)∥HJ(0,1) ≤ γ
∗N2J− 1

2−r|u|r;N ,

∥u− pN(u)∥HJ(0,1) ≤ δ
∗N−r|u|r;N ,

(4.1)

where u ∈ HI(0,1), γ∗ and δ∗ are constants independent of N and 0 ≤ J ≤ I, see [7].

Theorem 3. For values of N that are large enough, the Legendre wavelet polyno-
mial approximations yN converge to exact solution in L2-norm, namely,

∥y− yN∥→ 0 as N → ∞.

Proof. Suppose that yN(x) is an approximate solution obtained by using the Le-
gendre wavelet method for equation (3.10). Then, we have

c1yN(x)+ c2y′N(x) = fN(x)+λ

∫ 1

0
kN(x, t)y′N(t)dt +µ

∫ x

0
hN(x, t)y′N(t)dt. (4.2)

Consequently, fN(x), kN(x, t) and hN(x, t) are Legendre interpolation polynomials
defined for functions f (x), k(x, t) and h(x, t), respectively. Now, by integrating the
sides of equations (3.10) and (4.2), we have

c1

∫ x

0
y(t)dt + c2y(x)− c2y(0) =

∫ x

0
f (t)dt +λ

∫ x

0

∫ 1

0
k(t,s)y′(s)dsdt

+µ
∫ x

0

∫ t

0
h(t,s)y′(s)dsdt,

(4.3)

c1

∫ x

0
yN(t)dt + c2yN(x)− c2y(0) =

∫ x

0
fN(t)dt +λ

∫ x

0

∫ 1

0
kN(t,s)y′N(s)dsdt

+µ
∫ x

0

∫ t

0
hN(t,s)y′N(s)dsdt.

(4.4)

By subtracting equation (4.4) from equation (4.3), we have

EN(y(x)) =−c1

c2

∫ x

0
EN(y(t))dt +

1
c2

∫ x

0
EN( f (t))dt

+
λ

c2

∫ x

0

∫ 1

0
EN(k(t,s))y′N(s)dsdt +

µ
c2

∫ x

0

∫ t

0
EN(h(t,s))y′N(s)dsdt

+
λ

c2

∫ x

0

∫ 1

0
k(t,s)DEN(y(s))dsdt +

µ
c2

∫ x

0

∫ t

0
h(t,s)DEN(y(s))dsdt,

(4.5)
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therefore,

EN(y(x)) = y(x)− yN(x),

DEN(y(s)) = y′(s)− y′N(s),

EN( f (t)) = f (t)− fN(t),

EN(k(t,s)) = k(t,s)− kN(t,s),

EN(r(t,s)) = h(t,s)−hN(t,s).

From equation (4.5), we can obtain

|EN(y(x))| ≤ |c1

c2
|
∫ x

0
|EN(y(t))|dt + | 1

c2
|
∫ x

0
|EN( f (t))|dt

+ | λ

c2
|
∫ x

0
|
∫ 1

0
EN(k(t,s))y′N(s)ds|dt + | µ

c2
|
∫ x

0
|
∫ t

0
EN(h(t,s))y′N(s)ds|dt

+ | λ

c2
|
∫ x

0
|
∫ 1

0
k(t,s)DEN(y(s))ds|dt + | µ

c2
|
∫ x

0
|
∫ t

0
h(t,s)DEN(y(s))ds|dt

≤ γ1

∫ x

0
|EN(y(t))|dt + γ2

∫ x

0
|EN( f (t))|dt

+ γ3

∫ x

0
|
∫ 1

0
EN(k(t,s))y′N(s)ds|dt + γ4

∫ x

0
|
∫ t

0
EN(h(t,s))y′N(s)ds|dt

+ γ5

∫ x

0
|
∫ 1

0
k(t,s)DEN(y(s))ds|dt + γ6

∫ x

0
|
∫ t

0
h(t,s)DEN(y(s))ds|dt.

(4.6)

Applying Lemma 1 leads to

|EN(y(x))| ≤ exp(
∫ x

0
γ1dt){γ2

∫ x

0
|EN( f (t))|dt + γ3

∫ x

0
|
∫ 1

0
EN(k(t,s))y′N(s)ds|dt

+ γ4

∫ x

0
|
∫ t

0
EN(h(t,s))y′N(s)ds|dt + γ5

∫ x

0
|
∫ 1

0
k(t,s)DEN(y(s))ds|dt

+ γ6

∫ x

0
|
∫ t

0
h(t,s)DEN(y(s))ds|dt}

≤ γ7

∫ x

0
|EN( f (t))|dt + γ8

∫ x

0
|
∫ 1

0
EN(k(t,s))y′N(s)ds|dt

+ γ9

∫ x

0
|
∫ t

0
EN(h(t,s))y′N(s)ds|dt + γ10

∫ x

0
|
∫ 1

0
k(t,s)DEN(y(s))ds|dt

+ γ11

∫ x

0
|
∫ t

0
h(t,s)DEN(y(s))ds|dt.

(4.7)
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Equivalently, by using L2-norm, we obtain

∥EN(y)∥2 ≤ γ7∥
∫ x

0
|EN( f (t))|dt∥2 + γ8∥

∫ x

0
|
∫ 1

0
EN(k(t,s))y′N(s)ds|dt∥2

+ γ9∥
∫ x

0
|
∫ t

0
EN(h(t,s))y′N(s)ds|dt∥2 + γ10∥

∫ x

0
|
∫ 1

0
k(t,s)DEN(y(s))ds|dt∥2

+ γ11∥
∫ x

0
|
∫ t

0
h(t,s)DEN(y(s))ds|dt∥2.

(4.8)

Using Lemma 2, the above inequality reduces to

∥EN(y)∥2 ≤ γ12∥EN( f )∥2 + γ13∥
∫ 1

0
EN(k(.,s))y′N(s)ds∥2

+ γ14∥
∫ t

0
EN(h(.,s))y′N(s)ds∥2 + γ15∥

∫ 1

0
k(.,s)DEN(y(s))ds∥2

+ γ16∥
∫ t

0
h(.,s)DEN(y(s))ds∥2.

(4.9)

Since the linear derivative operator is continuous and bounded [23], a constant δ0 ≥ 0
exists such that

∥y′N∥r;N ≤ δ0∥yN∥r;N , r ∈ N and r ≤ N. (4.10)

According to equations (4.1) and (4.10) and Lemma 2, we can write

∥
∫ 1

0
EN(k(.,s))y′N(s)ds∥2 ≤ δ

∗N−r∥
∫ 1

0
k(.,s)y′N(s)ds∥r;N

≤ δ
∗
γ0N−r∥y′N∥r;N

≤ (δ∗γ0δ0)N−r∥yN∥r;N

≤ δ1N−r(∥y∥r;N +∥EN(y)∥r;N)

≤ δ1N−r(∥y∥r;N +∥EN(y)∥1;N)

≤ δ1N−r(∥y∥r;N + γ
∗N

3
2−r|y|r;N).

Therefore,

∥
∫ 1

0
EN(k(.,s))y′N(s)ds∥2 ≤ δ1N−r∥y∥r;N +δ2N

3
2−2r|y|r;N , (4.11)

where δ2 = δ1γ∗. Similarly,

∥
∫ t

0
EN(h(.,s))y′N(s)ds∥2 ≤ δ3N−r∥y∥r;N +δ4N

3
2−2r|y|r;N . (4.12)
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In the same way, from Lemma 2 and equation (4.10), we obtain

∥
∫ 1

0
k(.,s)DEN(y(s))ds∥2 ≤ γ0∥DEN(y)∥2

≤ γ0δ0∥EN(y)∥2

≤ (γ0δ0δ
∗)N−r|y|r;N .

Therefore,

∥
∫ 1

0
k(.,s)DEN(y(s))ds∥2 ≤ δ5N−r|y|r;N , (4.13)

where δ3 = γ0δ0δ∗. Similarly,

∥
∫ t

0
h(.,s)DEN(y(s))ds∥2 ≤ δ6N−r|y|r;N . (4.14)

In a manner similar to equation (4.1), we may write

∥EN( f )∥2 ≤ γ
∗N−r| f |r;N . (4.15)

Ultimately, by substituting (4.11)-(4.15) in (4.9), we get the following result:

∥EN(y)∥2 ≤ γ12

(
γ
∗N−r| f |r;N

)
+ γ13

(
δ1N−r∥y∥r;N +δ2N

3
2−2r|y|r;N

)
+ γ14

(
δ3N−r∥y∥r;N +δ4N

3
2−2r|y|r;N

)
+ γ15

(
δ5N−r|y|r;N

)
+ γ16

(
δ6N−r|y|r;N

)
.

Hence,

∥EN(y)∥2 ≤C1N−r| f |r;N +C2N−r∥y∥r;N +C3N
3
2−2r|y|r;N +C4N−r|y|r;N (4.16)

where C1 = γ∗γ12, C2 = δ1γ13 +δ3γ14, C3 = δ2γ13 +δ4γ14 and C4 = δ5γ15 +δ6γ16.
Equation (4.16) proves the convergence of the approximate solution in L2-norm. The
proof is completed here. □

5. NUMERICAL EXAMPLES

In this section, we use the Legendre wavelet method for solving Fredholm-Volterra
integro-differential equations of fractional order. In order to show the efficiency
and accuracy of the presented method, four test equations are taken into account as
examples. Numerical results in Table 1 as well as Figures 1 and 2 show that approx-
imate solutions converge to exact solutions. All computations were conducted using
the Maple software package.

Example 1 ([29]). We take into account the following Fredholm integro-differential
equation of fractional order

y′(x) = f (x)+
∫ 1

0
xtD

1
2
0+y(t)dt, 0 < x < 1,
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TABLE 1. Difference in absolute error of exact and approximate
solutions for Examples 1 and 4.

x Example 1 for k = 2 and M = 3 Example 4 for k = 2 and M = 3

0.0 1.33679267695312×10−9 4.95687117107094×10−10

0.1 1.11257569166759×10−9 4.15374405495941×10−10

0.2 9.40240333784253×10−10 3.31229605283749×10−10

0.3 8.19786603303097×10−10 2.43252716470520×10−10

0.4 7.51214500224126×10−10 1.51443739056252×10−10

0.5 7.34524024547339×10−11 5.58026730409458×10−11

0.6 7.69715176272737×10−10 4.36704815753983×10−10

0.7 8.56787955400318×10−10 1.46975724792781×10−10

0.8 9.95742361930083×10−10 2.54113056611201×10−10

0.9 1.18657839586203×10−9 3.65082477030659×10−10

1.0 1.42929605719617×10−9 4.79883986051156×10−10

where y(0) = 0 and y(x) = 14x are the initial condition and the exact solution, re-
spectively;

f (x) = 14
(

1− x
2.5Γ(1.5)

)
.

Using the presented method, for k = 2 and M = 3, the approximate solution is ob-
tained as follows:
ynumeric(x) =−5.26142047709630×10−10 +13.9999999999075x

−8.10650176803679×10−11(4x−1)2 −8.10650679514575×10−11(4x−3)2

∼= 14x.

This is almost the exact solution to the problem. The absolute error between the
numerical and exact solution is tabulated in Table 1 for Example 1. The maximum
errors with infinite- and L2-norms are given as follows:

∥ynumeric − yexact∥∞ = 1.429296057×10−9,

∥ynumeric − yexact∥L2 = 9.705274462×10−10.

Example 2 ([29]). We consider the following Fredholm integro-differential equa-
tion of fractional order

y′(x) = f (x)+
∫ 1

0
x2t2D

1
4
0+y(t)dt, 0 < x < 1,

with the initial condition y(0) = 0 and the exact solution y(x) = 2x4 − x
3
2 . The nu-

merical results for this example with f (x) = 8x3 − 3
2 x

1
2 −

(
48

6.75Γ(4.75) −
Γ(2.5)

4.25Γ(2.25)

)
x2

plus values of k = 2 and M = 5 are shown in Figure 1.
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FIGURE 1. Exact and approximate solutions compared for k = 2 and
M = 5, Example 2.

Example 3. We consider the following Fredholm integro-differential equation of
fractional order

2y′(x)+ y(x) = f (x)+
1
3

∫ x

0
x3tD

1
2
0+y(t)dt, 0 < x < 1,

with the initial condition y(0) = 1, the exact solution y(x) = 8x+ 3x3 and f (x) =
16+ 8x+ 18x2 +(3− 128

45Γ(0.5))x
3. The exact and numerical solutions are shown in

Figure 2 for k = 2 and M = 5.

Example 4. We consider the following Volterra integro-differential equation of
fractional order

y′(x)+ y(x) = 2+ x+
x

3
2

Γ(2.5)
−

∫ x

0
D

1
2
0+y(t)dt, 0 < x < 1,

with the initial condition y(0) = 1 and the exact solution y(x) = x+1. For k = 2 and
M = 3, the approximate solution obtained using our method is given as follows:

ynumeric(x) = 1.00000000053072+0.999999999074120x−9.09330911332095

×10−12(4x−1)2 −2.88196776492321×10−12(4x−3)2 ∼= x+1,

which is equivalent to the exact solution. For Example 4, the absolute error between
the numerical and exact solutions is reported in Table 1. The maximum error with
infinite- and L2-norms are as follows:

∥ynumeric − yexact∥∞ = 4.956871174×10−10,

∥ynumeric − yexact∥L2 = 2.847848599×10−10.
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FIGURE 2. Exact and approximate solutions compared for k = 2 and
M = 5, Example 3.

6. CONCLUSIONS

In this paper, we presented a Legendre wavelet approximation of a class of frac-
tional Fredholm-Volterra integro-differential equations. The main purpose of this
paper was to show that the approximation errors decay exponentially in L2-norm.
We proved that the method presented in this paper is effective for solving Fredholm-
Volterra integro-differential equations of fractional order, and this method has a high
convergence rate. The numerical results of the presented method were compared with
exact solutions. The acceptable results are in a very good agreement with the exact
solutions only for a small number of Legendre wavelet polynomials.
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