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Abstract. In this paper, fractional linear and nonlinear integro-differential equations are solved
by using an iteration method. Fractional derivative and fractional integral are considered in the
conformable sense. The conformable integro-differential equation is converted to a conformable
integral equation. Then, the conformable integral equation leads to an iteration sequence, the
limit of which is a solution of the conformable integro-differential equation. In addition, stability
and convergence analysis of the presented method are investigated. The applicability of the
presented method is also shown by using numerical examples.
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1. INTRODUCTION

In recent years, the theory of fractional calculus has attracted the attention of many
researchers in various disciplines due to the fact that fractional calculus is more useful
for formulation of the problems in physics, chemistry and engineering such as the
field of electromagnetic waves, viscoelasticity, dielectric polarization and diffusion
equations [7, 10, 12, 13, 16, 18, 19, 21, 24].

Conformable fractional derivative has been defined by Khalil et al. ([14]) and has
also some applications in the real world (see, for example, [3, 15, 20, 23]). In the last
decades, solutions of the conformable fractional integro-differential equations have
been investigated by researchers. In [4], existence of the solutions of periodic bound-
ary value problems for impulsive fractional integro-differential equations has been
investigated. In [5], fractional linear Volterra-Fredholm integro-differential equations
have been solved by using the Sinc-Collocation Method. In [17], fractional linear in-
tegral and integro-differential equations have been solved by using the conformable
Laplace transform. Laguerre polynomial solutions of the linear fractional integro
differential equations have been obtained in [9]. Conformable linear and nonlinear
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fractional integro-differential systems of second order have been solved by using the
reproducing kernel Hilbert space method in [6]. Variational iteration method has been
applied to the conformable linear and nonlinear fractional partial integro-differential
equation in [8]. A computational approach based on the shifted Legendre polyno-
mials has been presented for solving the conformable linear and nonlinear fractional
partial integro-differential equation in [2].

In the present paper, we consider conformable fractional integro-differential equa-
tions in the following form

T a
α y(t) = f (t)+λ(Ia

αF(t,x,y(x)))(t), 0 < α < 1, (1.1)

with initial condition

y(a) = c, (1.2)

where f (t) is continuous for ∀t ∈ [a,T ] and F(x, t,y(t)) is continuous for ∀(x, t) ∈
[a,T ]× [a,T ], ∀y ∈ ℜ, T > 0, T a

α is conformable fractional derivative of order α and
Ia
α is conformable fractional integral of order α.

The rest of the paper is organized as follows. In Section 2, we present the basic
properties of the conformable fractional derivative and integral. In Section 3, we
construct an iteration method. In addition, we present stability and convergence ana-
lysis of the iteration method. In Section 4, we show accuracy of the method by using
numerical examples. We give conclusion in the last section.

2. DESCRIPTION OF THE CONFORMABLE FRACTIONAL DERIVATIVE AND
INTEGRALS

For a function f : (a,∞)→ R, the conformable fractional derivative of f of order
0 < α < 1 in variable t is defined as follows: (see, for example, [14])

T a
α f (t) = lim

ε→0

f (t + ε(t −a)1−α)− f (t)
ε

.

Lemma 1 ([14, Theorem 2.2]). Let α ∈ (0,1] and f ,g be α differentiable at a
point t > 0. Then

T a
α (c1 f + c2g)(t) = c1T a

α f (t)+ c2T a
α g(t), ∀c1,c2 ∈ R,

T a
α ( f g)(t) = f (t)T a

α g(t)+g(t)T a
α f (t),

T a
α ( f )(t) = (t −a)1−α f

′
(t).

Conformable fractional integral of f of order 0 < α < 1 is defined by (see, for
example, [1])

(Ia
α f )(t) =

t∫
a

f (x)dα(x,a) =
t∫

a

f (x)(x−a)α−1dx.
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Note that for a = 0, the conformable fractional derivative of f is denoted by Tα f (t)

and the conformable fractional integral of f is denoted by (Iα f )(t) =
t∫

0
f (x)dα(x).

Lemma 2 ([1, Lemma 2.8]). Let f : (a,b)→ R be differentiable and 0 < α ≤ 1.
Then, for all t > a we have

(Ia
αT a

α f )(t) = f (t)− f (a).

3. ITERATIVE METHOD

Theorem 1. Consider the following conformable integro-differential equation with
initial condition

T a
α y(t) = f (t)+λ(Ia

αF(t,x,y(x)))(t), 0 < α < 1, (3.1)

y(a) = c.

Let y(t) be differentiable for ∀t ∈ (a,T ). Then the general solution of the above
equation is equivalent to the general solution of the following equation

y(t) = y(a)+(Ia
α f )(t)+λ

Ia
α

u∫
a

F(u,x,y(x))dα(x,a)

(t), 0 < α < 1. (3.2)

Proof. Applying the operator Ia
α to Eq. (3.1) and using Lemma 2, we have

y(t)− y(a) = (Ia
α f )(t)+λ

Ia
α

u∫
a

F(u,x,y(x))dα(x,a)

(t).

□

Using Eq. (3.2), the iteration formula for the solution of the problem (1.1)-(1.2) is
constructed as follows

yk(t) = y0(t)+λ

Ia
α

u∫
a

F(u,x,yk−1(x))dα(x,a)

(t), k = 1,2, . . . ,

y0(t) = y(a)+(Ia
α f )(t). (3.3)

Theorem 2. The sequence yk(t) defined by (3.3) is convergent for ∀t ∈ [a,T ] when
F(x, t,y(t)) is continuous; ∥F(x, t,y(t)) ∥∞<M; ∥F(x, t,y1(t))−F(x, t,y2(t)) ∥∞<
L. ∥ y1(t)−y2(t) ∥∞, ∀y1(t),y2(t)∈ℜ, ∀(x, t)∈ [a,T ]× [a,T ] and some L,M > 0.

Proof. Taking k = 1 in the iteration formula (3.3), we have

|y1(t)− y0(t)| ≤ |λ|

Ia
α

u∫
a

|F(u,x,y0(x))||dα(x,a)|

(t)≤ |λ|M |t −a|2α

2α2



550 H. Ç. YASLAN

and by induction

|yk(t)− yk−1(t)| ≤
M
L
|λ|kLk.

|t −a|2kα

(2k)!α2k

is obtained. Since yk(t) = y0(t)+
k
∑

i=1
(yi(t)− yi−1(t)) and

∞

∑
k=0

|λ|kLk.
|t −a|2kα

(2k)!α2k = E2,1

(
L|λ|. |t −a|2α

α2

)
in the whole line, the sequence yk(t) is convergent for t ∈ [a,T ]. Here Eα,β(z) =

∞

∑
k=0

Zk

Γ(αk+β) , α,β > 0, is the Mittag-Leffler function (see, for example, [22]). □

Theorem 3. Let ϕ(t) = limk→∞ yk(t) for ∀t ∈ [a,T ]. Assume that F(x, t,y(t)) is
continuous; ∥ F(x, t,y(t)) ∥∞< M; ∥ F(x, t,y1(t))−F(x, t,y2(t)) ∥∞< L. ∥ y1(t)−
y2(t) ∥∞, ∀y1(t),y2(t) ∈ ℜ, ∀(x, t) ∈ [a,T ]× [a,T ] and some L,M > 0. Then for
∀t ∈ [a,T ]

lim
k→∞

Ia
α

u∫
a

F(u,x,yk(x))dα(x,a)

(t) =

Ia
α

u∫
a

F(u,x,ϕ(x))dα(x,a)

(t). (3.4)

Proof. Since

yk(t) = y0(t)+
k

∑
i=1

(yi(t)− yi−1(t))

and

ϕ(t) = y0(t)+
∞

∑
i=1

(yi(t)− yi−1(t))

we can write

|yk(t)−ϕ(t)| ≤
∞

∑
i=k+1

|yi(t)− yi−1(t)| ≤
∞

∑
i=k+1

M
L
|λ|i.Li.

|t −a|2iα

(2i)!α2i . (3.5)

Let z= |λ|L |t−a|2α

α2 . Since E2,1(z)=
exp(

√
z)+exp(−√

z)
2 =

∞

∑
i=0

zi

(2i)! (see, for example, [11])

and E2,1(z) = 1+ z+ z2

2! + · · ·+ zk

(2k)! + exp(θ) zk+1

(2k+2)! , |θ|<
√

z, we have

|E2,1(z)− (1+ z+
z2

2!
+ · · ·+ zk

(2k)!
)| ≤ exp(

√
z)

|z|k+1

(2k+2)!
. (3.6)

From (3.6), (3.5) can be written as

|yk(t)−ϕ(t)| ≤ M
L

exp
(√

|λ|L |T −a|α

|α|

)Lk+1|λ|k+1|T −a|2α(k+1)

α2k+2(2k+2)!
. (3.7)
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From (3.7), we have∣∣∣∣∣∣
Ia

α

u∫
a

F(u,x,yk(x))dα(x,a)

(t)−

Ia
α

u∫
a

F(u,x,ϕ(x))dα(x,a)

(t)

∣∣∣∣∣∣
≤ M.exp(

√
|λ|L |T −a|α

|α|
)
Lk+1|λ|k+1|T −a|2α(k+2)

2α2k+4(2k+2)!
.

Since exp(
√

|λ|L |T−a|α
|α| )Lk+1|λ|k+1|T−a|2α(k+2)

2α2k+4(2k+2)! → 0 as k → ∞, for k → ∞Ia
α

u∫
a

F(u,x,yk(x))dα(x,a)

(t)→

Ia
α

u∫
a

F(u,x,ϕ(x))dα(x,a)

(t).

□

Theorem 4. Assume that F(x, t,y(t)) is continuous; ∥ F(x, t,y(t)) ∥∞< M;
∥ F(x, t,y1(t))−F(x, t,y2(t)) ∥∞< L. ∥ y1(t)− y2(t) ∥∞, ∀y1(t),y2(t) ∈ ℜ, ∀(x, t) ∈
[a,T ]× [a,T ] and some L,M > 0. If the sequence yk(t) defined by (3.3) converges to
ϕ(t), then ϕ(t) is the exact solution of problem (1.1)-(1.2) for ∀t ∈ [a,T ].

Proof. Taking limit as k approaches to infinity in the iteration formula (3.3) and
using (3.4) we have

ϕ(t) = y0(t)+λ

Ia
α

u∫
a

F(u,x,ϕ(x))dα(x,a)

(t).

□

Theorem 5. Assume that the exact solution of the problem (1.1)-(1.2) is ϕ(t)
for ∀t ∈ [a,T ] and the approximate solution is yk(t) for ∀t ∈ [a,T ], where yk(t)
is the kth order approximation, F(x, t,y(t)) is continuous; ∥ F(x, t,y(t)) ∥∞< M;
∥ F(x, t,y1(t))−F(x, t,y2(t)) ∥∞< L. ∥ y1(t)− y2(t) ∥∞, ∀y1(t),y2(t) ∈ ℜ, ∀(x, t) ∈
[a,T ]× [a,T ] and some L,M > 0. Then for ∀t ∈ [a,T ] the maximum error is estimated
as

|yk(t)−ϕ(t)| ≤ M
L

exp
(√

|λ|L |T −a|α

|α|

)
.E

where

E =
Lk+1|λ|k+1|T −a|2α(k+1)

α2k+2(2k+2)!
.

Proof. The proof can be shown from (3.7). □

Theorem 6. Let y(t), ȳ(t) be differentiable for ∀t ∈ (a,T ) and be the solutions of
the following problems

T a
α y(t) = f (t)+λ(Ia

αF(t,x,y(x)))(t), 0 < α < 1,
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y(a) = c. (3.8)

T a
α ȳ(t) = g(t)+λ(Ia

αF(t,x, ȳ(x)))(t), 0 < α < 1,

ȳ(a) = d. (3.9)

Assume that there exists constants H and L such that ∥ f (t)− g(t) ∥∞≤ H, ∀t ∈
[a,T ]; ∥ F(x, t,y1(t))−F(x, t,y2(t)) ∥∞< L. ∥ y1(t)− y2(t) ∥∞ for ∀y1(t),y2(t) ∈ ℜ

and ∀(x, t) ∈ [a,T ]× [a,T ], then the following inequality is satisfied

|y(t)− ȳ(t)| ≤C.E2,1

(
L|λ|(t −a)2α)

α2

)
, ∀t ∈ [a,T ],

where C = |c−d|+H |T−a|α
α

.

Proof. From Thm.(1), the iteration formulas for Eq. (3.8) and Eq. (3.9) can be
written in the following form

yk(t) = y0(t)+λ

Ia
α

u∫
a

F(u,x,yk−1(x))dα(x,a)

(t), k = 1,2, . . . , (3.10)

y0(t) = c+(Ia
α f )(t) (3.11)

and

ȳk(t) = ȳ0(t)+λ

Ia
α

u∫
a

F(u,x, ȳk−1(x))dα(x,a)

(t), k = 1,2, . . . , (3.12)

ȳ0(t) = d +(Ia
αg)(t). (3.13)

From Eq. (3.11) and Eq. (3.13), we have

|y0(t)− ȳ0(t)| ≤ |c−d|+H
|t −a|α

α
≤ |c−d|+H

|T −a|α

α
=C.

From Eq. (3.10) and Eq. (3.12) for k = 1 we have

|y1(t)− ȳ1(t)| ≤ |y0(t)− ȳ0(t)|

+ |λ|
(

Ia
α

u∫
a

|F(u,x,y0(x))−F(u,x, ȳ0(x))|dα(x,a)
)
(t)

≤C+ |λ|.L.C |t −a|2α

2α2 .

From Eq. (3.10) and Eq. (3.12) for k = 2 we have

|y2(t)− ȳ2(t)| ≤ |y0(t)− ȳ0(t)|

+ |λ|
(

Ia
α

u∫
a

|F(u,x,y1(x))−F(u,x, ȳ1(x))|dα(x,a)
)
(t)
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≤C+ |λ|.L.C |t −a|2α

2α2 + |λ|2.L2.C
|t −a|4α

4!α4 .

Similarly, kth term is written as follows

|yk(t)− ȳk(t)| ≤C
k

∑
i=0

|λ|i.Li.
|t −a|2iα

(2i)!α2i . (3.14)

Since y(t) = limk→∞ yk(t) and ȳ(t) = limk→∞ ȳk(t), taking the limit of (3.14) as
k → ∞ we have

|y(t)− ȳ(t)| ≤C
∞

∑
i=0

|λ|i.Li.
|t −a|2iα

(2i)!α2i =C.E2,1

(
L|λ|(t −a)2α)

α2

)
.

□

It concludes from this theorem that small changes in initial condition and non-
homogenous term cause only small changes of the obtained solution.

4. APPLICATIONS

Example 1. Let us consider the following conformable integro-differential equa-
tion

T1
2
y(t) = 1+

t∫
0

y(x)d 1
2
(x) (4.1)

with initial condition

y(0) = 1. (4.2)

Applying the operator I 1
2

to Eq. (4.1) we have the following equation

y(t) = 1+(I 1
2
1)(t)+

I 1
2

u∫
0

y(x)d 1
2
(x)

(t)

and its iteration formula is obtained by

yk(t) = y0(t)+

I 1
2

u∫
0

yk−1(x)d 1
2
(x)

(t), k = 1,2, . . . ,

y0(t) = 1+2
√

t.
Therefore, we have the following approximations

y1(t) = 1+2
√

t +2t +
4
3

t3/2,

y2(t) = 1+2
√

t +2t +
4
3

t3/2 +
4
15

t5/2 +
2
3

t2,
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y3(t) = 1+2
√

t +2t +
4
3

t3/2 +
4
15

t5/2 +
2
3

t2 +
4

45
t3 +

8
315

t7/2,

y4(t) = 1+2
√

t +2t +
4
3

t3/2 +
4
15

t5/2 +
2
3

t2 +
4

45
t3 +

8
315

t7/2

+
2

315
t4 +

4
2835

t9/2.

The kth approximation is obtained as follows

yk(t) =
2k+1

∑
i=0

2it i/2

i!
.

Then y(t) = limk→∞ yk(t) =
∞

∑
i=0

2it i/2

i! = exp(2
√

t) (see, for example, [1]). Note that

the y(t) = exp(2
√

t) is the exact solution of the problem (4.1)-(4.2).

Example 2. Let us consider the following conformable integro-differential equa-
tion

T1
3
y(t) =

1
3
+

2
3

t1/3 +
9
10

t5/3 +
1
2

t2 +

t∫
0

(x− t)y(x)d 1
3
(x) (4.3)

with initial condition

y(0) = 0. (4.4)

Applying the operator I 1
3

to Eq. (4.3) we have the following equation

y(t) =
(

I 1
3
(
1
3
+

2
3

u1/3 +
9
10

u5/3 +
1
2

u2)

)
(t)+

I 1
3

u∫
0

(x−u)y(x)d 1
3
(x)

(t)

and its iteration formula is obtained by

yk(t) = y0(t)+

I 1
3

u∫
0

(x−u)yk−1(x)d 1
3
(x)

(t), k = 1,2, . . . ,

y0(t) = t1/3 + t2/3 +
9
20

t2 +
3
14

t7/3.

Therefore, we have the following approximations

y1(t) = t1/3 + t2/3 − 243
15400

t11/3 − 27
4928

t4,

y2(t) = t1/3 + t2/3 +
729

4928000
t16/3 +

729
17425408

t17/3,

y3(t) = t1/3 + t2/3 − 6561
11728640000

t7 − 729
5367025664

t22/3,
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y4(t) = t1/3 + t2/3 +
177147

167719552000000
t26/3 +

729
3209481347072

t9,

y5(t) = t1/3 + t2/3 − 59049
51993061120000000

t31/3 − 19683
89146553896271872

t32/3,

y6(t) = t1/3 + t2/3 +
177147

232928913817600000000
t12

+
19683

145130589743130607616
t37/3.

The kth approximation can be written in the following form

yk(t) = t1/3 + t2/3 +10−2k.c1tc2 , c1,c2 ∈ R.

Then y(t) = limk→∞ yk(t) = t1/3 + t2/3. Note that the y(t) = t1/3 + t2/3 is the exact
solution of the problem (4.3)-(4.4).

Example 3. Let us consider the following conformable integro-differential equa-
tion

T1
2
y(t) = 2t

√
t cos(2

√
t)− sin(2

√
t)− t sin(2

√
t)+2t2 sin(2

√
t)

−2
t∫

0

xty(x)d 1
2
(x) (4.5)

with initial condition

y(0) = 1. (4.6)

Applying the operator I 1
2

to Eq. (4.5) we have the following equation

y(t) = 1+
(

I 1
2
(2u

√
ucos(2

√
u)− sin(2

√
u)−usin(2

√
u)+2u2 sin(2

√
u))

)
(t)

−2

I 1
2

u∫
0

xty(x)d 1
2
(x)

(t)

and its iteration formula is obtained by

yk(t) = y0(t)+

I 1
2

u∫
0

xtyk−1(x)d 1
2
(x)

(t), k = 1,2, . . . ,

y0(t) = 1−2t +
2t2

3
+

16t3

45
− 124t4

315
+

1076x5

14175
− 3076x6

467775
+ · · · .

Therefore, we have the following approximations

y1(t) = 1−2t +
2t2

3
− 4t3

45
+

2t4

315
− 4t5

14175
− 5132t6

155925
+ · · ·
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y2(t) = 1−2t +
2t2

3
− 4t3

45
+

2t4

315
− 4t5

14175
+

4t6

467775
− 8t7

42567525

+
2t8

638512875
+

95295196t9

97692469875
+ · · · .

Note that cos(2
√

t) =
∞

∑
i=0

(−1)i t i22i

(2i)! (see, for example, [1]). Then y(t) ≃ cos(2
√

t) is

the exact solution of the problem (4.5)-(4.6).

Example 4. Let us consider the following conformable integro-differential equa-
tion

T1
2
y(t) = 2t

√
t +

2
45

√
t(45+36t2 +20t4)

−
t∫

0

(x2 + y(x))2 d 1
2
(x) (4.7)

with initial condition

y(0) = 1. (4.8)

Applying the operator I 1
2

to Eq. (4.7) we have the following equation

y(t) = 1+
(

I 1
2
(2u

√
u+

2
45

√
u(45+36u2 +20u4))

)
(t)

−

I 1
2

u∫
0

(x2 + y(x))2 d 1
2
(x)

(t)

and its iteration formula is obtained by

yk(t) = y0(t)+

I 1
2

u∫
0

(x2 + yk−1(x))2 d 1
2
(x)

(t), k = 1,2, . . . ,

y0(t) = 1+2t + t2 +
8

15
t3 +

8
45

t5.

Therefore, we have the following approximations

y1(t) = 1− t2

2
− 8

15
t3 − 68

105
t4 − 64

675
t5 + · · ·− 128

467775
t11,

y2(t) = 1+ t2 +
16
45

t3 +
8

105
t4 +

3056
14175

t5 + · · ·− 32768
226471921396875

t23,

y3(t) = 1+ t2 − 16
315

t4 − 32
4725

t5 − 26272
467775

t6 + · · ·+10−23t47,

y4(t) = 1+ t2 +
64

14175
t5 +

64
155925

t6 +
295168

42567525
t7 + · · ·+10−50t95,
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y5(t) = 1+ t2 − 128
467775

t6 − 256
14189175

t7 + · · ·−3.10−105t191,

y6(t) = 1+ t2 +10−5t7 +10−7t8 + · · · ,
y7(t) = 1+ t2 +4.10−7t8 +10−8t9 + · · · ,
y8(t) = 1+ t2 +10−8t9 +10−10t10 + · · · .

y(t) = limk→∞ yk(t) = 1+ t2. Note that the y(t) = 1+ t2 is the exact solution of the
problem (4.7)-(4.8).

Example 5. Let us consider the following conformable integro-differential equa-
tion

T1
2
y(t) =

√
t +

4
315

t
5
2 (35t3 −135t2 +189t −105)

−2
t∫

0

xty3(x)d 1
2
(x) (4.9)

with initial condition

y(0) =−1. (4.10)

Applying the operator I 1
2

to Eq. (4.9) we have the following equation

y(t) =−1+
(

I 1
2
(
√

u+
4

315
u

5
2 (35u3 −135u2 +189u−105))

)
(t)

−2

I 1
2

u∫
0

xty3(x)d 1
2
(x)

(t)

and its iteration formula is obtained by

yk(t) = y0(t)+

I 1
2

u∫
0

xt(yk−1(x))3(x)d 1
2
(x)

(t), k = 1,2, . . . ,

y0(t) =−1+ t − 4
9

t3 +
3
5

t4 − 12
35

t5 +
2
27

t6.

Therefore, we have the following approximations

y1(t) =−1+ t +0.099t6 −0.23t7 +0.23t8 + · · ·−2.10−6t21,

y2(t) =−1+ t −0.0088t9 +0.03t10 −0.045t11 + · · ·+4.10−21t66,

y3(t) =−1+ t −0.00042t12 −0.0019t13 +0.0039t14 + · · ·−10−66t201,

y4(t) =−1+ t −0.000012t15 +0.000071t16 + · · · ,
y5(t) =−1+ t +2.510−7t18 −1.710−6t19 + · · · .
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y(t) = limk→∞ yk(t) = t − 1. Note that the y(t) = t − 1 is the exact solution of the
problem (4.9)-(4.10).
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Handan Çerdik Yaslan
Pamukkale University, Department of Mathematics, Denizli, 20070, Türkiye
E-mail address: hcerdik@pau.edu.tr

http://dx.doi.org/10.1007/s11082-018-1342-2
http://dx.doi.org/10.1155/2021/1537958
http://dx.doi.org/10.1016/S0008-8846(98)00192-6
http://dx.doi.org/10.1016/j.biosystems.2020.104294
http://dx.doi.org/10.1007/BF02403202
http://dx.doi.org/10.1016/j.aml.2017.12.006

	1. Introduction
	2. Description of the conformable fractional derivative and integrals
	3. Iterative Method
	4. Applications
	References

