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Abstract. The aim of this article is to analyze the qualitative behavior of a discrete-time predator-
prey system with ratio-dependent functional response. We express algebraically the conditions
for the existence of a positive fixed point, and determining its stability.

We also prove that the system has a Neimark-Sacker bifurcation when some parametric con-
ditions are satisfied. The Chaos control is nicely studied by applying the hybrid control method.
Finally, we present some numerical simulations in order to verify the theoretical results we have
shown.
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1. INTRODUCTION

In 1838, Verhulst introduced an equation to describe the growth of a population in
an environment with limited resources. The curve that describes the evolution of this
population is known as the logistic curve [29]. In 1887, S. A. Forbes concluded that
the interactions between different species that make up an ecosystem are so strong
that one cannot be altered without causing a change in the others [14]. However, in
1925, Lotka introduced a pair of differential equations to describe the dynamics of
the interaction between two populations, namely, a prey and a predator. Furthermore,
Volterra independently developed and generalized the Lotka model [24, 30] in 1927.
The equations proposed by Volterra [30] present the existence of two species, one of
which (the prey, whose population density is denoted by N) has a positive growth rate.
The second species, the predator P, would tend to disappear if the population density
of the prey is zero, due to the lack of food. However, if both species coexist and
the second feeds on the first, both species can survive, and the system of differential
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equations that models their evolution can be written as

dN(τ)

dτ
= N(τ)(α−ωP(τ)) ,

dP(τ)
dτ

= P(τ)(ωδN(τ)−β) .

In this system, N(τ) and P(τ) denote the population densities of prey and predator,
respectively, at time τ. The natural growth rate of the prey is denoted by α > 0, and
β > 0 is the natural death rate of the predator in the absence of prey. Moreover, ω > 0
represents the effect of predation on the prey, and δ > 0 is the conversion rate of prey
into predator. This simple model was modified in order to introduce intra-specific
competition of prey population as follows:

dN(τ)

dτ
= N(τ)(α−νN(τ)−ωP(τ)) ,

dP(τ)
dτ

= P(τ)(ωδN(τ)−β) ,

where ν > 0. In order to have a better accuracy in the interactions between prey
and predators, the so-called “trophic function” was introduced, which describes the
amount of prey that a predator consumes per unit of time when the densities of pop-
ulations of prey and predators are given by N and P, respectively. Most of recent
works, such as [8, 10, 13, 22], have focused on analyzing how this function varies
with the prey density. Arditi and Ginzburg [3] called “prey-dependence” to this kind
of dependence. However, the effect of the predator density in the functional response
has been recognized in the last decades [3, 5, 17]. In fact, Arditi and Ginzburg [3]
suggested that the trophic function depends on the ratio of prey to predator abund-
ances which is called ratio-dependence. The trophic function depends on the ratio
N/P. The introduction of this new kind of dependency has managed to model the
interactions between predators and prey in real situations in a much better way [2,4].
The general model introduced by Arditi and Ginzburg is given by the equations

dN
dτ

= rNφ(N)−g
(

N
P

)
P ,

dP
dτ

= ePg
(

N
P

)
−qP , (1.1)

where the trophic function is g(x) = g(N/P) and

φ(N) = 1− N
K
.

Arditi and Ginzburg assumed that

g(x) = α
x

1+αhx
,



DYNAMICS OF A DISCRETE-TIME PREDATOR-PREY SYSTEM 83

so that

g
(

N
P

)
= α

N
P+αhN

.

With the use of this trophic function, Equation (1.1) can be rewritten as

dN
dτ

= rN
(

1− N
K

)
−α

NP
P+αhN

,

dP
dτ

= e
NP

P+αhN
−qP , (1.2)

where the parameters r,K,α,h,e,q are positive. The change of variables (N,P,τ)→
(x,y, t) defined by

N = Kx , P = Kαhy , τ =
t
r
,

together with the corresponding definitions of parameters given by

a =
α

r
, b =

q
r
, c =

e
rh

,

converts Equations (1.2) into

ẋ(t) = x(1− x)− axy
x+ y

,

ẏ(t) =−by+
cxy

x+ y
, (1.3)

where a,b,c > 0. In Equations (1.3), b denotes the death rate of the (new defined)
predators y and the trophic function is described by parameters a and c, where a
stands for the maximum asymptotic prey death rate due to predation, for a finite
density of predators and c denotes the maximum asymptotic predator growth rate for
an infinite density of prey.

The Lotka-Volterra model described by differential equations are appropriate when
the different generations can coexist, while the difference equations work better when
there is no overlap between different generations. Discrete models are a very power-
ful tool from a computational point of view in order to perform numerical simula-
tions. Moreover, discrete systems present dynamics more complex and rich than the
corresponding continuous system. In recent years, an increasing number of research-
ers have studied the existence of Neimark-Sacker bifurcations in different discrete
Lotka-Volterra systems [1, 6, 8, 10, 13, 16–19, 21–23]. In this paper, we discretize
Equations (1.3) using the piecewise constant arguments method [22,26] to obtain the
discrete system

xn+1 = xn exp
(

1− xn −
ayn

xn + yn

)
,

yn+1 = yn exp
(
−b+

cxn

xn + yn

)
, (1.4)
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where a,b,c > 0. We aim to discuss the qualitative study of this system.
The paper is organized as follows. In the Section 2, we calculate the fixed points

of Equations (1.4) and establish their stability. In Section 3, we give the conditions
under which a Neimark-Sacker bifurcation occurs. Chaos control is discussed in Sec-
tion 4. Finally, in Section 5, we illustrate all the theoretical results we have obtained
with a numerical simulation of the system.

2. STABILITY ANALYSIS

The non trivial equilibrium points of Equations (1.4) are

E = (1,0) , P =

(
ab+ c−ac

c
,
(c−b)(ab+ c−ac)

bc

)
.

The positive coexistence equilibrium P exists if c > b and ab+ c > ac.

Lemma 1. The extinction equilibrium E = (1,0) of Equations (1.4) is locally
asymptotically stable (sink) if b > c, unstable (saddle) if b < c, and a non-hyperbolic
point if b = c.

Proof. The Jacobian matrix of the Equations (1.4) at the point E is given by

J(E) =
(

0 −a
0 ec−b

)
,

and its eigenvalues are µ1 = 0 < 1 and µ2 = ec−b. Thus, E = (1,0) is locally asymp-
totically stable if b > c, unstable if b < c, and non-hyperbolic if b = c. □

In order to analyze the stability of the positive coexistence equilibrium point P, we
apply the following Lemma [7, 8, 23].

Lemma 2. Consider the polynomial ρ(λ) = λ2 −T λ+D, where ρ(1)> 0, and λ1
and λ2 are the two roots of ρ(λ) = 0. Then,

(1) |λ1|< 1 and |λ2|< 1 if and only if ρ(−1)> 0 and ρ(0)< 1.
(2) |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1) if and only if ρ(−1)< 0.
(3) |λ1|> 1 and |λ2|> 1 if and only if ρ(−1)> 0 and ρ(0)> 1.
(4) λ1 and λ2 are complex numbers and |λ1|= |λ2|= 1 if and only if T 2−4D< 0

and ρ(0) = 1.

The Jacobian matrix of Equations (1.4) evaluated at the equilibrium P reads

J(P) =

 a(c2 −b2)

c2 −ab2

c2

(c−b)2

c
1− b(c−b)

c

 ,

and its characteristic equation is given by

ρ(µ) = µ2 −
(

a+1−b− ab2

c2 +
b2

c

)
µ+

a(c−b)(c+b−bc+b2)

c2 . (2.1)
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From Equation (2.1), we can obtain

ρ(0) =
a(c−b)(c+b−bc+b2)

c2 , ρ(1) =
b(c2 −bc−a(c−b)2)

c2

and

ρ(−1) = 2+
2a(c2 −b2)+b(bc− c2 −a(c−b)2)

c2 .

Then, taking into account that c2 > bc+a(c−b)2, it follows that ρ(1)> 0 and, thus,
we can apply Lemma 2 to state the following result:

Lemma 3. Assume that c > b and a < c
(c−b) . Then,

P =

(
ab+ c−ac

c
,
(c−b)(ab+ c−ac)

bc

)
,

is a positive coexistence equilibrium point of Equations (1.4) and ρ(1)> 0. Moreover,

(1) P is locally asymptotically stable (sink stable) if and only if

a <
c

c−b
for c ≥ b+1,

and

a <
c2

(c−b)(c+b(1− c)+b2)
for a < c ≤ b+1.

or
b+ c−bc+b2 ≤ 0,

and

ρ(−1) =
c2(a+1)(2−b)+ cb2(2a+1)−ab(b2 +2b)

c2 > 0.

(2) P is saddle point if and only if

b+ c−bc+b2 ≤ 0,

and

ρ(−1) =
c2(a+1)(2−b)+ cb2(2a+1)−ab(b2 +2b)

c2 < 0.

(3) P is unstable (source) if and only if

b < c < b+1,

and

a >
c2

(c−b)(c+b−bc+b2)
.
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(4) The roots of Equation (2.1) are complex conjugates with unit modulus if and
only if

b < c < b+1, (2.2)

and

a =
c2

(c−b)(c+b−bc+b2)
. (2.3)

3. NEIMARK-SACKER BIFURCATION

In this section, we study the existence of a Neimark-Sacker bifurcation for Equa-
tions (1.4). A Neimark-Sacker bifurcation occurs when a closed invariant curve e-
merges from an equilibrium point in a discrete dynamical system and, then, the sta-
bility of the equilibrium changes via a pair of complex eigenvalues with unit modulus
[27, 28]. We now consider this system around the positive coexistence equilibrium
P. According to Lemma 2, the characteristic equation of the linearization of Equa-
tions (1.4) at P has two conjugate complex roots with modulus one if the conditions
(2.2) and (2.3) are satisfied. Thus, P presents a Neimark-Sacker bifurcation if the
parameters (a,b,c) vary in a neighborhood of the set

B =

{
(a,b,c) ∈ R3

+ : a =
c2

(c−b)(c+b−bc+b2)
, b < c < b+1

}
.

Let (a,b,c) ∈ B and assume that the change of variables is given by

un = xn − x0 , vn = yn − y0 ,

with

x0 =
ab+ c−ac

c
, y0 =

(c−b)(ab+ c−ac)
bc

,

transforms the fixed point P = (x0,y0) into the origin O = (0,0). Equations (1.4) is
also changed into

un+1 = (un + x0)exp
(

1−un − x0 −
a(vn + y0)

(un + vn + x0 + y0)

)
− x0 ,

vn+1 = (vn + y0)exp
(
−b+

c(un + x0)

(un + vn + x0 + y0)

)
− y0 , (3.1)

where a,b,c > 0.
Let ā denote a small perturbation in a, with |ā| ≪ 1, i.e., ā = a− a0. Then, the

perturbation of Equations (3.1) can be arranged as follows:

un+1 = (un + x0)exp
(

1−un − x0 −
(ā+a0)(vn + y0)

(un + vn + x0 + y0)

)
− x0 ,

vn+1 = (vn + y0)exp
(
−b+

c(un + x0)

(un + vn + x0 + y0)

)
− y0 . (3.2)
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The characteristic equation of the linearization of Equations (3.2) at the origin can be
written as

µ2 −T (ā)µ+D(ā) = 0 , (3.3)

where

T (ā) =
(
(ā+a0)+1−b− (ā+a0)b2

c2 +
b2

c

)
,

and

D(ā) =
(ā+a0)(c−b)(c+b−bc+b2)

c2 .

It is easy to obtain that T 2(ā)− 4D(ā) < 0 and (a,b,c) ∈ B . Thus, the complex
conjugate roots with unit modulus of Equation (3.3) are

µ1,2(ā) =
T (ā)

2
± i

2

√
4D(ā)−T 2(ā) .

Next, we can calculate

(|µ1,2(ā)|)|ā=0 =
√

D(ā)|ā=0 =

√
a0(c−b)(c+b−bc+b2)

c2 = 1 ,

which implies that(
d|µ1|
dā

)
ā=0

=

(
d|µ2|
dā

)
ā=0

=

(√
(c−b)(c+b−bc+b2)

2c
√

a0

)
> 0 .

The existence of a Neimark-Sacker bifurcation needs the following conditions to be
satisfied: (

d|µ1,2(ā)|
dā

)
ā=0

̸= 0,

and
µ1,2(0)n ̸= 1, n = 1,2,3,4.

One can easily calculate T (0) as follows:

T (0) = 1+
c2 +bc+b(b− c)(c+b−bc+b2)

c(c+b−bc+b2)
,

=
c2 +bc+(b2 −bc+ c)(c+b−bc+b2)

2c(c+b−bc+b2)
,

and D(0) = 1. Thus,

µ1,2 =
T (0)

2
± i

2

√
4−T 2(0).

Then, we can state that µ1,2(0)n ̸= 1, for any n = 1,2,3,4. According to [31], all
the conditions for the existence of a Neimark-Sacker bifurcation hold. In order to
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determine the normal form of Equations (3.2) [25], we compute its Taylor expansion
to the third order around the origin as follows:

un+1 = g11un +g12vn +F1(un,vn) ,

vn+1 = g21un +g22vn +F2(un,vn) , (3.4)

where

F1(un,vn) =
1
2

g13u2
n +2g14unvn +

1
2

g15v2
n

+
1
6

g16u3
n +

1
2

g17u2
nvn +

1
2

g18unv2
n +

1
6

g19v3
n +RF1,4(un,vn) ,

F2(un,vn) =
1
2

g23u2
n +2g24unvn +

1
2

g25v2
n

+
1
6

g26u3
n +

1
2

g27u2
nvn +

1
2

g28unv2
n +

1
6

g29v3
n +RF2,4(un,vn) .

Here, RF1,4(un,vn) and RF2,4(un,vn) denote the terms of order larger than 3 in the
Taylor expansion. Furthermore, we have

g11 =
a0(c2 −b2)

c2 ,

g12 =−a0b2

c2 ,

g13 =−2+
2a0(c−b)b2

c2(a0b+ c−a0c)
+

a0b+ c−a0c
c

+
a2

0(c−b)2b2

c3(a0b+ c−a0c)
− 2(c−b)b

c2 ,

g14 =− 2a0(c−b)b2

c2(a0b+ c−a0c)
+

a0b2

c2 −
a2

0(c−b)b3

c3(a0b+ c−a0c)
,

g15 =
a0b3(2c−a0b)

c3(a0b+ c−a0c)
,

g16 =
a0(c−b)b2

c(a0b+ c−a0c)2

(
2+a0 −

6b
c
− 5a0b

c
+

4a0b2

c2

)
+

4(c−b)b2

c2(a0b+ c−a0c)2

+

(
−1+

2a0(c−b)b2

c2(a0b+ c−a0c)
− a0(c−b)

c
+

a0(c−b)2b2

c2(a0b+ c−a0c)2

− 2(c−b)b
c2

)
×
(
−1+

a0(c−b)b
c(a0b+ c−a0c)

)
+1− 2(c−b)b

c2 ,

g17 =
a0(c−b)b2

c(a0b+ c−a0c)

(
4− 2a0

c
− 2

a0b+ c−a0c
+

6b
c(a0b+ c−a0c)

)
+

(
−1+

a0(c−b)b
c(a0b+ c−a0c)

)(
2a0

c2 − 2a0(c−b)b2

c(a0b+ c−a0c)
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−
a2

0(c−b)b3

c3(a0b+ c−a0c)

)
,

g18 =
a0b3

c(a0b+ c−a0c)2

(
4− 6b

c
+

3a0b
c

− 4a0b2

c2 +
1
c(

2+
a0b
c

)(
−1+

a0(c−b)b
c2(a0b+ c−a0c)

))
,

g19 =
a0b2

(a0b+ c−a0c)2

(
−6− 6a0b3

c3 −
a2

0b4

c3

)
,

g23 =
(c−b)2b

a0b+ c−a0c

(
c−b− 2

c

)
,

g24 =
(c−b)b2(2− c+b)

c(a0b+ c−a0c)
,

g25 =
b3(c−b−2)

c(a0b+ c−a0c)
,

g26 =
(c−b)2b2(−6c+6b+(c−b)2)

c(a0b+ c−a0c)2 ,

g27 =
(c−b)b2

a0b+ c−a0c

(
3b− c+2− 2b(2b+3)

c

)
+

(c−b)2b2

c2

(
c−b+

2b
a0b+ c−a0c

)
,

g28 =
b3(10b−8c−3(c−b)2

c(a0b+ c−a0c)2 ,

g29 =
9−3(c−b)b3 − (c−b)b5

c(a0b+ c−a0c)2 .

We now assume that J(P) is the Jacobian matrix of Equations (3.4) about the point
P. Hence,

J(P) =
(

g11 g12
g21 g22

)
=

 a(c2 −b2)

c2 −ab2

c2

(c−b)2

c
1− b(c−b)

c

 .

The eigenvalues of J(P) are given by

µ1,2 = ξ± iπ ,

where ξ = T (0)/2 and π =
√

4D(0)−T 2(0)/2. Now, we define the transformation(
u
v

)
= T

(
w
z

)
, (3.5)
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where

T =

 −ab2

c2 0

ξ− a(c2 −b2)

c2 −π

 .

If we carry out the transformation (3.5) into Equations (3.4), we obtain

wn+1 = ξwn −πzn + P̃(w,z) ,

zn+1 = πwn +ξzn + Q̃(w,z) ,

where

P̃(w,z) =
g13

2g12
u2 +

2g14

g12
uv+

g15

2g12
v2 +

g16

6g12
u3 +

g17

2g12
u2v

+
g18

2g12
uv2 +

g19

6g12
v3 +RP̃,4(u,v),

and

Q̃(w,z) =
(

g13(ξ−g11)

2g12
− g23

2π

)
u2 +

(
2g14(ξ−g11)

g12
− 2g24

π

)
uv

+

(
g15(ξ−g11)

2g12
− g25

2π

)
v2 +

(
g16(ξ−g11)

6g12
− g26

6π

)
u3

+

(
g17(ξ−g11)

2g12
− g27

2π

)
u2v+

(
g18(ξ−g11)

2g12
− g28

2π

)
uv2

+

(
g19(ξ−g11)

6g12
− g29

6π

)
v3 +RQ̃,4(u,v) .

Here, RP̃,4(u,v) and RQ̃,4(u,v) present the terms of order larger than 3 in the Taylor
expansion of P̃ and Q̃, respectively. Moreover, we have

u = g12w , v = (ξ−g11)w−πz .

Next, in order to determine the direction of the appearance of the invariant curve in
a system exhibiting a Neimark–Sacker bifurcation, we consider the first Lyapunov
coefficients at the point (w,z) = (0,0) which is given by

L =

(
Re(µ2τ21)−Re

(
(1−2µ1)µ2

2
1−µ1

τ20τ11

)
− 1

2
|τ11|2 −|τ02|2

)
ã=0

, (3.6)

where

τ20 =
1
8
[
P̃ww − P̃zz +2Q̃wz + i

(
Q̃ww − Q̃zz −2P̃wz

)]
,

τ11 =
1
4
[
P̃ww + P̃zz + i

(
Q̃ww + Q̃zz

)]
,

τ02 =
1
8
[
P̃ww − P̃zz −2Q̃wz + i

(
Q̃ww − Q̃zz +2P̃wz

)]
,
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τ21 =
1
16
[
P̃www + P̃wzz + Q̃wwz + Q̃zzz + i

(
Q̃www + Q̃wzz − P̃wwz − P̃zzz

)]
.

According to the computations described above, we can summarize the results of the
existence of a Neimark-Sacker bifurcation in the following theorem [9,11,20,27,28,
31].

Theorem 1. If c> b, a< c
c−b and condition (3.6) hold with L ̸= 0. Then, Equations

(1.4) has a Neimark-Sacker bifurcation at the positive coexistence equilibrium point

P =

(
ab+ c−ac

c
,
(c−b)(ab+ c−ac)

bc

)
,

when the parameter a varies in a small neighborhood of

a0 =
c2

(c−b)(c+b−bc+b2)
.

If L < 0, the equilibrium point bifurcates in an attracting invariant closed curve for
a > a0. If L > 0, a repelling invariant closed curve bifurcates from the equilibrium
point when a < a0.

4. CHAOS CONTROL

In order to control chaotic behavior, small perturbations must be added, and in
result, the randomness change into order. Therefore, chaos control techniques im-
prove the predictability and stability of chaotic orbits [12, 15]. The stabilization of
a perturbed system needs to employ chaos control methods as a means to reduce
fluctuation and unpredictability.

Here,we discuss the Chaos control of Equations (1.4) using the hybrid control
method. In order to apply the hybrid control method to Equations (1.4), we write the
corresponding control model in the following from:

xn+1 = δxn exp
(

1− xn −
ayn

xn + yn

)
+(1−δ)xn ,

yn+1 = δyn exp
(
−b+

cxn

xn + yn

)
+(1−δ)yn , (4.1)

where 0 < δ < 1 is a control parameter for the hybrid control method. The Jacobian
matrix of Equations (4.1) evaluated at the positive coexistence equilibrium point P is
given by

J(P) =


1+δ

(
a(c2 −b2)− c2

c2

)
−aδb2

c2

δ(c−b)2

c
1− δb(c−b)

c

 , (4.2)
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Hence, the characteristic equation of the matrix (4.2) is

ρ(µ) = µ2 −T µ+D,

where

T = 2+δ

(
a−1−b− ab2

c2 +
b2

c

)
,

D =

(
1+δ

(
a(c2 −b2)− c2

c2

))(
1− δb(c−b)

c

)
+

δ2ab(c−b)
c3 .

Lemma 4. Let c > b and ab+c > ac. Then, the unique positive coexistence equi-
librium point P =

(
ab+c−ac

c , (c−b)(ab+c−ac)
bc

)
of Equations (4.1) is locally asymptotic-

ally stable if the following condition satisfies

|T |< 1+D < 2.

5. NUMERICAL SIMULATIONS

This section presents some numerical examples to verify the obtained theoretical
results.

Example 1. Consider the particular case of Equations (1.4) defined by the follow-
ing values of the parameters:

b = 0.7 , c = 1.5 , a ∈ [1.7,1.75] ,

where a the bifurcation parameter. When (a,b,c)= (1.714939,0.7,1.5), the Jacobian
matrix of Equations (1.4) at coexistence equilibrium P is given by

J(P) =
(

1.341 −0.373
0.426 0.626

)
,

whose characteristic equation is

ρ(µ) = µ2 −1.9676µ+0.99869 = 0 .

The eigenvalues are given by

µ1,2 = 0.98509±0.175808i ,

with unit modulus. Furthermore, it is easy to see that

ρ(1) = 0.031877 > 0 ,
(

d|µ1,2|
dā

)
ā=0

= 0.291558 > 0 , T (0) = 1.9676 ̸= 0,1 ,

which leads to µn
1,2 ̸= 1, for any n = 1,2,3,4. In this example, F1 and F2 are given by

F1(x,y) = 2.19x2 −11.577xy+2.857y2 −4.224x3 +2.541x2y+36.659xy2

−21.278y3 +RF1,4(x,y),



DYNAMICS OF A DISCRETE-TIME PREDATOR-PREY SYSTEM 93

and

F2(x,y) =−1.400x2 +4.898xy−1.070y2 +3.913x3 +4.092x2y−16.130xy2

+8.359y3 +RF2,4(x,y) .

Furthermore, the first Lyapunov exponent for these parameters is given by
L ≤ −0.0001898, which proves the correctness of Theorem 1. The bifurcation dia-
grams for xn and yn are depicted in Figure 1, and the maximum Lyapunov exponent
is plotted in Figure 2. It is easy to observe that the positive coexistence equilibrium P
of Equations (1.4) is locally asymptotically stable for 1.7 ≤ a < 1.714939 (see Fig-
ures 3, 4, 5). For a = 1.714939, the point P loses the property of local asymptotic
stability and a closed invariant curve Γs appears around P (see Figures 7, 8 and 9).
Thus, a Neimark-Sacker bifurcation occurs at a = 1.714939. In Figures 7, 8 and 9,
the orbit with initial condition (0.089,0.097), colored in green, leaves the unstable
equilibrium point P and tends asymptotically to the stable invariant curve Γs. The
orbit colored in red, with initial condition (0.17,0.22), also tends asymptotically to
Γs. In Figure 9 we have depicted also an orbit, colored in cyan, with initial condition
(0.3,0.25). From all the above, we can conclude that all the orbits with initial condi-
tions within the invariant curve, except the equilibrium point P, tends asymptotically
from the inside towards Γs, and all the orbits starting outside the invariant curve also
tends asymptotic to Γs. The invariant curve Γs tends to expand as the value of the
parameter a > a0 grows (see Figures 2 (right panel)), and it tends to narrow when
we decrease the value of a. For values of the parameter smaller or equal than a0, the
invariant curve has collapsed into the equilibrium point P.

Example 2. In order to assess the performance of the hybrid control method in
improving chaotic (unstable) Equations (1.4), we take the same parameter values
as given in Example 1 (b = 0.7, c = 1.5) with a = 1.7167. Then, it shows that
the coexistence equilibrium point P of Equations (1.4) is unstable (see Figure 10
(right)). However, this equilibrium point is stable for the control Equations (4.1) if
0 < δ < 0.965 (see Figure 10 (left)) and unstable if 0.965 < δ < 1. This is confirmed
by the bifurcation diagrams of xn and yn in Figure 11.

6. CONCLUDING REMARKS

This paper focuses on a qualitative analysis ofa discrete-time Lotka-Volterra sys-
tem with ratio-dependence, given by Equations (1.4). This system depends on three
parameters, a, b and c, and has one positive equilibrium P. We have analyzed the
stability of P in Lemma 3. In this Lemma, we have presented some conditions under
which the point P is sink, unstable saddle, source, or non-hyperbolic. It is clear that
there is a unique positive coexistence equilibrium P of Equations (1.4) with c > b
and ab+ c > ac. We have also proved the existence of a Neimark-Sacker bifurcation
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FIGURE 1. Bifurcation diagram for xn (right) and yn (left), for the
initial condition (0.089,0.097), and a ∈ [1.7,1.75].
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FIGURE 2. In the left panel, maximum Lyapunov exponent for
the system given in Equations (1.4), with a ∈ [1.7,1.75], (b,c) =
(0.7,1.5) and initial conditions (0.0853,0.09756). In the right panel,
evolution of the distance between the equilibrium point P and the
invariant closed curve Γs in terms of the bifurcation parameter a.
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FIGURE 3. Phase portrait for (a,b,c) = (1.71,0.7,1.5) (left panel)
and evolution of xn for a = 1.71 (right panel).

at the coexistence equilibrium P through the analysis of the normal form of the sys-
tem, concluding this type of bifurcation occurs when the parameters (a,b,c) vary on
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FIGURE 4. Phase portrait for (a,b,c) = (1.714,0.7,1.5) (left
panel), and evolution of xn for a = 1.714 (right panel).
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FIGURE 5. Phase portrait for (a,b,c) = (1.7146,0.7,1.5) (left
panel), and evolution of xn for a = 1.7146 (right panel).
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FIGURE 6. Invariant closed curve Γs (left panel) and evolution of
xn (right panel) for (a,b,c) = (1.714939,0.7,1.5).

the neighborhood B . In the context of biology, Equations (1.4) can be viewed as a
predator-prey system interaction. In terms of the latter, the existence of a Neimark-
Sacker bifurcation in Equations (1.4) implies that both the prey and predator popu-
lations can oscillate around some mean values, and these oscillations will continue
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FIGURE 9. Phase portrait (left panel) and evolution of xn (right
panel) for a = 1.72.

indefinitely under suitable conditions.These results show far richer dynamics of the
discrete model compared to the continuous model. The chaos control of Equations
(1.4) has been successfully explored using the hybrid control method. Finally, we
have illustrated this theoretical results with the help of a numerical examples.
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[15] Ö. A. Gümüş, A. G. M. Selvam, and R. Janagaraj, “Neimark-Sacker bifurcation and control of
chaotic behavior in a discrete-time plant-herbivore system,” Journal of Science and Arts, vol. 22,
no. 3, pp. 549–562, 2022, doi: 10.46939/J.Sci.Arts-22.3-a03.
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