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Abstract. We study algebras and varieties where every non-trivial congruence has some class
being a non-trivial subuniverse of the algebra in question. Then we focus on algebras where
this non-trivial class is a unique non-singleton class of a congruence. In particular, we invest-
igate Rees algebras, pseudo-Rees algebras and algebras having the one-block property. Many
examples are included. At the end, we will also deal with quotient algebras.
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1. INTRODUCTION

Congruences having the property that one of its classes is a subuniverse were stud-
ied by B. Csákány [6] and R. F. Tichy [8] who introduced the concept of Rees congru-
ences, see also [2]. This concept was generalized for algebras and varieties satisfying
the so-called one-block property in [1]. The aim of the present paper is to modify
these concepts and prove some results also for single algebras.

Let A=(A,F) be an algebra. The algebra A is called non-trivial if |A|> 1. Denote
by ConA = (ConA,⊆) the congruence lattice of A and by ωA the least congruence
on A. A congruence Θ on A is called non-trivial if Θ ̸= ωA.

B. Csákány [6] characterized those varieties V having the property that every con-
gruence on an algebra A of V has some class being a subuniverse of A. His result is
as follows (see also Theorem 4.2.1 in [3]).

Proposition 1. For a variety V the following are equivalent:
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(i) Each congruence on a member of V has some class being a subuniverse.
(ii) There exists some (at most) unary term v(x) such that V satisfies the identity

f
(
v(x), . . . ,v(x)

)
≈ v(x)

for all fundamental operations f .

The best known examples of varieties satisfying the conditions of Proposition 1
are the variety of groups where one can define v as the nullary operation, i.e. the
neutral element of the group, or the variety of idempotent algebras (e.g. lattices or
semilattices) where one can take v(x) := x. Recall that an algebra is called idempotent
if it satisfies the identity f (x, . . . ,x)≈ x for every fundamental operation f and that a
variety is called idempotent if every of its members has this property.

However, it may happen that there exists some non-trivial algebra A and some
non-trivial congruence Θ on A such that the only class of Θ which is a subuniverse
of A is a singleton.

2. NON-TRIVIAL SUBUNIVERSES AS CONGRUENCE CLASSES

This cannot happen if the variety is congruence uniform. Recall that an algebra A
is called congruence uniform if for each congruence Θ on A all classes of Θ have the
same cardinality. A variety V is called congruence uniform if each of its members
has this property. The best known examples of such varieties are the variety of groups,
the variety of rings and the variety of Boolean algebras.

An immediate consequence of Proposition 1 is the following result.

Corollary 1. For a congruence uniform variety V the following are equivalent:
(i) Each congruence on a member of V has some class being a subuniverse which

is non-trivial if the congruence is non-trivial.
(ii) There exists some (at most) unary term v(x) such that V satisfies the identity

f
(
v(x), . . . ,v(x)

)
≈ v(x)

for all fundamental operations f .

Remark 1. Let A = (A,F) be an idempotent algebra. Then every congruence class
of A is a subuniverse of A and hence every non-trivial congruence on A has some
class being a non-trivial subuniverse.

In particular, we have: Every non-trivial congruence on a lattice (semilattice) has
some class being a non-trivial sublattice (subsemilattice).

The following lemma is almost evident.

Lemma 1. Let A=(A,F) be an algebra, a,b∈A and p0 a binary term and assume
A to satisfy the identity
(1) f

(
p0(x,x), . . . , p0(x,x)

)
≈ p0(x,x)

for every fundamental operation f . Then [p0(a,b)]Θ(a,b) is a subuniverse of A.
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Proof. If f is an m-ary fundamental operation and a1, . . . ,am ∈ [p0(a,b)]Θ(a,b)
then

f (a1, . . . ,am) ∈ [ f
(

p0(a,b), . . . , p0(a,b)
)
]Θ(a,b)

= [ f
(

p0(a,a), . . . , p0(a,a)
)
]Θ(a,b)

= [p0(a,a)]Θ(a,b) = [p0(a,b)]Θ(a,b).

□

We now return to varieties with congruences having a class being a non-trivial
subuniverse.

Theorem 1. Let V be a variety where every non-trivial congruence on a member
of V has some class being a non-trivial subuniverse. Then there exists a binary term
p0 such that

• V satisfies identity (1) for every fundamental operation f .
• The class [p0(x,y)]Θ(x,y) is a non-trivial subuniverse of FV (x,y).

Proof. Consider the congruence Θ(x,y) on FV (x,y). Because Θ(x,y) is non-
trivial, there exists some p0 ∈ FV (x,y) such that [p0]Θ(x,y) is a non-trivial sub-
universe of FV (x,y). Since FV (x,y) is the free algebra of V with two free gener-
ators x and y, we have p0 = p0(x,y) for some binary term p0(x,y). Let g denote
the endomorphism of FV (x,y) satisfying g(x) = g(y) = x. Then g

(
t(x,y)

)
= t(x,x)

for every t(x,y) ∈ FV (x,y). Moreover, (x,y) ∈ kerg whence Θ(x,y) ⊆ kerg. Since
[p0(x,y)]Θ(x,y) is a subuniverse of FV (x,y) we have f

(
p0(x,y), . . . , p0(x,y)

)
Θ(x,y)

p0(x,y) for all fundamental operations f and hence

f
(

p0(x,x), . . . , p0(x,x)
)
= g

(
f
(

p0(x,y), . . . , p0(x,y)
))

= g
(

p0(x,y)
)
= p0(x,x)

for all fundamental operations f . □

In the following theorem we provide sufficient conditions for the fact that every
non-trivial congruence on a member of V has some class being a non-trivial subuni-
verse.

Theorem 2. Let V be a variety such that there exists some positive integer n and
binary terms p0, . . . , pn satisfying the following two conditions:

(i) p0(x,y) = · · ·= pn(x,y) if and only if x = y.
(ii) V satisfies identity (1) for every fundamental operation f .

Then for every A = (A,F) ∈ V and every non-trivial congruence Θ on A there exists
some a ∈ A such that [p0(a,a)]Θ is a non-trivial subuniverse of A.

Proof. Let A = (A,F) ∈ V and Θ be a non-trivial congruence on A. Then there
exists some a ∈ A such that [a]Θ is a non-trivial class of Θ. Put C := [p0(a,a)]Θ. If
c1, . . . ,cm ∈C and f is an m-ary fundamental operation then, according to (ii),

f (c1, . . . ,cm) ∈ [ f
(

p0(a,a), . . . , p0(a,a)
)
]Θ = [p0(a,a)]Θ =C
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showing C to be a subuniverse of A. Let b ∈ [a]Θ with b ̸= a. Since p0(a,a) =
· · · = pn(a,a) according to (i) we have pi(a,b) ∈ [pi(a,a)]Θ = [p0(a,a)]Θ = C for
i = 0, . . . ,n. According to Theorem 3.4 in [7] condition (i) implies that there exists
some positive integer k, ternary terms t1, . . . , tk and u1, . . . ,uk,v1, . . . ,vk ∈ {p0, . . . , pn}
such that

x ≈ t1
(
u1(x,y),x,y

)
,

ti
(
vi(x,y),x,y

)
≈ ti+1

(
ui+1(x,y),x,y

)
for i = 1, . . . ,k−1,

tk
(
vk(x,y),x,y

)
≈ y.

Assume now C to be a singleton. Then pi(a,b) = p j(a,b) for all i, j = 0, . . . ,n and
hence ui(a,b) = v j(a,b) for all i, j = 1, . . . ,k and we obtain

a = t1
(
u1(a,b),a,b

)
= t1

(
v1(a,b),a,b

)
= t2

(
u2(a,b),a,b

)
= · · ·

= tk
(
vk(a,b),a,b

)
= b,

a contradiction. Hence C is a non-trivial subuniverse of A. □

If the term p0(x,y) of (ii) in Theorem 2 is a constant term (as in Corollary 2) then,
by Theorem 3.9 in [7], the variety V is congruence modular and n-permutable (for
some n ≥ 2). This is not true if p0(x,y) is a non-constant term as in the variety of
semilattices where we can put n := 1, p0(x,y) := x and p1(x,y) := y in order to satisfy
the assumptions of Theorem 2. Recall that a class K of algebras of the same type is
called n-permutable if for all A ∈ K and all Θ,Φ ∈ ConA we have

Θ◦Φ◦Θ◦Φ◦ · · ·= Φ◦Θ◦Φ◦Θ◦ · · ·

where on both sides of this equality there are n congruences.
Recall that an algebra A with an equationally definable constant 1 is called weakly

regular with respect to 1 if for all Θ,Φ ∈ ConA, [1]Θ = [1]Φ implies Θ = Φ. A vari-
ety is called weakly regular with respect to 1 if any of its members has this property.

We recall the following characterization of varieties being weakly regular with
respect to 1 by B. Csákány [5], see also Theorem 6.4.3 in [3].

Proposition 2. A variety with an equationally definable constant 1 is weakly reg-
ular with respect to 1 if and only if there exists some positive integer n and binary
terms t1, . . . , tn such that

t1(x,y) = · · ·= tn(x,y) = 1 if and only if x = y.

Corollary 2. Let V be a weakly regular variety with respect to the equationally
definable constant 1 satisfying the identity f (1, . . . ,1)≈ 1 for every fundamental op-
eration f . Then every non-trivial congruence on a member of V has some class being
a non-trivial subuniverse.
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Proof. According to Proposition 2 there exists some positive integer n and binary
terms t1, . . . , tn such that

t1(x,y) = · · ·= tn(x,y) = 1 if and only if x = y.

If we take p0 := 1 and pi := ti for i = 1, . . . ,n then the assumptions of Theorem 2 are
satisfied. □

Example 1. Recall that a loop is an algebra (L, ·,/,\,1) of type (2,2,2,0) satisfy-
ing the following identities:

(x/y)y ≈ x, (xy)/y ≈ x, x(x\y)≈ y, x\(xy)≈ y, x1 ≈ 1x ≈ x.

Every non-trivial congruence on a loop has some class being a non-trivial subuni-
verse. This can be seen as follows. Put

n := 1,

t1(x,y) := x/y.

If t1(x,y) = 1 then x/y = 1 and hence x = (x/y)y = 1y = y. If, conversely, x = y
then t1(x,y) = x/x = (1x)/x = 1. Moreover, 1 ·1 = 1, 1/1 = (1 ·1)/1 = 1 and 1\1 =
1\(1 ·1) = 1. Now apply Corollary 2.

Example 2. An implication algebra is a groupoid (I, ·) satisfying the identities

(xy)x ≈ x,(xy)y ≈ (yx)x and x(yz)≈ y(xz).

It is well-known that the identity xx ≈ yy holds in every implication algebra. Hence
this element is an equationally definable constant denoted by 1. Further, the binary
relation ≤ on I defined by x≤ y if and only if xy= 1 (x,y∈ I) is a partial order relation
on I, see e.g. Section 2.2 in [3]. Every non-trivial congruence on an implication
algebra has some class being a non-trivial subuniverse. This can be seen as follows.
Put

n := 2,

t1(x,y) := xy,

t2(x,y) := yx.

Then t1(x,y) = t2(x,y) = 1 if and only if x = y. Moreover, 1 · 1 = 1. Now apply
Corollary 2.

3. REES CONGRUENCES

The concept of a Rees congruence was introduced in [8], but firstly used for semig-
roups by D. Rees in 1940 under a different name. A Rees congruence on an algebra
A= (A,F) is a congruence of the form B2∪ωA where B is a subuniverse of A. A Rees
algebra is an algebra A = (A,F) such that B2 ∪ωA ∈ ConA for every subuniverse B
of A. A Rees variety is a variety consisting of Rees algebras only.
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It was shown in [3] that every subalgebra and every homomorphic image of a Rees
algebra is a Rees algebra again. Moreover, the following is proved (Theorem 12.2.6).

Proposition 3. For an algebra A= (A,F) the following conditions are equivalent:

(i) A is a Rees algebra.
(ii) Every subalgebra of A generated by two elements is a Rees algebra.

(iii)
(

p(a), p(b)
)
∈ ⟨{a,b}⟩2 ∪ωA for any a,b ∈ A and every p ∈ P1(A).

Here ⟨{a,b}⟩ denotes the subalgebra of A generated by {a,b}.
Results on Rees algebras are collected in Chapter 12 of [3] which contains also the

following characterization of Rees varieties (Theorem 12.2.7).

Proposition 4. A variety is a Rees variety if and only if it is at most unary.

Recall that a variety V is called at most unary if every proper term of V is essen-
tially unary or nullary.

The concept of a Rees algebra is rather strong. Hence we modify it as follows.

Definition 1. An algebra A = (A,F) is called a pseudo-Rees algebra if for every
non-trivial congruence Θ on A there exists some class C of Θ being a non-trivial
subuniverse of A such that C2 ∪ωA ∈ ConA.

The following is an immediate consequence of the definition of a Rees algebra and
a pseudo-Rees algebra, respectively.

Lemma 2. Let A = (A,F) be an idempotent Rees algebra. Then A is a pseudo-
Rees algebra.

Proof. Let Θ be a non-trivial congruence on A. Then there exists some non-trivial
class C of Θ. According to Remark 1, C is a subuniverse of A and, since A is a Rees
algebra, C2 ∪ωA ∈ ConA. □

We are going to find another idempotent class of pseudo-Rees algebras.
Recall from [4] that a (join-)directoid is a groupoid (D,⊔) satisfying the identities

x⊔ x ≈ x, (x⊔ y)⊔ x ≈ x⊔ y,

y⊔ (x⊔ y)≈ x⊔ y, x⊔
(
(x⊔ y)⊔ z

)
≈ (x⊔ y)⊔ z.

Hence the class of (join-)directoids forms a variety. In particular, every (join-)semi-
lattice is a (join-)directoid. It is well-known that the binary operation ≤ on D defined
by x ≤ y if x⊔ y = y is a partial order relation on D, called the order induced by D,
and that x,y ≤ x⊔ y.

We can prove the following result.

Theorem 3. Let D = (D,⊔) be a finite join-directoid. Then D is a pseudo-Rees
algebra.
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Proof. Let Θ be a non-trivial congruence on D. Denote by ≤ the order induced
by D/Θ. According to Remark 1 there exists some class of Θ being a non-trivial
subuniverse of D. Let C be a maximal (with respect to ≤) class with this property.
Since D is finite, such a class C exists. Moreover, for each E ∈ D/Θ with C < E we
have |E|= 1. (Clearly, E is a subuniverse of D for every E ∈D/Θ.) Put Φ :=C2∪ωS.
Of course, Φ is an equivalence relation on D and Φ ⊆ Θ. Suppose (a,b),(c,d) ∈ Φ.

Case 1. a = b and c = d: Then clearly (a⊔ c,b⊔d) ∈ Φ.
Case 2. a ̸= b and c ̸= d: Then a,b,c,d ∈C. But C is a subuniverse of D. Thus

also a⊔ c,b⊔d ∈C and hence (a⊔ c,b⊔d) ∈ Φ.
Case 3. a ̸= b and c = d: Then C = [a]Θ = [b]Θ ≤ [a⊔c]Θ = [b⊔d]Θ. By the

assumption on C, either a⊔c,b⊔d ∈C or a⊔c= b⊔d. Hence (a⊔c,b⊔d)∈
Φ.

Case 4. a = b and c ̸= d: This case is symmetric to Case 3.

Altogether, Φ ∈ ConS, i.e. D is a pseudo-Rees algebra. □

Corollary 3. According to Remark 1 and Theorem 3 the variety D of (join-)direc-
toids and, in particular, the variety S of (join-)semilattices has the following property:
For each D = (D,⊔) ∈ D and each non-trivial congruence Θ on D there exists some
class of Θ being a non-trivial subdirectoid of D and if D is finite then there exists such
a class C of Θ such that C2 ∪ωD is a congruence on D. For each S = (S,⊔) ∈ S and
each non-trivial congruence Θ on S there exists some class of Θ being a non-trivial
subsemilattice of S and if S is finite then there exists such a class C such that C2 ∪ωS
is a congruence on S.

3.1. One-block property

Congruences having exactly one class that is not a singleton were treated in [1].

Definition 2. An algebra A has the one-block property if every atom of ConA has
exactly one class which is not a singleton.

Recall that a congruence Θ on A = (A,F) is called an atom of ConA if ωA ≺ Θ.
It was shown in [1] (see also Theorem 12.1.7 in [3]) that a variety satisfying the

one-block property is congruence semimodular, but it need not be congruence mod-
ular.

The following result can be easily checked.

Proposition 5. Let A = (A,F) be a pseudo-Rees algebra. Then it has the one-
block property.

Proof. Let Θ be an atom of ConA. Since A is a pseudo-Rees algebra, there exists
some class C of Θ being a non-trivial subuniverse of A such that Φ := C2 ∪ωA ∈
ConA. Clearly, Φ is a non-trivial congruence on A with Φ ⊆ Θ. Since Θ is an atom
of ConA we have Θ = Φ. Hence A has the one-block property. □
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We can prove the following characterization of algebras having the one-block
property.

Theorem 4. Let A = (A,F) be an algebra. Then the following are equivalent:

(i) A has the one-block property.
(ii) If a,b ∈ A and (a,b) ∈ Θ(x,y) for all (x,y) ∈ Θ(a,b) with x ̸= y then x,y ∈

[a]Θ(a,b) for all (x,y) ∈ Θ(a,b) with x ̸= y.

Proof.

(i) ⇒ (ii): Assume a,b ∈ A and (a,b) ∈ Θ(x,y) for all (x,y) ∈ Θ(a,b). If a = b
then Θ(a,b) = ωA and (ii) is valid. Suppose a ̸= b. Take (c,d) ∈ Θ(a,b)
with c ̸= d. Let Φ be a non-trivial congruence on A with Φ ⊆ Θ(a,b). Then
there exists some (e, f ) ∈ Φ with e ̸= f . We have Θ(e, f ) ⊆ Φ ⊆ Θ(a,b).
Because of (e, f ) ∈ Θ(a,b) and e ̸= f we conclude (a,b) ∈ Θ(e, f ) and
hence Θ(a,b) ⊆ Θ(e, f ). Together we obtain Θ(e, f ) = Θ(a,b) and there-
fore Φ = Θ(a,b) showing that Θ(a,b) is an atom of ConA. According to (i),
[a]Θ(a,b) is the unique class of Θ(a,b) which is not a singleton and hence
c,d ∈ [a]Θ(a,b).

(ii) ⇒ (i): Assume Θ to be an atom of ConA. Then there exist a,b ∈ A with
a ̸= b and Θ(a,b) = Θ. Suppose (c,d) ∈ Θ(a,b) and c ̸= d. Then θ(c,d) is a
non-trivial congruence on A with Θ(c,d)⊆ Θ(a,b). Since Θ(a,b) is an atom
of ConA we have Θ(c,d) = Θ(a,b) and hence (a,b) ∈ Θ(c,d). Because of
(ii) we have x,y ∈ [a]Θ(a,b) for all (x,y) ∈ Θ(a,b) with x ̸= y. This shows
that [a]Θ(a,b) is the unique class of Θ which is not a singleton.

□

3.2. Absorbing element

In the following let P1(A) denote the set of unary polynomial functions on the
algebra A.

In the proof of the next lemma we use the well-known fact that an equivalence
relation Θ on the universe of an algebra A is a congruence on A if and only if (x,y) ∈
Θ implies

(
p(x), p(y)

)
∈ Θ for all p ∈ P1(A).

The proof of the following lemma is straightforward.

Lemma 3. Let A = (A,F) be an algebra and B ⊆ A. Then the following are
equivalent:

(i) B2 ∪ωA ∈ ConA.
(ii) If (a,b) ∈ B2 and p ∈ P1(A) then

(
p(a), p(b)

)
∈ B2 ∪ωA.

Next we describe varieties V such that for any A = (A,F)∈ V and any Θ ∈ ConA
there exists some class B of Θ being a subuniverse of A satisfying B2 ∪ωA ∈ ConA.
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A variety with an absorbing element 1 is a variety with a unique nullary operation
1 satisfying the identities

f (x1, . . . ,xi−1,1,xi+1, . . . ,xn)≈ 1

for all n-ary fundamental operations f and for all i = 1, . . . ,n. It can be easily shown
by induction on term complexity that then also the identities

t(x1, . . . ,xi−1,1,xi+1, . . . ,xn)≈ 1

hold for all n-ary terms t and for all i = 1, . . . ,n. It is easy to see that for an algebra
A the following are equivalent:

(i) A has an absorbing element 1.
(ii) 1 is the unique nullary operation of A, and each p ∈ P1(A) is either a constant

function or p(1) = 1.

Theorem 5. Let V be a variety with an absorbing element 1. Then for every A =
(A,F) ∈ V and every Θ ∈ ConA, [1]Θ is the unique class of Θ being a subuniverse
of A and, moreover, ([1]Θ)2 ∪ωA ∈ ConA.

Proof. Let A = (A,F) ∈ V and Θ ∈ ConA and put B := [1]Θ. Since A satisfies
the identity f (1, . . . ,1)≈ 1 for every fundamental operation f , B is a subuniverse of
A. Because 1 is a nullary fundamental operation, no other class of Θ is a subuniverse
of A. Now let (a,b) ∈ B2 and p ∈ P1(A). Then p either is a constant function or
p(1) = 1. If p is a constant function then

(
p(a), p(b)

)
∈ ωA ⊆ B2 ∪ωA. Otherwise,(

p(a), p(b)
)
∈
(
[p(1)]Θ

)2
= ([1]Θ)2 = B2 ⊆ B2 ∪ωA. According to Lemma 3, B2 ∪

ωA ∈ ConA. □

Example 3. Examples of varieties with an absorbing element 1 are join-semilat-
tices with top element 1, join-directoids with a top element 1 and semigroups with an
absorbing element, usually denoted by 0.

Corollary 4. Let V be a variety with an absorbing element 1. If A ∈ V and
|[1]Θ|> 1 for each non-trivial congruence Θ on A then A is a pseudo-Rees algebra.

Example 4. The join-semilattice A = (A,∨,1) with top element 1 depicted in Fig-
ure 1 has the absorbing element 1.
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The congruence lattice of A is visualized in Figure 2:
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Fig. 2
with

Θ1 := {0}2 ∪{a}2 ∪{b,1}2,

Θ2 := {0}2 ∪{b}2 ∪{a,1}2,

Θ3 := {0,a}2 ∪{b,1}2,

Θ4 := {0}2 ∪{a,b,1}2,

Θ5 := {0,b}2 ∪{a,1}2.

It is easy to see that A is a pseudo-Rees algebra having the one-block property. In ac-
cordance with the remark after Definition 2, ConA is semimodular, but not modular
as can easily be checked.

3.3. Quotient algebras

Next we describe Rees congruences on a quotient algebra A/Θ of some algebra
A = (A,F) with respect to a congruence Θ on A. Keep in mind that then a subset of
A/Θ is in fact a set of congruence classes, i.e. of subsets of A.

Theorem 6. Let A be an algebra, Θ ∈ ConA and B ⊆ A/Θ and define C :=
⋃

X∈B
X.

Then the following hold:
(i) The relation B2 ∪ωA/Θ on A/Θ is a congruence on A/Θ if and only if C2 ∪Θ ∈

ConA. In this case we have

B2 ∪ωA/Θ = (C2 ∪Θ)/Θ.

(ii) The subset B of A/Θ is a subuniverse of A/Θ if and only if C is a subuniverse
of A.

Proof. Assertion (i) follows immediately from the Isomorphism Theorems of Uni-
versal Algebra describing the natural bijective correspondence between the set of all
congruences on A/Θ on the one hand and the set of all congruences on A including
Θ on the other hand. The proof of (ii) is straightforward. □
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Using Theorem 6 we can characterize pseudo-Rees quotient algebras as follows.

Corollary 5. Let A = (A,F) be an algebra and Θ ∈ ConA. Then the following
are equivalent:

(i) A/Θ is a pseudo-Rees algebra.
(ii) Every congruence on A strictly including Θ has some class C being a subuni-

verse of A, but not a class of Θ, such that C2 ∪Θ ∈ ConA.

Also the next theorem is a direct consequence of the Isomorphism Theorem men-
tioned in the proof of Theorem 6.

Theorem 7. Let A = (A,F) be some algebra and Θ ∈ ConA. Then the following
are equivalent:

• A/Θ has the one-block property.
• For every congruence Φ on A covering Θ there exists some subset B of A/Θ

with (
⋃

X∈B
X)2 ∪Θ = Φ.
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Authors’ addresses

Ivan Chajda
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