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Abstract. In this paper, we introduce the notion of the generalized ternary ring homomorphism
on non-Archimedean ternary Banach algebras. Using fixed point methods, we prove the su-
perstability and generalized Hyers-Ulam stability of generalized ternary ring homomorphisms
on non-Archimedean ternary Banach algebras associated with a Cauchy-Jensen type functional
equation.
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1. INTRODUCTION

The theory of non-Archimedean spaces has many applications in quantum physics,
p-adic strings and superstrings [13]. The methods that are used in non-Archimedean
spaces are essentially different from the classical normed space theory [6, 7, 9, 15].

We first review the definition of non-Archimedean spaces [24]. Let K be a field.
A non-Archimedean absolute value on K is a function | · | : K→ R such that for all
a,b ∈K we have

(1) |a| ≥ 0 and equality holds if and only if a = 0,
(2) |ab|= |a||b|,
(3) |a+b| ≤ max{|a|, |b|}.

Condition (3) is the strict triangle inequality. By condition (2) we have |1|= |−1|=
1. By induction on n, one can show that |n| ≤ 1 for each integer n. Note that for
n = 1 we have |1| = 1. Let |n| ≤ 1 for each integer n. We prove that |n + 1| ≤
1. It follows from condition (3) that |n+ 1| ≤ max{|1|, |n|} = max{1, |n|} = 1. A
non-Archimedean absolute value | · | is non-trivial, i.e., there is an a0 ∈ K such that
|a0| ̸∈ {0,1}.
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Let X be a linear space over a scalar field K with a non-Archimedean non-trivial
absolute value | · |. A function ∥ ·∥ : X → R is a non-Archimedean norm if it satisfies
the following conditions:

(1) ∥x∥= 0 if and only if x = 0,
(2) ∥rx∥= |r|∥x∥ for all r ∈K and x ∈ X ,
(3) ∥x+ y∥ ≤ max{∥x∥,∥y∥} for all x,y ∈ X .

Then (X ,∥ · ∥) is called a non-Archimedean space. It follows from condition (3) that

∥xm − xl∥ ≤ max{∥x j+1 − x j∥ : l ≤ j ≤ m−1}

for all m > l and hence a sequence {xm} is Cauchy in X if and only if {xm+1 − xm}
converges to zero in a non-Archimedean space. A complete non-Archimedean space
is a non-Archimedean space that every Cauchy sequence is convergent. A ternary
(associative) algebra (A, [·, ·, ·]) is a linear space A over a scalar field F = R or C
equipped with a trilinear mapping, the so-called ternary product, [·, ·, ·] : A × A ×
A → A such that it is associative in the sense that [[a,b,c],d,e] = [a, [b,c,d],e] =
[a,b, [c,d,e]] for all a,b,c,d,e ∈ A. This notion is a natural generalization of the
binary case. Indeed, if (A,◦) is a usual (binary) non-Archimedean algebra, then
[a,b,c] := (a ◦ b) ◦ c induced a ternary product making A into a non-Archimedean
ternary algebra which will be called trivial. There are other types of non-Archimedean
ternary algebras in which one may consider other versions of associativity. Let A
be a non-Archimedean vector space. Then [a,b,c] = a − b + c induced a ternary
product making A into a non-Archimedean ternary algebra. A non-Archimedean
ternary Banach algebra is a complete non-Archimedean ternary algebra A which the
norm satisfies ||[a,b,c]|| ≤ ||a|| · ||b|| · ||c|| for all a,b,c ∈ A.

The first stability problem concerning group homomorphisms was raised by Ulam
[25] and affirmatively solved by Hyers [11]. A generalization of Hyers’ problem
with unbounded Cauchy differences has been considered by Rassias [20], Bourgin
[3], and Găvruta [10]. Moreover, Rassias [19] considered the Cauchy difference
controlled by a product of different powers of norm. In 1994, Gǎvruta [10] promoted
the stability result into a simple form and reinstated the upper bound by a general
control function. This type of stability result accomplished by Gǎvruta is known
as the generalized Hyers-Ulam stability of functional equation. For the history and
various aspects of stability theory we refer to [12, 17, 21–23].

Bourgin [2, 3] is the first mathematician dealing with stability of the (ring) homo-
morphism f (xy) = f (x) f (y). The stability of the approximate homomorphism, the
approximate generalized homomorphism g(xy)= g(x) f (y), where f is a (ring) homo-
morphism, and the derivation on some suitable Banach spaces was studied by a num-
ber of mathematicians, see [1, 5–8, 16, 18] and references therein. Let (A, [·, ·, ·]) and
(B, [·, ·, ·]) be two non-Archimedean ternary Banach algebras. A mapping f : A → B
is a ternary ring homomorphism or a ternary additive homomorphism if f is additive
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and satisfies
f ([x,y,z]) = [ f (x), f (y), f (z)]

for all x,y,z ∈ A. We introduce the notion of a generalized ternary ring homomorph-
ism between two non-Archimedean ternary Banach algebras A and B as follows. We
say that a function g : A → B is a generalized ternary ring homomorphism if g is an
additive function and there exists a ternary ring homomorphism f : A → B satisfying

g([x,y,z]) = α[g(x),g(y), f (z)]+β[g(x), f (y),g(z)]+ γ[ f (x),g(y),g(z)]

for all x,y,z ∈ A and α,β,γ ∈ R with α+β+ γ = 1. It is clear that every ternary ring
homomorphism g is a generalized ternary ring homomorphism by taking f = g but
the converse is not true in general. So, our results recover the stability of the ternary
ring homomorphism, see [6, 8].

We now mention the following fixed point theorem [14]. Let (X ,d) be a gen-
eralized metric space. An operator F : X → X satisfies a Lipschitz condition with
Lipschitz constant L if there exists a constant L ≥ 0 such that d(Fx,Fy) ≤ Ld(x,y)
for all x,y∈X . If the Lipschitz constant L is less than 1, then the operator F is called a
strictly contractive operator. Note that the distinction between the generalized metric
and the usual metric is that the range of the former is permitted to include the infinity.
We recall the following theorem by Margolis and Diaz.

Theorem 1 ([14]). Let (Ω,d) be a complete generalized metric space and F : Ω→
Ω a strictly contractive mapping with Lipschitz constant L. Then for each x ∈ Ω,
either

d(Fmx,Fm+1x) = ∞,

for all m ≥ 0 or there exists a natural number m0 such that
(1) d(Fmx,Fm+1x)< ∞ for all m ≥ m0,
(2) the sequence {Fmx} is convergent to a fixed point y∗ of F,
(3) y∗ is the unique fixed point of F in the set Λ = {y ∈ Ω : d(Fm0x,y)< ∞},
(4) d(y,y∗)≤ 1

1−L d(y,Fy) for all y ∈ Λ.

Throughout this paper we suppose that (A, [·, ·, ·]) and (B, [·, ·, ·]) are two non-
Archimedean ternary Banach algebras. For convenience, we use the following ab-
breviations for two given functions f1 : A → B and f2 : A → B,

∆m f (x,y) = m f (
x+ y

m
)− f (x)− f (y),

D f1(x,y,z) = f1([x,y,z])− [ f1(x), f1(y), f1(z)],

D f1, f2(x,y,z) = f2([x,y,z])−α[ f2(x), f2(y), f1(z)]

−β[ f2(x), f1(y), f2(z)]− γ[ f1(x), f2(y), f2(z)]

for all x,y,z ∈ A and α,β,γ ∈ R with α+β+ γ = 1, where m is a natural number.
In this paper, using fixed point methods, we investigate the superstability of gen-

eralized ternary ring homomorphisms on non-Archimedean ternary Banach algebras.
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Moreover, we prove the generalized Hyers-Ulam stability of generalized ternary ring
homomorphisms on non-Archimedean ternary Banach algebras associated with the
functional equation

∆m f (x,y) = 0.

2. SUPERSTABILITY OF GENERALIZED TERNARY RING HOMOMORPHISMS ON
NON-ARCHIMEDEAN TERNARY BANACH ALGEBRAS

In this section we establish the superstability of generalized ternary ring homo-
morphisms on non-Archimedean ternary Banach algebras. We first need to prove the
following lemma.

Lemma 1. Let f : A → B be a mapping.
(1) f is additive if and only if ∆m f (x,y) = 0 for all x,y ∈ A and all natural

numbers m ̸= 2,
(2) f is additive if and only if f (0) = 0 and ∆2 f (x,y) = 0 for all x,y ∈ A.

Proof. (1) Since m ̸= 2, it follows from ∆m f (0,0) = 0 that f (0) = 0. So, f (x) =
1
m f (mx) for all x ∈ A. On the other hand, ∆m f (mx,my) = 0 for all x,y ∈ A. Therefore,
f is additive. The converse is obvious.

(2) It follows from ∆2 f (x,0) = 0 that f (x) = 1
2 f (2x) for all x ∈ A. Since

∆2 f (2x,2y) = 0 for all x,y ∈ A, we conclude that f is additive. The converse is
obvious. □

In the following two theorems we provide the conditions which give the supersta-
bility of generalized ternary ring homomorphisms on on non-Archimedean ternary
Banach algebras.

Theorem 2. Let f1 : A → B and f2 : A → B be two mappings for which there exist
some functions ϕ : A → [0,∞) and ψi : A3 → [0,∞) such that

∥∆m fi(x,y)∥ ≤ max{ϕ(x),ϕ(y)}, (2.1)

∥D f1(x,y,z)∥ ≤ ψ1(x,y,z), (2.2)

∥D f1, f2(x,y,z)∥ ≤ ψ2(x,y,z) (2.3)

for all x,y,z ∈ A, i ∈ {1,2}, and all natural numbers m > 2. If there exists a constant
0 < L < 1 such that

ϕ(mx)≤ |m|Lϕ(x), (2.4)

ψi(mx,my,mz)≤ |m|3Lψi(x,y,z) (2.5)

for all x,y,z ∈ A, then f2 is a generalized ternary ring homomorphism.

Proof. It follows from (2.4) and (2.5) that

lim
n→∞

1
|m|n

ϕ(mnx) = 0, (2.6)
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lim
n→∞

1
|m|3n ψi(mnx,mny,mnz) = 0 (2.7)

for all x,y,z ∈ A. By (2.6), limn→∞
1

|m|n ϕ(0) = 0. Hence, ϕ(0) = 0. Letting x = y = 0
in (2.1), we get ∥(m−2) fi(0)∥ ≤ ϕ(0) = 0. Since m > 2, fi(0) = 0.

Let Ω be the set of all mappings g : A → B and define a generalized metric on Ω

as follows

d(g,h) = inf{t ∈ (0,∞) : ∥g(x)−h(x)∥ ≤ tϕ(x), x ∈ A}.

It is easy to show that (Ω,d) is a generalized complete metric space [4]. Consider the
mapping F : Ω → Ω defined by (Fg)(x) = 1

m g(mx) for all x ∈ A and all g ∈ Ω. Let
d(g,h)< t for g,h ∈ Ω and t ∈ (0,∞). Then

||g(x)−h(x)|| ≤ tϕ(x) (2.8)

for all x ∈ A. Replace x by mx in (2.8) to find that ||g(mx)− h(mx)|| ≤ tϕ(mx) for
all x ∈ A. Using (2.4), we get || 1

m g(mx)− 1
m h(mx)|| ≤ Ltϕ(x) for all x ∈ A, which

implies d(Fg,Fh) ≤ Lt. Therefore, d(Fg,Fh) ≤ Ld(g,h) for all g,h ∈ Ω, that is, F
is a strictly contractive mapping of Ω with the Lipschitz constant L. Putting y = 0 in
(2.1), one has

∥m fi(
x
m
)− fi(x)∥ ≤ max{ϕ(x),ϕ(0)}= ϕ(x) (2.9)

for all x ∈ A. Replace x by mx in (2.9) and divide both sides by |m| and then use (2.4)
to derive

∥ fi(x)−
1
m

fi(mx)∥ ≤ 1
|m|

ϕ(mx)≤ Lϕ(x)

for all x ∈ A. So, d( fi,F fi) ≤ L < ∞. It follows from the fixed point alternative that
there exists a fixed point Hi of F in Ω such that

Hi(x) = lim
n→∞

1
mn fi(mnx) (2.10)

for all x ∈ A, since limn→∞ d(Fn fi,Hi) = 0. On the other hand, it follows from (2.1),
(2.6) and (2.10) that

∥∆mHi(x,y)∥= lim
n→∞

1
|m|n

∥∆m fi(mnx,mny)∥

≤ lim
n→∞

1
|m|n

max{ϕ(mnx),ϕ(mny)}= 0.

Hence, ∆mHi(x,y) = 0 for all x,y ∈ A. This means that Hi is additive. Using (2.2),
(2.7) and (2.10) one can deduce

||DH1(x,y,z)||= ∥H1([x,y,z])− [H1(x),H1(y),H1(z)]∥

= lim
n→∞

1
|m|3n

∥∥∥∥ f1([mnx,mny,mnz])− [ f1(mnx), f1(mny), f1(mnz)]
∥∥∥∥
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≤ lim
n→∞

1
|m|3n ψ1(mnx,mny,mnz) = 0.

So, H1([x,y,z]) = [H1(x),H1(y),H1(z)] for all x,y,z ∈ A. Therefore, H1 is a ternary
ring homomorphism. Using (2.3), (2.7) and (2.10) one can also deduce

||DH1,H2(x,y,z)||=
∥∥∥∥H2([x,y,z])−α[H2(x),H2(y),H1(z)]

−β[H2(x),H1(y),H2(z)]− γ[H1(x),H2(y),H2(z)]
∥∥∥∥

= lim
n→∞

1
|m|3n

∥∥∥∥ f2([mnx,mny,mnz])−α[ f2(mnx), f2(mny), f1(mnz)]

−β[ f2(mnx), f1(mny), f2(mnz)]− γ[ f1(mnx), f2(mny), f1(mnz)]
∥∥∥∥

= lim
n→∞

1
|m|3n ||D f1, f2(m

nx,mny,mnz)||

≤ lim
n→∞

1
|m|3n ψ2(mnx,mny,mnz) = 0.

This indicates that

H2([x,y,z]) = α[H2(x),H2(y),H1(z)]+β[H2(x),H1(y),H2(z)]

+ γ[H1(x),H2(y),H1(z)]

for all x,y,z ∈ A. Therefore, H2 is a generalized ternary ring homomorphism.
Set x = 0 in (2.1) to find that

∥m f (
y
m
)− f (y)∥ ≤ ϕ(0) = 0.

This implies f (y) = 1
m f (my) for all y ∈ A. According to the fixed point alternative Hi

is the unique fixed point of F in the set

Λi = {g ∈ Ω : d( fi,g)< ∞},

where i ∈ {1,2}, so Hi = fi. It follows that f1 is a ternary ring homomorphism and
f2 is a generalized ternary ring homomorphism. □

The proof of the following theorem is similar to that of Theorem 2, if we define
the mapping F : Ω → Ω by (Fg)(x) = mg( x

m) for all x ∈ A and all g ∈ Ω.

Theorem 3. Let f1 : A → B and f2 : A → B be two mappings for which there exist
some functions ϕ : A → [0,∞) and ψi : A3 → [0,∞) such that ϕ(0) = 0 and satisfying
(2.1), (2.2) and (2.3). If there exists a constant 0 < L < 1 such that

ϕ(
x
m
)≤ 1

|m|
Lϕ(x),
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ψi(
x
m
,

y
m
,

z
m
)≤ 1

|m|3
Lψ(x,y,z)

for all x,y,z ∈ A and i ∈ {1,2}, then f2 is a generalized ternary ring homomorphism.

Remark 1. A generalized ternary ring homomorphisms on a non-Archimedean
ternary Banach algebra associated with the functional equation ∆2 f (x,y) = 0 is su-
perstable with an additional assumption f (0) = 0.

Corollary 1. Let λ, p, and s be non-negative real numbers and f1 : A → B and
f2 : A → B be two mappings such that fi(0) = 0 and

∥∆m fi(x,y)∥ ≤ λmax{∥x∥p,∥y∥p},
∥D f1(x,y,z)∥ ≤ λ∥x∥s∥y∥s∥z∥s,

∥D f1, f2(x,y,z)∥ ≤ λ∥x∥s∥y∥s∥z∥s

for all x,y,z ∈ A and i ∈ {1,2}, where m > 1 is a natural number. Then each of the
following two conditions asserts that f2 is a generalized ternary ring homomorphism.

(1) p > 1 and 3s− p > 2,
(2) p < 1 and 3s− p < 2.

Proof. Define

ϕ(x) := λ∥x∥p,

ψi(x,y,z) := λ∥x∥s∥y∥s∥z∥s

for all x,y,z ∈ A and i ∈ {1,2}. If part (i) holds, then choosing L = |m|p−1 and
applying Theorem 2, we get the desired result. If part (ii) holds, then the result
follows from Theorem 3 by letting L = |m|1−p. □

3. STABILITY OF GENERALIZED TERNARY RING HOMOMORPHISMS ON
NON-ARCHIMEDEAN TERNARY BANACH ALGEBRAS

In this section we consider the generalized Hyers-Ulam stability of generalized
ternary ring homomorphisms on non-Archimedean ternary Banach algebras. In the
following two theorems we give the conditions which imply the stability of general-
ized ternary ring homomorphisms on non-Archimedean ternary Banach algebras.

Theorem 4. Let f1 : A → B and f2 : A → B be two mappings for which there exist
some functions ϕ : A2 → [0,∞) and ψi : A3 → [0,∞) such that

∥∆m fi(x,y)∥ ≤ ϕ(x,y), (3.1)

∥D f1(x,y,z)∥ ≤ ψ1(x,y,z), (3.2)

∥D f1, f2(x,y,z)∥ ≤ ψ2(x,y,z) (3.3)

for all x,y,z ∈ A, i ∈ {1,2} and all natural numbers m > 2. If there exists a constant
0 < L < 1 such that

ϕ(mx,my)≤ |m|Lϕ(x,y), (3.4)
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ψi(mx,my,mz)≤ |m|3Lψi(x,y,z) (3.5)
for all x,y,z ∈ A, then there exist a unique ternary ring homomorphism H1 : A → B
and a unique generalized ternary ring homomorphism H2 : A → B such that

∥ f1(x)−H1(x)∥ ≤
L

1−L
ϕ(x,0), (3.6)

∥ f2(x)−H2(x)∥ ≤
L

1−L
ϕ(x,0) (3.7)

for all x ∈ A.

Proof. It follows from (3.4) and (3.5) that

lim
n→∞

1
|m|n

ϕ(mnx,mny) = 0, (3.8)

lim
n→∞

1
|m|3n ψi(mnx,mny,mnz) = 0 (3.9)

for all x,y,z ∈ A. By a similar argument as in the proof of Theorem 2 we conclude
that fi(0) = 0. Define a generalized metric on Ω, the set of all mappings g : A → B,
as follows

d(g,h) = inf{t ∈ (0,∞) : ∥g(x)−h(x)∥ ≤ tϕ(x,0), x ∈ A}.
The space (Ω,d) is a generalized complete metric space [4]. Let F : Ω → Ω be a
mapping, given by (Fg)(x) = 1

m g(mx) for all x ∈ A and all g ∈ Ω. The same method
as in the proof of Theorem 2 shows that F is a strictly contractive mapping of Ω with
the Lipschitz constant L. Put y = 0 in (3.1) and apply (3.4) to obtain

∥ 1
m

fi(mx)− fi(x)∥ ≤ Lϕ(x,0) (3.10)

for all x ∈ A. Thus, d( fi,F fi) ≤ L < ∞. From the fixed point alternative it follows
that there exists a fixed point Hi of F in Ω such that limn→∞ d(Fn fi,Hi) = 0, so

Hi(x) = lim
n→∞

1
mn fi(mnx) (3.11)

for all x ∈ A. Now, by (3.1), (3.8) and (3.11) we conclude that

∥∆mHi(x,y)∥= lim
n→∞

1
|m|n

∥∆m fi(mnx,mny)∥

≤ lim
n→∞

1
|m|n

ϕ(mnx,mny) = 0

for all x,y ∈ A and so Hi is additive. The definition of H1, (3.2) and (3.9) imply

||DH1(x,y,z)||= ∥H1([x,y,z])− [H1(x),H1(y),H1(z)]∥

= lim
n→∞

1
|m|3n ∥ f1([mnx,mny,mnz])− [ f1(mnx), f1(mny), f1(mnz)]∥
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= lim
n→∞

1
|m|3n ||D f1(m

nx,mny,mnz)||

≤ lim
n→∞

1
|m|3n ψ1(mnx,mny,mnz) = 0

for all x,y,z ∈ A. Therefore, H1 is a ternary ring homomorphism. The definition of
H2, (3.3) and (3.9) imply

||DH1,H2(x,y,z)||=
∥∥∥H2([x,y,z])−α[H2(x),H2(y),H1(z)]−β[H2(x),H1(y),H2(z)]

− γ[H1(x),H2(y),H2(z)]
∥∥∥

= lim
n→∞

1
|m|3n

∥∥∥ f2([mnx,mny,mnz])−α[ f2(mnx), f2(mny), f1(mnz)]

−β[ f2(mnx), f1(mny), f2(mnz)]− γ[ f1(mnx), f2(mny), f2(mnz)]
∥∥∥

= lim
n→∞

1
|m|3n ||D f1, f2(m

nx,mny,mnz)||

≤ lim
n→∞

1
|m|3n ψ2(mnx,mny,mnz) = 0

for all x,y,z ∈ A. Therefore, H2 is a generalized ternary ring homomorphism. The
fixed point alternative yields Hi is the unique mapping such that

∥ fi(x)−Hi(x)∥ ≤ tϕ(x,0)

for all x ∈ A and t > 0. Again using the fixed point alternative, we get

d( fi,Hi)≤
1

1−L
d( fi,F fi)≤

L
1−L

and so we deduce that

∥ fi(x)−Hi(x)∥ ≤
L

1−L
ϕ(x,0)

for all x ∈ A and i ∈ {1,2}. This completes the proof. □

Theorem 5. Let f1 : A → B and f2 : A → B be two mappings with fi(0) = 0 for
which there exist some functions ϕ : A2 → [0,∞) and ψi : A3 → [0,∞) satisfying (3.1),
(3.2), and (3.3). If there exists a constant 0 < L < 1 such that

ϕ(
x
m
,

y
m
)≤ 1

|m|
Lϕ(x,y),

ψi(
x
m
,

y
m
,

z
m
)≤ 1

|m|3
Lψi(x,y,z)
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for all x,y,z ∈ A and i ∈ {1,2}, then there exist a unique ternary ring homomorphism
H1 : A → B and a unique generalized ternary ring homomorphism H2 : A → B such
that

|| fi(x)−Hi(x)|| ≤
1

1−L
ϕ(x,0)

for all x ∈ A.

Proof. Define (Fg)(x) := mg( x
m) for all x ∈ A and g ∈ Ω and apply then a similar

method as in the proof of Theorem 4 to get the desired result. □

In the following two theorems we show that Theorems 4 and 5 hold for the case
where m = 1,2.

Theorem 6. Let f1 : A → B and f2 : A → B be two mappings for which there exist
some functions ϕ : A2 → [0,∞) and ψi : A3 → [0,∞) satisfying (3.2), (3.3), and

||∆1 f (x,y)|| ≤ ϕ(x,y). (3.12)

If there exists a constant 0 < L < 1 such that

ϕ(2rx,2ry)≤ |2|rLϕ(x,y), (3.13)

ψi(2rx,2ry,2rz)≤ |2|3rLψi(x,y,z) (3.14)

for all x,y,z ∈ A and i ∈ {1,2}, then there exist a unique ternary ring homomorphism
H1 : A → B and a unique generalized ternary ring homomorphism H2 : A → B such
that

|| fi(x)−Hi(x)|| ≤
L

1−r
2

|2|(1−L)
ϕ(x,x)

for all x ∈ A, where r ∈ {−1,1}.

Proof. Let r ∈ {−1,1}. It follows from (3.13) and (3.14) that

lim
n→∞

1
|2|nr ϕ(2nrx,2nry) = lim

n→∞

1
|2|3nr ψi(2nrx,2nry,2nrz) = 0

for all x,y,z ∈ A. Let Ω be the set of all mappings g : A → B and define

d(g,h) = inf{t ∈ (0,∞) : ∥g(x)−h(x)∥ ≤ tϕ(x,x), x ∈ A}.
Clearly, (Ω,d) is a generalized complete metric space. Define F : Ω → Ω by
(Fg)(x) = 1

2r g(2rx) for all x ∈ A and all g ∈ Ω. Letting x = y in (3.12) and applying
(3.13), we get

∥ 1
2r fi(2rx)− fi(x)∥ ≤

L
1−r

2

|2|
ϕ(x,x)

for all x ∈ A. Thus, d( fi,F fi) ≤ L
1−r

2

|2| < ∞. The fixed point alternative implies there
exists a fixed point Hi of F in Ω such that limn→∞ d(Fn fi,Hi) = 0, so

Hi(x) = lim
n→∞

1
2nr fi(2nrx)
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for all x ∈ A. By a similar method as in the proof of Theorem 4 one can show that H1
is a ternary ring homomorphism and H2 is a generalized ternary ring homomorphism.
It follows from the fixed point alternative that Hi is the unique mapping such that

d( fi,Hi)≤
1

1−L
d( fi,F fi)≤

L
1−r

2

1−L
and so we find that

∥ fi(x)−Hi(x)∥ ≤
L

1−r
2

1−L
ϕ(x,x)

for all x ∈ A and i ∈ {1,2}. This completes the proof. □

Theorem 7. Let f1 : A → B and f2 : A → B be two mappings with fi(0) = 0 for
which there exist some functions ϕ : A2 → [0,∞) and ψi : A3 → [0,∞) satisfying (3.2),
(3.3), and ||∆2 f (x,y)|| ≤ ϕ(x,y). If there exists a constant 0 < L < 1 such that the
inequalities (3.13) and (3.14) hold, then there exist a unique ternary ring homo-
morphism H1 : A→B and a unique generalized ternary ring homomorphism H2 : A→
B such that

|| fi(x)−Hi(x)|| ≤
L

r+1
2

1−L
ϕ(x,0)

for all x ∈ A, where r ∈ {−1,1} and i ∈ {1,2}.

Proof. The proof is similar to the proof of Theorems 4 and 5 for m = 2. □

Corollary 2. Let λ,η,ξ, p,q,s, and t be non-negative real numbers with

max{2q,s−2,3t −2}< p < 1.

Let f1 : A → B and f2 : A → B be two mappings with f (0) = 0 and

∥∆m fi(x,y)∥ ≤ λ+η(∥x∥p +∥y∥p)+ξ||x||q||y||q,
∥D f1(x,y,z)∥ ≤ λ+η(∥x∥s +∥y∥s +∥z∥s)+ξ||x||t ||y||t ||z||t ,

∥D f1, f2(x,y,z)∥ ≤ λ+η(∥x∥s +∥y∥s +∥z∥s)+ξ||x||t ||y||t ||z||t

for all x,y,z ∈ A, i ∈ {1,2}, and all natural numbers m. Then there exist a unique
ternary ring homomorphism H1 : A → B and a unique generalized ternary ring ho-
momorphism H2 : A → B such that

∥ fi(x)−Hi(x)∥ ≤

{
|2|1−p

|2|(1−|2|1−p)
(λ+2η||x||p +ξ||x||2q), m = 1,

1
1−|m|1−p (λ+η||x||p), m ≥ 2

for all x ∈ A.

Proof. Define

ϕ(x) := λ+η(∥x∥p +∥y∥p)+ξ||x||q||y||q,
ψi(x,y,z) := λ+η(∥x∥s +∥y∥s +∥z∥s)+ξ||x||t ||y||t ||z||t
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for all x,y,z ∈ A and i ∈ {1,2}. The proof falls naturally into three parts. For m = 1
and m = 2, apply Theorems 6 and 7, respectively by letting r = −1 and L = |2|1−p.
If m > 2, choose r = −1 and L = |m|1−p and apply Theorem 5 to get the desired
result. □

Corollary 3. Let η,ξ, p,q,s, and t be non-negative real numbers with

1 < p < min{2q,s−2,3t −2}.
Let f1 : A → B and f2 : A → B be two mappings such that

∥∆m fi(x,y)∥ ≤ η(∥x∥p +∥y∥p)+ξ||x||q||y||q,
∥D f1(x,y,z)∥ ≤ η(∥x∥s +∥y∥s +∥z∥s)+ξ||x||t ||y||t ||z||t ,

∥D f1, f2(x,y,z)∥ ≤ η(∥x∥s +∥y∥s +∥z∥s)+ξ||x||t ||y||t ||z||t

for all x,y,z ∈ A, i ∈ {1,2}, and all natural numbers m. Then there exist a unique
ternary ring homomorphism H1 : A → B and a unique generalized ternary ring ho-
momorphism H2 : A → B such that

∥ fi(x)−Hi(x)∥ ≤

{ 1
|2|(1−|2|p−1)

(2η||x||p +ξ||x||2q), m = 1,
η|m|p−1

1−|m|p−1 ||x||p, m ≥ 2.

Proof. Define
ϕ(x) := η(∥x∥p +∥y∥p)+ξ||x||q||y||q,

ψi(x,y,z) := η(∥x∥s +∥y∥s +∥z∥s)+ξ||x||t ||y||t ||z||t

for all x,y,z ∈ A and i ∈ {1,2}. The proof divides into three parts. For m = 1 and
m = 2, the result follows from Theorems 6 and 7, respectively by choosing r = 1 and
L = |2|p−1. For m > 2, it is sufficient to choose r = 1 and L = |m|p−1 and then apply
Theorem 4 to get the desired result. □

We note that when p = 1 in Corollaries 2 and 3, the stability result does not hold.
Since in this case we have L = 1 and the condition 0 < L < 1 in Theorems 6 and 7
does not fulfill.
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[13] A. Khrennikov, Non-Archimedean analysis: Quantum Paradoxes, Dynamical Systems and Biolo-
gical Models. Dordrecht: Springer, 1997.

[14] B. Margolis and J. B. Diaz, “A fixed point theorem of the alternative for contractions on the
generalized complete metric space.” Bull. Amer. Math. Soc., vol. 126, pp. 305–309, 1968.

[15] L. Narici and E. Beckenstein, “Strange terrain-non-Archimedean spaces.” Amer. Math. Monthly,
vol. 88, pp. 667–676, 1981, doi: 10.2307/2320670.

[16] I. Nikoufar, “Jordan (θ,φ)-derivations on Hilbert C∗-modules.” Indag. Math., vol. 26, pp. 421–
430, 2015, doi: 10.1016/j.indag.2015.01.002.

[17] I. Nikoufar, “Functions near some (α1,α2)-double Jordan derivations in p-Banach algebras.” Bol.
Un. Mat. Ital., vol. 10, pp. 191–198, 2017, doi: 10.1007/s40574-016-0074-0.

[18] I. Nikoufar, “A correction to approximation of generalized homomorphisms in quasi-Banach al-
gebras.” Miskolc Math. Notes, vol. 19, pp. 423–430, 2018, doi: 10.18514/MMN.2018.2065.

[19] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings.” J. Funct.
Anal., vol. 46, pp. 126–130, 1982, doi: 10.1016/0022-1236(82)90048-9.

[20] T. M. Rassias, “On the stability of the linear mapping in Banach spaces.” Proc. Amer. Math. Soc.,
vol. 72, pp. 297–300, 1978, doi: 10.2307/2042795.

[21] B. V. Senthil Kumar and H. Dutta, “Non-Archimedean stability of a generalized reciprocal-
quadratic functional equation in several variables by direct and fixed point methods.” Filomat,
vol. 32, pp. 3199–3209, 2018, doi: 10.2298/FIL1809199.

[22] B. V. Senthil Kumar and H. Dutta, “Approximation of multiplicative inverse undecic and duo-
decic functional equations.” Math. Methods Appl. Sci., vol. 42, pp. 1073–1081, 2019, doi:
10.1002/mma.5413.

[23] B. V. Senthil Kumar and H. Dutta, “Fuzzy stability of a rational functional equation and
its relevance to system design.” Int. J. General Syst., vol. 48, pp. 157–169, 2019, doi:
10.1080/03081079.2018.1523904.

http://dx.doi.org/10.1155/2008/749392
http://dx.doi.org/10.1142/S0219887812500193
http://dx.doi.org/10.1155/2010/393247
http://dx.doi.org/10.1016/j.aml.2010.05.011
http://dx.doi.org/10.2478/v10309-012-0012-9
http://dx.doi.org/10.1006/jmaa.1994.1211
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.2307/2320670
http://dx.doi.org/10.1016/j.indag.2015.01.002
http://dx.doi.org/10.1007/s40574-016-0074-0
http://dx.doi.org/10.18514/MMN.2018.2065
http://dx.doi.org/10.1016/0022-1236(82)90048-9
http://dx.doi.org/10.2307/2042795
http://dx.doi.org/10.2298/FIL1809199
http://dx.doi.org/10.1002/mma.5413
http://dx.doi.org/10.1080/03081079.2018.1523904


424 I. NIKOUFAR

[24] N. Shilkret, “Non-Archimedian Banach algebras.” Duke Math. J., vol. 37, pp. 315–322, 1970, doi:
10.1215/S0012-7094-70-03741-5.

[25] S. M. Ulam, Collection of the mathematical problems. New York: Interscience Publ. Inc., 1960.

Author’s address

Ismail Nikoufar
Department of Mathematics, Payame Noor University, Tehran, Iran
E-mail address: nikoufar@pnu.ac.ir

http://dx.doi.org/10.1215/S0012-7094-70-03741-5

	1. Introduction
	2. Superstability of generalized ternary ring homomorphisms on non-Archimedean ternary Banach algebras
	3. Stability of generalized ternary ring homomorphisms on non-Archimedean ternary Banach algebras
	Acknowledgements
	References

