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Abstract. In this paper, first, we prove a novel integral identity involving a single time-differenti-
able function. Then, we prove some new inequalities associated with one of the open Newton-
Cotes formulas for differentiable convex functions. The newly established inequalities can be
helpful in finding the error bounds of one of the open Newton-Cotes formulas. Finally, some
applications of the inequalities are also presented in the context of open Newton-Cotes formulas.
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1. INTRODUCTION

The area of mathematics known as mathematical analysis covers the theory of
measure, limits, differentiation, integration, and convex functions. Convex functions
are fundamental as positive or increasing functions, and they have emerged as a key
topic in the field of mathematical analysis research.

Inequalities are at the core of mathematical analysis, and they have developed into
a crucial tool in that process up until the early 20th century, when we started to view
them as a separate field of modern mathematics. The pioneering work in this field
was the book “Inequalities” [12] by Hardy, Littlewood and Pélya. Other books (see,
e.g., [19,20]) are of great value in this field as well.

In recent years, many researchers have developed numerical integration formu-
las and found their error bounds using different techniques. To determine the er-
ror bounds of numerical integration formulas, mathematical inequalities are used,
and the authors used various functions such as convex functions, bounded functions,
Lipschitzian functions, and so on. For example, some error bounds for trapezoidal
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and midpoint formulas of numerical integration using the convex functions were
found in [6, 15]. A number of papers have been published on the error bounds of
Simpson’s formula using the convex functions in different calculi and some of these
bounds can be found in [1,3,5,7-9,17,21]. Some error bounds for Newton’s formula
in numerical integration have also been established by using the convex functions in
different calculi and these bounds can be found in [10, 11,13, 14,16,22,23]. In open
Newton-Cotes formulas, Milne’s formula is very important and its error bounds for
four times twice differentiable functions were found in [2]. In [ 18], the authors used
a general form of the convexity and established some new Maclaurin’s formula type
inequalities, and discussed their applications.

Inspired by the ongoing studies, we use differentiable convex functions and prove
some integral inequalities related to one of the open Newton-Cotes formulas for n =1
(see, [4, p. 200]). These inequalities can help us to find the error bounds for the
discussed formula. Finally, we give some applications to quadrature formulas.

2. MAIN RESULTS

In this section, we establish and prove some important integral inequalities for
differentiable convex functions. For this, we will prove the following lemma first.

Lemma 1. Let f : [n,7;] — R be a differentiable function over (my,T,). If F' €
Ly [y, ), then the following equality holds:
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Thus, we have the following required equality by adding (2.2)-(2.4):
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The proof is completed.
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Theorem 1. If all conditions of Lemma 1 hold and |F'| is a convex function, then

the following inequality holds:
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Proof. By taking modulus in (2.1) and using convexity of |f’|, we have
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Thus, the proof is completed.
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Theorem 2. If all conditions of Lemma I hold and |F'|?, ¢ > 1 is a convex func-

tion, then the following inequality holds:
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Thus, the proof is completed. O
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3. APPLICATIONS
Let P be a partition of the interval [rt;, ;] as:

M=T<T<T<..<T, =T,
and we consider the quadrature formula

/nzF(t)dtzA(F,P)+R(F,P),

(3.1)
where |
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and R (F , P) is the associated approximation error.

Proposition 1. Ler [ : [n;, 7] — R be a differentiable function over (T, m,) with
0<m <mand F' € Ly [r,m,). If |F'| is a convex function, then we have
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Thus, we obtain the required inequality by multiplying (3.4) with (1,4 — ;) and then
summing the resultant inequality for all i =0,1,2,...,n—1.

0
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Proposition 2. Let F : [n;, ;] — R be a differentiable function over (m;,n,) with
0<m <myand F' € Ly [my, 7). If |F'|%, g > 1is a convex function, then we have
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Proof. From Theorem 2 and method used in the proof of (3.3), we get the desired
inequality (3.5). 0

Proposition 3. Let [ : [n;,7;] — R be a differentiable function over (T, ;) with
0<m <mand F' € L [r, 7). If|[F'|?, ¢ > 1 is a convex function, then we have
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Proof. From Theorem 3 and method used in the proof of (3.3), we get the desired
inequality (3.6). ([l

4. CONCLUSION

In this work, we have proved some error bounds for one of the open Newton-
Cotes formulas for differentiable convex functions. We also gave some applications
of newly established results in the context of open Newton-Cotes formulas. It is
an interesting and new problem that the upcoming researchers can obtain similar
inequalities for fractional integrals and coordinated convex functions.
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