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HERMITE–HADAMARD- AND PACHPATTE-TYPE INTEGRAL
INEQUALITIES FOR GENERALIZED SUBADDITIVE FUNCTIONS
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Abstract. In this paper, we establish the generalized Hermite–Hadamard- and Pachpatte-type
integral inequalities for local fractional integrals via the generalized subadditive functions. In
particular, we put forward a refined version of the generalized Hermite–Hadamard-type inequal-
ities in the framework of fractal space.
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1. INTRODUCTION

A function f : [0,∞)⊂ R→ R is said to be subadditive if the following inequality

f (x+ y)≤ f (x)+ f (y)

holds true for each x,y ∈ [0,∞). If equality holds, then the function f is called
additive, and if the inequality is reversed, then the function f is named superadditive.

Subadditivity usually appears in thermodynamic properties of nonideal solutions
and mixtures, such as excess molar volume, heat of mixing, or excess enthalpy. In ad-
dition, inequalities and subadditive functions can be occurred in electrical networks,
quantum relative entropy, purification, ergodic theory and dynamical systems, equi-
librium and repulsive perturbation. Here, we mention some findings of the published
articles [6, 7, 12, 13, 16] and the bibliographies quoted therein.

A function f : I ⊂ R→ R is said to be convex if the following inequality

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)

holds true for each x,y ∈ I and t ∈ [0,1].
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
BY 4.0.
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The concept of convexity is well known in the literature. The classical Hermite–
Hadamard’s integral inequality is closely related to convexity, which can be noted as
below:

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
,

in which f : I → R is a convex function as well as a,b ∈ I with a ̸= b.
The inequality above has been studied extensively by many scholars on Euclidean

space. Quite a number of generalizations, refinements, extensions and variants have
been existed in the literature, see for instance the published articles [3, 4, 10, 11] and
the bibliographies quoted therein.

In [19], Tseng et al. acquired the following modified Hermite–Hadamard-type
inequalities for convex functions.

f
(

a+b
2

)
≤ 1

2

[
f
(

3a+b
4

)
+ f

(
a+3b

4

)]
≤ 1

b−a

∫ b

a
f (x)dx

≤ 1
2

[
f (a)+ f (b)

2
+ f

(
a+b

2

)]
≤ f (a)+ f (b)

2
.

In [14], Pachpatte developed the estimates regarding the products of two nonnegative
convex functions.

2 f
(

a+b
2

)
g
(

a+b
2

)
≤ 1

b−a
f (x)g(x)dx+

1
6

M(a,b)+
1
3

N(a,b)

and
1

b−a
f (x)g(x)dx ≤ 1

3
M(a,b)+

1
6

N(a,b),

where M(a,b) = f (a)g(a)+ f (b)g(b) and N(a,b) = f (a)g(b)+ f (b)g(a).

2. PRELIMINARIES

Let us retrospect the theoretical knowledge in connection with local fractional
operators over Rα (0<α≤ 1) advanced by Yang in [21]. Here, we want to emphasize
that α denotes the fractal dimension of Cantor set, not an exponential symbol.

Let ϒα
1 , ϒα

2 and ϒα
3 belong to the set Rα (0 < α ≤ 1), then

(1) ϒα
1 +ϒα

2 and ϒα
1 ϒα

2 belong to the set Rα;
(2) ϒα

1 +ϒα
2 = ϒα

2 +ϒα
1 = (ϒ1 +ϒ2)

α = (ϒ2 +ϒ1)
α;

(3) ϒα
1 +(ϒα

2 +ϒα
3 ) = (ϒα

1 +ϒα
2 )+ϒα

3 ;
(4) ϒα

1 ϒα
2 = ϒα

2 ϒα
1 = (ϒ1ϒ2)

α = (ϒ2ϒ1)
α;

(5) ϒα
1 (ϒ

α
2 ϒα

3 ) = (ϒα
1 ϒα

2 )ϒ
α
3 ;

(6) ϒα
1 (ϒ

α
2 +ϒα

3 ) = ϒα
1 ϒα

2 +ϒα
1 ϒα

3 ;
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(7) ϒα
1 +0α = 0α +ϒα

1 = ϒα
1 and ϒα

1 1α = 1αϒα
1 = ϒα

1 ;
(8) ϒα

1 ≥ ϒα
2 when and only when ϒ1 ≥ ϒ2, ϒ1,ϒ2 ∈ R;

(9) (ϒα
1 )

t = (ϒt
1)

α, t > 0 and ϒ1 > 0;
(10) ϒα

1 −ϒα
2 = (ϒ1 −ϒ2)

α;
(11) For any ϒα

1 ∈ Rα, its inverse element (−ϒ1)
α may be noted as −ϒα

1 ; for any
ϒα

2 ∈Rα \{0α}, its inverse element (1/ϒ2)
α may be noted as 1α/ϒα

2 , but not
1/ϒα

2 .

Definition 1 ([21]). The non-differentiable function f : R→Rα,x→ f (x) is named
as local fractional continuous at x0, if for any ε > 0, there exists σ > 0, such that the
following inequality

| f (x)− f (x0)|< ε
α

is valid for |x− x0| < σ. If the function f (x) is local fractional continuous defined
over the interval (a,b), then one denotes it by f (x) ∈Cα(a,b).

Definition 2 ([21]). Suppose that f (x) ∈ Cα[a,b], and if △= {ξ0,ξ1, · · · ,ξN},
(N ∈ N) is a partition with regard to the interval [a,b] which satisfies that a =
ξ0 < ξ1 < · · · < ξN = b, then the local fractional integral of f defined over the in-
terval [a,b] of order α is defined by

aI(α)b f (x) =
1

Γ(1+α)

∫ b

a
f (ξ)(dξ)α :=

1
Γ(α+1)

lim
△ξ→0

N−1

∑
j=0

f (ξ j)(∆ξ j)
α,

where ∆ξ : = max{∆ξ1,∆ξ2, · · · ,∆ξN−1}, ∆ξ j : = ξ j+1 − ξ j, j = 0, · · · ,N − 1. For
all x ∈ [a,b], if there exists aI(α)x f (x), then it is denoted by f (x) ∈ Iα

x [a,b].

Certain properties widely utilized in the fractal space regarding the integral aI(α)b f (x)
are established as below.

Assume that f (x) = g(α)(x) ∈Cα[a,b], then one achieves that

aI(α)b f (x) = g(b)−g(a).

In accordance with this, the following two formulas are deduced:

aI(α)b (1α) =
1α

Γ(1+α)
(bα −aα)

and

aI(α)b (xτα) =
Γ(1+ τα)

Γ(1+(τ+1)α)
(
b(τ+1)α −a(τ+1)α), τ > 0.

In [21], Yang presented the concept with regard to the generalized convexity.
A function f : I ⊂ R → Rα is said to be generalized convex if the following in-

equality
f (tx+(1− t)y)≤ tα f (x)+(1− t)α f (y)
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holds true for each x,y ∈ I and t ∈ [0,1]. Here, we present the concept of generalized
subadditive functions on fractal sets as follows.

Definition 3. The function f : [0,∞) ⊂ R → Rα is said to be generalized subad-
ditive if the following inequality

f (x+ y)≤ f (x)+ f (y)

holds true for each x,y ∈ [0,∞). If equality holds, then f is called generalized addit-
ive, and if the inequality is reversed, then f is named generalized superadditive.

In 2019, Du et al. used the local fractional calculus to introduce the following
generalized starshaped functions.

Definition 4 ([5]). The functions f : [0,∞)⊂R→Rα is referred to as generalized
starshaped, if f (tx)≤ tα f (x) holds true for each x ∈ [0,∞) and t ∈ [0,1].

Remark 1. If the generalized subadditive function f : [0,∞)→ Rα is generalized
starshaped, then the function f is also generalized convex. Moreover, if the function
f is generalized subadditive and generalized convex over the interval [0,∞), as well
as f (0) = 0α, then the function f is generalized additive.

In [9], Mo et al. gave the following generalized Hermite–Hadamard inequality :

f
(

a+b
2

)
≤ Γ(1+α)

(b−a)α aI(α)b f (x)≤ f (a)+ f (b)
2α

,

in which f (x) ∈Cα[a,b] is a generalized convex function over the interval [a,b] with
a < b.

For recent outcomes in accordance with inequalities in the fractal sense, one may
consults the published articles [1, 2, 8, 15, 17, 18, 20] and the bibliographies quoted
therein.

In this paper we present certain local fractional Hermite–Hadamard-type integral
inequalities via generalized subadditive functions, and the estimates of the products
of two generalized subadditive functions are also considered.

3. MAIN RESULTS

Firstly, we construct the following generalized Hermite–Hadamard-type inequality
under the generalized subadditivity in the settings of fractal sets.

Theorem 1. Assume that f : I = [0,∞)→Rα is a generalized subadditive function.
If a < b (a,b ∈ I◦) and f ∈ Cα[0,∞), then the following Hermite–Hadamard-type
inequalities in the settings of fractal sets hold(

1
2

)α

f (a+b)≤ Γ(1+α)

(b−a)α aI(α)b f (x)≤ Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

bα 0I(α)b f (x).
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Proof. Assume that x = ta+(1− t)b ∈ [a,b], or x = (1− t)a+ tb ∈ [a,b] for any
t ∈ [0,1]. On account of the generalized subadditivity of the function f , we can figure
out that

f (ta+(1− t)b)≤ f (ta)+ f ((1− t)b) (3.1)

and
f ((1− t)a+ tb)≤ f ((1− t)a)+ f (tb). (3.2)

Combining the inequalities (3.1) and (3.2), and in terms of the generalized subaddit-
ivity of the function f again, we obtain that

f (a+b)≤ f (ta+(1− t)b)+ f ((1− t)a+ tb)

≤ f (ta)+ f ((1− t)b)+ f ((1− t)a)+ f (tb). (3.3)

Integrating both sides of the inequalities (3.3) in the fractal sense, we deduce that

1
Γ(1+α)

∫ 1

0
f (a+b)(dt)α

≤ 1
Γ(1+α)

∫ 1

0
f (ta+(1− t)b)(dt)α +

1
Γ(1+α)

∫ 1

0
f ((1− t)a+ tb)(dt)α

≤ 2α

Γ(1+α)

∫ 1

0
f (ta)(dt)α +

2α

Γ(1+α)

∫ 1

0
f (tb)(dt)α. (3.4)

Taking advantage of the appropriate substitutions, we attain that(
1
2

)α 1α

Γ(1+α)
f (a+b)

≤
(

1
b−a

)α 1
Γ(1+α)

∫ b

a
f (x)(dx)α

≤
(

1
a

)α 1
Γ(1+α)

∫ a

0
f (x)(dx)α +

(
1
b

)α 1
Γ(1+α)

∫ b

0
f (x)(dx)α.

As a consequence, we acquire that(
1
2

)α

f (a+b)≤ Γ(1+α)

(b−a)α aI(α)b f (x)≤ Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

bα 0I(α)b f (x).

This fulfills the proof. □

Corollary 1. If one attempts to take f (tx) ≤ tα f (x) in Theorem 1, then one ac-
quires the following Hermite–Hadamard-type inequality for the generalized subad-
ditive functions :

f
(

a+b
2

)
≤
(

1
2

)α

f (a+b)≤ Γ(1+α)

(b−a)α aI(α)b f (x)≤ Γ2(1+α)

Γ(1+2α)

(
f (a)+ f (b)

)
.
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Proof. Taking advantage of f (tx) ≤ tα f (x) and the inequalities (3.4), we acquire
that

f
(

a+b
2

)
≤
(

1
2

)α

f (a+b),

and (
1

b−a

)α 1
Γ(1+α)

∫ 1

0
f (x)(dx)α

≤ 1
Γ(1+α)

∫ 1

0
f (ta)(dt)α +

1
Γ(1+α)

∫ 1

0
f (tb)(dt)α

≤ 1
Γ(1+α)

∫ 1

0
tα(dt)α [ f (a)+ f (b)] =

Γ(1+α)

Γ(1+2α)
[ f (a)+ f (b)] .

As a consequence, we derive that

f
(

a+b
2

)
≤
(

1
2

)α

f (a+b)≤ Γ(1+α)

(b−a)α aI(α)b f (x)≤ Γ2(1+α)

Γ(1+2α)

(
f (a)+ f (b)

)
.

□

Next, we propose an another form of the generalized Hermite–Hadamard-type
inequality for the generalized subadditive functions in the frame of fractal space.

Theorem 2. Suppose that the hypotheses mentioned in Theorem 1 are met. Then
we have the following inequalities for the generalized subadditivity :(

1
4

)α[
f
(

3a+b
2

)
+ f

(
a+3b

2

)]
≤ Γ(1+α)

(b−a)α aI(α)b f (x)

≤
(

1
2

)α[
Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

bα 0I(α)b f (x)
]
+

2αΓ(1+α)

(a+b)α 0I(α)a+b
2

f (x).

(3.5)

Proof. Taking advantage of Theorem 1 over the intervals
[
a, a+b

2

]
and

[a+b
2 ,b

]
,

we deduce that(
1
4

)α

f
(

3a+b
2

)
≤ Γ(1+α)

(b−a)α aI(α)a+b
2

f (x)

≤
(

1
2

)α
Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

(a+b)α 0I(α)a+b
2

f (x) (3.6)

and (
1
4

)α

f
(

a+3b
2

)
≤ Γ(1+α)

(b−a)α
a+b

2
I(α)b f (x)

≤
(

1
2

)α
Γ(1+α)

bα 0I(α)b f (x)+
Γ(1+α)

(a+b)α 0I(α)a+b
2

f (x). (3.7)
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Adding the inequalities (3.6) and (3.7), we derive that(
1
4

)α[
f
(

3a+b
2

)
+ f

(
a+3b

2

)]
≤ Γ(1+α)

(b−a)α aI(α)b f (x)

≤
(

1
2

)α[
Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

bα 0I(α)b f (x)
]
+

2αΓ(1+α)

(a+b)α 0I(α)a+b
2

f (x).

This closures the proof. □

On the basis of Theorem 2, if the function f is generalized starshaped, then we can
acquire a refined version of the generalized Hermite–Hadamard-type inequalities.

Theorem 3. Suppose that the hypotheses mentioned in Theorem 2 are met. If
we attempt to take f (tx) ≤ tα f (x), then we have the following inequalities for the
generalized subadditivity :

f
(

a+b
2

)
≤
(

1
2

)α[
f
(

3a+b
4

)
+ f

(
a+3b

4

)]
≤ Γ(1+α)

(b−a)α aI(α)b f (x)

≤ Γ2(1+α)

Γ(1+2α)

[
f (a)+ f (b)

2α
+ f

(
a+b

2

)]
≤ Γ2(1+α)

Γ(1+2α)

[
f (a)+ f (b)

]
. (3.8)

Proof. Taking advantage of the generalized subadditivity of the function f , we
acquire that

f
(

a+b
2

)
≤
(

1
2

)α

f (a+b)

=

(
1
2

)α

f
(

3a+b
4

+
a+3b

4

)
≤
(

1
2

)α[
f
(

3a+b
4

)
+ f

(
a+3b

4

)]
. (3.9)

Using f (tx)≤ tα f (x), it yields that(
1
2

)α[
f
(

3a+b
4

)
+ f

(
a+3b

4

)]
≤
(

1
4

)α[
f
(

3a+b
2

)
+ f

(
a+3b

2

)]
.

(3.10)
In accordance with Theorem 2, we know that(

1
4

)α[
f
(

3a+b
2

)
+ f

(
a+3b

2

)]
≤ Γ(1+α)

(b−a)α aI(α)b f (x)
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≤
(

1
2

)α[
Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

bα 0I(α)b f (x)
]
+

2αΓ(1+α)

(a+b)α 0I(α)a+b
2

f (x).

(3.11)

As a consequence, in view of the inequalities (3.6) and (3.7), and in terms of
f (tx)≤ tα f (x) again, we deduce that(

1
2

)α
Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

(a+b)α 0I(α)a+b
2

f (x)

=
Γ(1+α)

2α

[
1

Γ(1+α)

∫ 1

0
f (at)(dt)α +

1
Γ(1+α)

∫ 1

0
f
(

a+b
2

t
)
(dt)α

]
≤ Γ(1+α)

2α

[
f (a)+ f

(
a+b

2

)]
1

Γ(1+α)

∫ 1

0
tα(dt)α

=

(
1
2

)α
Γ2(1+α)

Γ(1+2α)

[
f (a)+ f

(
a+b

2

)]
(3.12)

and (
1
2

)α
Γ(1+α)

bα 0I(α)b f (x)+
Γ(1+α)

(a+b)α 0I(α)a+b
2

f (x)

=
Γ(1+α)

2α

[
1

Γ(1+α)

∫ 1

0
f (bt)(dt)α +

1
Γ(1+α)

∫ 1

0
f
(

a+b
2

t
)
(dt)α

]
≤
(

1
2

)α
Γ2(1+α)

Γ(1+2α)

[
f
(

a+b
2

)
+ f (b)

]
. (3.13)

Adding the inequalities (3.12) and (3.13), we derive that(
1
2

)α[
Γ(1+α)

aα 0I(α)a f (x)+
Γ(1+α)

bα 0I(α)b f (x)
]
+

2αΓ(1+α)

(a+b)α 0I(α)a+b
2

f (x)

≤ Γ2(1+α)

Γ(1+2α)

[
f (a)+ f (b)

2α
+ f

(
a+b

2

)]
. (3.14)

By virtue of the generalized subadditivity as well as f (tx)≤ tα f (x), we acquire that

Γ2(1+α)

Γ(1+2α)

[
f (a)+ f (b)

2α
+ f

(
a+b

2

)]
≤ Γ2(1+α)

Γ(1+2α)

[
f (a)+ f (b)

2α
+

f (a)+ f (b)
2α

]
=

Γ2(1+α)

Γ(1+2α)

[
f (a)+ f (b)

]
. (3.15)

Combining the inequalities (3.9), (3.10), (3.11), (3.14) and (3.15), we obtain the
desired outcomes (3.8). This fulfills the proof. □
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Corollary 2. If one attempts to take α = 1 in Theorem 3, then one acquires the
following Hermite–Hadamard-type inequality for convex functions :

f
(

a+b
2

)
≤ 1

2

[
f
(

3a+b
4

)
+ f

(
a+3b

4

)]
≤ 1

b−a

∫ b

a
f (x)dx

≤ 1
2

[
f (a)+ f (b)

2
+ f

(
a+b

2

)]
≤ f (a)+ f (b)

2
,

which is proposed by Tseng et al. in [19].

Finally, we present the Pachpatte-type integral inequalities in the settings of fractal
sets.

Theorem 4. Suppose that f ,g : I = [0,∞) → Rα
+ are both nonnegative general-

ized subadditive functions. If a < b (a,b ∈ I◦) and f ∈ Cα[0,∞), then the following
inequalities in the frame of fractal space hold(

2
b−a

)α

aI(α)b f (x)g(x)

≤
(

2
a

)α

0I(α)a f (x)g(x)+
(

2
b

)α

0I(α)b f (x)g(x)

+
2α

Γ(1+α)

∫ 1

0
f (ta)g((1− t)b)(dt)α +

2α

Γ(1+α)

∫ 1

0
f ((1− t)a)g(tb)(dt)α

≤
(

1
a

)α

0I(α)a
[

f 2(x)+g2(x)
]
+

(
1
b

)α

0I(α)b

[
f 2(x)+g2(x)

]
+

2α

Γ(1+α)

∫ 1

0
f (ta) f ((1− t)b)(dt)α +

2α

Γ(1+α)

∫ 1

0
g(ta)g((1− t)b)(dt)α.

Proof. Taking advantage of the generalized subadditivity of the functions f and g,
we can figure out that

f (ta+(1− t)b)≤ f (ta)+ f ((1− t)b) (3.16)

and
g(ta+(1− t)b)≤ g(ta)+g((1− t)b). (3.17)

Multiplying the inequalities (3.16) and (3.17), as well as noticing that all these terms
are nonnegative, we obtain that

f (ta+(1− t)a)g(ta+(1− t)a)

≤ f (ta)g(ta)+ f (ta)g((1− t)b)+ f ((1− t)b)g(ta)+ f ((1− t)b)g((1− t)b)

≤
(

1
2

)α [(
f (ta)+ f ((1− t)b)

)2
+
(
g(ta)+g((1− t)b)

)2
]
. (3.18)
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Integrating the resulting inequalities (3.18) regarding the variate t over the interval
[0,1] in the fractal sense, it yields that

1
Γ(1+α)

∫ 1

0
f (ta+(1− t)b)g(ta+(1− t)b)(dt)α

≤ 1
Γ(1+α)

∫ 1

0
f (ta)g(ta)(dt)α +

1
Γ(1+α)

∫ 1

0
f (ta)g((1− t)b)(dt)α

+
1

Γ(1+α)

∫ 1

0
f ((1− t)b)g(ta)(dt)α +

1
Γ(1+α)

∫ 1

0
f ((1− t)b)g((1− t)b)(dt)α

≤
(

1
2

)α 1
Γ(1+α)

∫ 1

0

[
f 2(ta)+g2(ta)

]
(dt)α

+

(
1
2

)α 1
Γ(1+α)

∫ 1

0

[
f 2((1− t)b)+g2((1− t)b)

]
(dt)α

+
1

Γ(1+α)

∫ 1

0
f (ta) f ((1− t)b)(dt)α +

1
Γ(1+α)

∫ 1

0
g(ta)g((1− t)b)(dt)α.

(3.19)

As a consequence, by making appropriate substitutions for the inequalities (3.19), we
deduce the desired results. This fulfills the proof. □

Corollary 3. If one attempts to take f (tx) ≤ tα f (x) in Theorem 4, then one ac-
quires the following inequalities for the generalized subadditive functions :(

1
b−a

)α

aI(α)b f (x)g(x)≤ Γ(1+2α)

Γ(1+3α)
R(a,b)+

[
Γ(1+α)

Γ(1+2α)
− Γ(1+2α)

Γ(1+3α)

]
S(a,b)

≤
(

1
2

)α
Γ(1+2α)

Γ(1+3α)

[(
f (a)− f (b)

)2
+
(
g(a)−g(b)

)2
]

+
Γ(1+α)

Γ(1+2α)

[
f (a) f (b)+g(a)g(b)

]
,

where
R(a,b) = f (a)g(a)+ f (b)g(b)

and
S(a,b) = f (a)g(b)+ f (b)g(a).

Proof. Taking advantage of f (tx) ≤ tα f (x) and the inequalities (3.19), it yields
that(

1
b−a

)α

aI(α)b f (x)g(x)

≤ f (a)g(a)
1

Γ(1+α)

∫ 1

0
t2α(dt)α + f (a)g(b)

1
Γ(1+α)

∫ 1

0
tα(1− t)α(dt)α



HERMITE–HADAMARD- AND PACHPATTE-TYPE INTEGRAL INEQUALITIES 655

+ f (b)g(a)
1

Γ(1+α)

∫ 1

0
tα(1− t)α(dt)α + f (b)g(b)

1
Γ(1+α)

∫ 1

0
(1− t)2α(dt)α

≤
(

1
2

)α[(
f 2(a)+g2(a)

) 1
Γ(1+α)

∫ 1

0
t2α(dt)α

+
(

f 2(b)+g2(b)
) 1

Γ(1+α)

∫ 1

0
(1− t)2α(dt)α

]
+

1
Γ(1+α)

∫ 1

0
tα(1− t)α(dt)α

[
f (a) f (b)+g(a)g(b)

]
.

Calculating the following integrals, we derive that

1
Γ(1+α)

∫ 1

0
t2α(dt)α =

1
Γ(1+α)

∫ 1

0
(1− t)2α(dt)α =

Γ(1+2α)

Γ(1+3α)
,

and
1

Γ(1+α)

∫ 1

0
tα(1− t)α(dt)α =

Γ(1+α)

Γ(1+2α)
− Γ(1+2α)

Γ(1+3α)
.

This terminates the proof. □

Theorem 5. Suppose that f ,g : I = [0,∞) → Rα
+ are both nonnegative general-

ized subadditive functions. If a < b (a,b ∈ I◦) and f ∈ Cα[0,∞), then the following
inequalities in the fractal sense hold(

1
2

)α 1α

Γ(1+α)
f (a+b)g(a+b)

≤
(

1
b−a

)α

aI(α)b f (x)g(x)

+
1

Γ(1+α)

∫ 1

0

[
f (ta)g((1− t)a)+ f (tb)g((1− t)b)

]
(dt)α

+
1

Γ(1+α)

∫ 1

0

[
f (ta)g(tb)+ f (tb)g(ta)

]
(dt)α (3.20)

and (
1

b−a

)α

aI(α)b f (x)g(x)

≤
(

1
a

)α

0I(α)a f (x)g(x)+
(

1
b

)α

0I(α)b f (x)g(x)

+
1

Γ(1+α)

∫ 1

0
f (ta)g((1− t)b)(dt)α

+
1

Γ(1+α)

∫ 1

0
f (tb)g((1− t)a)(dt)α. (3.21)
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Proof. Taking advantage of the generalized subadditivity of the functions f and g,
we can figure out that

f (a+b)≤ f (ta+(1− t)b)+ f ((1− t)a+ tb),

and

g(a+b)≤ g(ta+(1− t)b)+g((1− t)a+ tb).

Multiplying the above inequalities, as well as noticing that all these terms are non-
negative, we attain that

f (a+b)g(a+b)

≤ f (ta+(1− t)b)g(ta+(1− t)b)+ f ((1− t)a+ tb)g((1− t)a+ tb)

+ [ f (ta)+ f ((1− t)b)] [g((1− t)a)+g(tb)]

+ [ f ((1− t)a)+ f (tb)] [g(ta)+g((1− t)b)]

= f (ta+(1− t)b)g(ta+(1− t)b)+ f ((1− t)a+ tb)g((1− t)a+ tb)

+ f (ta)g((1− t)a)+ f (ta)g(tb)+ f ((1− t)b)g((1− t)a)+ f ((1− t)b)g(tb)

+ f ((1− t)a)g(ta)+ f ((1− t)a)g((1− t)b)+ f (tb)g(ta)+ f (tb)g((1− t)b).
(3.22)

Integrating the resulting inequality (3.22) regarding the variate t over the interval
[0,1] in the fractal sense, it yields that

1
Γ(1+α)

∫ 1

0
f (a+b)g(a+b)(dt)α

≤ 1
Γ(1+α)

∫ 1

0
f (ta+(1− t)b)g(ta+(1− t)b)(dt)α

+
1

Γ(1+α)

∫ 1

0
f ((1− t)a+ tb)g((1− t)a+ tb)(dt)α

+
1

Γ(1+α)

∫ 1

0

[
f (ta)g((1− t)a)+ f (tb)g((1− t)b)

]
(dt)α

+
1

Γ(1+α)

∫ 1

0

[
f ((1− t)a)g(ta)+ f ((1− t)b)g(tb)

]
(dt)α

+
1

Γ(1+α)

∫ 1

0

[
f (ta)g(tb)+ f (tb)g(ta)

]
(dt)α

+
1

Γ(1+α)

∫ 1

0

[
f ((1− t)a)g((1− t)b)+ f ((1− t)b)g((1− t)a)

]
(dt)α. (3.23)

By virtue of appropriate substitutions for the inequality (3.23), we can deduce in-
equality (3.20).
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On the other hand, taking advantage of the subadditivity of functions f and g again,
it follows that

f (ta+(1− t)b)g(ta+(1− t)b)+ f ((1− t)a+ tb)g((1− t)a+ tb)

≤ f (ta)g(ta)+ f (ta)g((1− t)b)+ f ((1− t)b)g(ta)+ f ((1− t)b)g((1− t)b)

+ f ((1− t)a)g((1− t)a)+ f ((1− t)a)g(tb)+ f (tb)g((1− t)a)+ f (tb)g(tb).
(3.24)

Similarly, integrating the inequalities (3.24) with regard to the variate t over the in-
terval [0,1] in the settings of fractal sets, as well as making appropriate substitutions,
we can acquire the desired inequality (3.21). This fulfills the proof. □

Corollary 4. If one attempts to take f (tx) ≤ tα f (x) in Theorem 5, then one ac-
quires the following inequalities for the generalized subadditive functions :

2α

Γ(1+α)
f
(

a+b
2

)
g
(

a+b
2

)
≤
(

1
2

)α 1α

Γ(1+α)
f (a+b)g(a+b)

≤
(

1
b−a

)α

aI(α)b f (x)g(x)+
[

Γ(1+α)

Γ(1+2α)
− Γ(1+2α)

Γ(1+3α)

]
R(a,b)+

Γ(1+2α)

Γ(1+3α)
S(a,b)

and(
1

b−a

)α

aI(α)b f (x)g(x)≤ Γ(1+2α)

Γ(1+3α)
R(a,b)+

[
Γ(1+α)

Γ(1+2α)
− Γ(1+2α)

Γ(1+3α)

]
S(a,b),

where R(a,b) and S(a,b) are same defined as Corollary 3.

Proof. Taking advantage of the inequality (3.23) and f (tx)≤ tα f (x), we can figure
out that (

1
2

)α 1α

Γ(1+α)
f (a+b)g(a+b)

≤
(

1
b−a

)α

aI(α)b f (x)g(x)

+
1

Γ(1+α)

∫ 1

0
tα(1− t)α(dt)α

[
f (a)g(a)+ f (b)g(b)

]
+

1
Γ(1+α)

∫ 1

0
t2α(dt)α

[
f (a)g(b)+ f (b)g(a)

]
=

(
1

b−a

)α

aI(α)b f (x)g(x)

+

[
Γ(1+α)

Γ(1+2α)
− Γ(1+2α)

Γ(1+3α)

]
R(a,b)+

Γ(1+2α)

Γ(1+3α)
S(a,b).

As a consequence, we can acquire the first desired outcome. Similarly, we can deduce
another inequality by taking advantage of the same procedure. □
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4. CONCLUSIONS

A class of generalized subadditive functions is first presented in the current art-
icle. With the aid of the proposed functions and generalized starshaped functions,
several Hermite–Hadamard- and Pachpatte-type fractal integral inequalities with dif-
ferent bounds are derived as well, respectively. We believe that the present article
can provide ideas for interested researchers to develop the fractal inequalities sim-
ilarly using the fractal-fractional integral operators, see for example the published
article [22].
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