

ON (*M*,*P*)-FUNCTIONS WITH SOME FEATURES AND NEW INEQUALITIES

ERHAN SET, ALİ KARAOĞLAN, İMDAT İŞCAN, AND NESLİHAN KILIÇ

Received 30 November, 2022

Abstract. In this study, we introduce a generalization of *P*-function, called (*M*,*P*)-functions, via weighted mean functions given by *İsçan*. Then, we prove some new inequalities for (M, P) functions. Also, we give new properties for (*M*,*P*)-functions and present some results for the special cases of *M*.

2010 *Mathematics Subject Classification:* 26A51; 26D10; 26E60

Keywords: (*M*,*P*)-functions, *MN*-convex functions, means, weighted means, integral inequalities

1. INTRODUCTION

Historically, pedagogically and logically, the study of convex functions begins in the context of real-valued functions of real variable. Convex functions have important applications and at same time they give rise to a variety of generalizations. The geometric definition of a convex function specifies the following. A real-valued function is said to be convex if the line segment connecting two points of its graph lies above the graph. Equivalently, a real-valued function is convex if its epigraph (the set of points on or above its graph) is convex. A convex function $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ is bounded and its restriction to (a,b) is continuous. Simple examples of convex functions are $f(x) = x^2$ on $(-\infty, \infty)$, $g(x) = \sin x$ on $[-\pi, 0]$, $k(x) = |x|$ on $(-\infty, \infty)$. The analytic definition of a convex function is as follows.

Definition 1. The function $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$, is said to be convex if the following inequality holds

$$
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
$$
\n(1.1)

for all $x, y \in [a, b]$ and $\lambda \in [0, 1]$. We say that *f* is concave if $(-f)$ is convex.

Definition 2 ([\[5\]](#page-11-0)). A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is P function or that f belongs to the class of *P*(*I*), if it is nonnegative and, for all $x, y \in I$ and $\lambda \in [0, 1]$, satisfies the $\overline{\odot}$ 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license [CC](http://creativecommons.org/licenses/by/4.0/) [BY 4.0.](http://creativecommons.org/licenses/by/4.0/)

following inequality;

$$
f(\lambda x + (1 - \lambda)y) \le f(x) + f(y). \tag{1.2}
$$

Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. The generalized condition of convexity, i.e. *MN*-convexity with respect to arbitrary means *M* and *N*, was proposed in 1933 by Aumann [\[4\]](#page-11-1). Recently many authors have dealt with these generalizations. In particular, Niculescu [\[14\]](#page-11-2) compared *MN*-convexity with relative convexity. In [\[3\]](#page-11-3), Anderson et al. studied certain generalizations of these notions for a positive-valued function of a positive variable as follows:

Definition 3. A function *M* : $(0, \infty) \times (0, \infty) \rightarrow (0, \infty)$ is called a mean function if the following conditions are satisfied.

 $(M1)$ $M(u, v) = M(v, u),$ $(M2)$ $M(u, u) = u$, (M3) $u < M(u, v) < v$ whenever $u < v$, (M4) $M(\lambda u, \lambda v) = \lambda M(u, v)$ for all $\lambda > 0$.

Example 1*.* For $u, v \in (0, \infty)$

$$
M(u, v) = A(u, v) = A = \frac{u + v}{2}
$$

is the Arithmetic Mean,

$$
M(u, v) = G(u, v) = G = \sqrt{uv}
$$

is the Geometric Mean,

$$
M(u, v) = H(u, v) = H = A^{-1}(u^{-1}, v^{-1}) = \frac{2uv}{u + v}
$$

is the Harmonic Mean,

$$
M(u, v) = L(u, v) = L = \begin{cases} \frac{u - v}{\ln u - \ln v} & u \neq v \\ u & u = v \end{cases}
$$

is the Logarithmic Mean,

$$
M(u,v) = I(u,v) = I = \begin{cases} \frac{1}{e} \left(\frac{u^u}{v^v} \right)^{\frac{1}{u-v}} & u \neq v \\ u & u = v \end{cases}
$$

is the Identric Mean,

$$
M(u, v) = M_p(u, v) = M_p = \begin{cases} A^{1/p}(u^p, v^p) = \left(\frac{u^p + v^p}{2}\right)^{1/p} & p \in \mathbb{R} \setminus \{0\} \\ G(u, v) = \sqrt{uv} & p = 0 \end{cases}
$$

is the *p*-Power Mean, In particular, we have the following inequality

$$
M_{-1} = H \le M_0 = G \le L \le I \le A = M_1.
$$

In [\[3\]](#page-11-3), Anderson et al. gave a new definition of *MN*-convex functions called *MN*midpoint convex with the help of *M* and *N* weighted mean as follows.

Definition 4. Let *M* and *N* be two means defined on the intervals $I \subset (0, \infty)$ and $J \subset (0, \infty)$ respectively, a function $f : I \to J$ is called *MN*-midpoint convex if it satisfies

$$
f(M(u,v)) \le N(f(u), f(v))
$$

for all $u, v \in I$.

In $[9]$, Iscan gave a new definition of function called weighted mean function as follows.

Definition 5. A function *M* : $(0, \infty) \times (0, \infty) \times [0,1] \rightarrow (0, \infty)$ is called a weighted mean function if

- $(WM1)$ $M(u, v, \lambda) = M(v, u, 1 \lambda)$.
- $(WM2)$ $M(u, u, \lambda) = u$.
- (WM3) $u < M(u, v, \lambda) < v$ whenever $u < v$ and $\lambda \in (0, 1)$. Also $\{M(u, v, 0), M(u, v, 1)\}$ $= \{u, v\}.$
- (WM4) $M(\alpha u, \alpha v, \lambda) = \alpha M(u, v, \lambda)$ for all $\alpha > 0$.
- (WM5) Let $\lambda \in [0,1]$ be fixed. Then $M(u, v, \lambda) \leq M(w, v, \lambda)$ whenever $u \leq w$ and $M(u, v, \lambda) \leq M(u, \omega, \lambda)$ whenever $v \leq \omega$.
- (WM6) Let $u, v \in (0, \infty)$ be fixed and $u \neq v$. Then $M(u, v, \cdot)$ is a strictly monotone and continuous function on $[0,1]$.
- $(WM7)$ $M(M(u, v, \lambda), M(z, w, \lambda), s) = M(M(u, z, s), M(v, w, s), \lambda)$ for all $u, v, z, w \in$ $(0, \infty)$ and $s, \lambda \in [0, 1]$.
- $(WM8)$ $M(u, v, s\lambda_1 + (1-s)\lambda_2) = M(M(u, v, \lambda_1), M(u, v, \lambda_2), s)$ for all $u, v \in (0, \infty)$ and $s, \lambda_1, \lambda_2 \in [0, 1]$.

Remark 1 ([\[9\]](#page-11-4))*.* According to the above definition every weighted mean function is a mean function with $\lambda = 1/2$. Also, By (WM6) we can say that for each $x \in$ $[u, v] \subseteq (0, \infty)$ there exists a $\lambda \in [0, 1]$ such that $x = M(u, v, \lambda)$. Morever;

- i) If $M(u, v,.)$ is a strictly increasing, then $M(u, v, 0) = u$ and $M(u, v, 1) = v$ whenever $u < v$ (i.e. $M(u, v, \lambda)$ is in the positive direction)
- ii) If $M(u, v, .)$ is a strictly deccreasing, then $M(u, v, 0) = v$ and $M(u, v, 1) = u$ whenever $u < v$ (i.e. $M(u, v, \lambda)$ is in the negative direction) and $M(u, v, .)([0, 1]) = [\min\{u, v\}, \max\{u, v\}]$.

Throughout this paper, we will assume that different weighted means have the same direction unless otherwise stated.

Example 2 ([\[9\]](#page-11-4))*.*

$$
M(u, v, \lambda) = A(u, v, \lambda) = A_{\lambda} = (1 - \lambda)u + \lambda v
$$

is the Weighted Arithmetic Mean,

 $M(u, v, \lambda) = G(u, v, \lambda) = G_{\lambda} = u^{1-\lambda}v^{\lambda}$

is the Weighted Geometric Mean,

$$
M(u, v, \lambda) = H(u, v, \lambda) = H_{\lambda} = A^{-1}(u^{-1}, v^{-1}, \lambda) = \frac{uv}{\lambda u + (1 - \lambda)v}
$$

is the Weighted Harmonic Mean,

$$
M(u, v, \lambda) = M_p(u, v, \lambda) = M_{p, \lambda} = \n\begin{cases} A^{1/p}(u^p, v^p, \lambda) = ((1 - \lambda)x^p + \lambda y^p)^{1/p} & p \in \mathbb{R} \setminus \{0\} \\ G(u, v, \lambda) = u^{1 - \lambda} v^{\lambda} & p = 0 \end{cases}
$$

is the *p*-Power Mean. In particular, we have the following inequality

$$
M_{-1,\lambda} = H_{\lambda} \le M_{0,\lambda} = G_{\lambda} \le M_{1,\lambda} = A_{\lambda} \le M_{p,\lambda}
$$

for all $x, y \in (0, \infty), t \in [0, 1]$ and $p \ge 1$.

Iscan [\[9\]](#page-11-4) proved the equalities in the following proposition.

Proposition 1. *If M* : $(0, \infty) \times (0, \infty) \times [0,1] \rightarrow (0, \infty)$ *is a weighted mean function, then the following identities hold:*

$$
M(M(a, M(a, b, s), \lambda), M(b, M(a, b, s), \lambda), s) = M(a, b, s),
$$
 (1.3)

$$
M(M(a,b,\lambda),M(b,a,\lambda),1/2) = M(a,b,1/2). \tag{1.4}
$$

Many different definitions of convexity have been made by mathematicians until now. One of these definition was given by \dot{I} scan as follows.

Definition 6 ([\[9\]](#page-11-4)). Let *M* and *N* be two weighted means defined on the intervals *I* ⊆ (0,∞) and *J* ⊆ (0,∞) respectively, a function *f* : *I* → *J* is called *MN*-convex (concave) if it satisfies

$$
f(M(u, v, \lambda)) \leq (\geq) N(f(u), f(v), \lambda)
$$

for all $u, v \in I$ and $\lambda \in [0, 1]$.

We note that by considering the special cases of *M* and *N*, we obtain several different results. For some recent results related to convex functions, *MN*-convexity and some kinds of convexity obtained by using weighted means, see $[1,4,6,7,11-14,16]$ $[1,4,6,7,11-14,16]$ $[1,4,6,7,11-14,16]$ $[1,4,6,7,11-14,16]$ $[1,4,6,7,11-14,16]$ $[1,4,6,7,11-14,16]$ $[1,4,6,7,11-14,16]$.

Definition 7 ([\[9\]](#page-11-4)). Let *M* and *N* be two weighted means defined on the intervals $[u, v] \subseteq (0, \infty)$ and $J \subseteq (0, \infty)$ respectively and $f: [u, v] \to J$ be a function. We say that *f* is symmetric with respect to $M(u, v, 1/2)$, if it satisfies

$$
f(M(u, v, \lambda)) = f(M(u, v, 1 - \lambda))
$$

for all $\lambda \in [0,1]$.

Definition 8 ([\[10\]](#page-11-10)). A function f defined on [a, b] is said to be of bounded variation on [a, b] if its total variation $Var(f)$ on [a, b] is finite, where

$$
Var(f) = \sup \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|,
$$
\n(1.5)

the supremum being taken over all partitions

$$
a = t_0 < t_1 < \dots < t_n = b \tag{1.6}
$$

of the interval [a , b]; here, $n \in \mathbb{N}$ is arbitrary and so is the choice of values t_1, \ldots, t_{n-1} in $[a,b]$ which, however, must satisfy (1.6) .

Obviously, all functions of bounded variation on $[a, b]$ form a vector space. A norm on this space is given by

$$
||f|| = |f(a)| + Var(f).
$$
 (1.7)

The normed space thus defined is denoted by $BV[a, b]$, where BV suggest "bounded variation".

In 1905, E. Almansi [\[2\]](#page-11-11) proved the following theorem.

Theorem 1. Let f and f' be continuous functions on the interval (a,b) and let $f(a) = f(b)$ *and* $\int_a^b f(x)dx = 0$ *. Then*

$$
\int_{a}^{b} [f(x)]^{2} dx \le \left(\frac{b-a}{2\pi}\right)^{2} \int_{a}^{b} [f'(x)]^{2} dx.
$$
 (1.8)

The aim of this paper is to give a new definition called (*M*,*P*)-function of *P*functions that belongs to the class of $P(I)$ via the weighted means, obtain new inequalities using (M, P) -functions and present some properties of (M, P) -functions.

2. MAIN RESULTS

Definition 9. Let $I \subset (0, \infty)$ be an interval, let $M: I \times I \times [0, 1] \rightarrow (0, \infty)$ be a weighted mean function and let $f: I \to \mathbb{R}$ be a function. Then *f* is said to be an (M, P) -function if the inequality

$$
f\big(M(x,y,t)\big) \le f(x) + f(y)
$$

holds for all $x, y \in I$ and $t \in [0, 1]$.

Remark 2*.* If we choose *M* as the weighted arithmetic mean in Definition [9,](#page-4-1) we obtain the class of *P*-function.

Remark 3. If $f: I \to \mathbb{R}$ is an (M, P) -function on *I*,

$$
f(x) \ge 0 \quad \forall x \in I.
$$

Theorem 2. *Every MN-convex function is an (M,P)-function.*

Proof. Let $M: I \times I \times [0,1] \rightarrow (0,\infty)$, $N: J \times J \times [0,1] \rightarrow (0,\infty)$ be two weighted mean functions on intervals $J \subset (0, \infty)$, $I \subset (0, \infty)$ respectively and $f : I \to J$ be a *MN*-convex function. Then we can write

$$
f(M(x, y, t)) \le N(f(x), f(y), t)
$$
\n(2.1)

for all $x, y \in I$ and all $t \in [0, 1]$.

On the other hand, we can write

$$
f(x) \le f(x) + f(y)
$$

and

$$
f(y) \le f(x) + f(y).
$$

Then, we obtain,

$$
N(f(x), f(y), t) \le N(f(x) + f(y), f(x) + f(y), t) = f(x) + f(y).
$$
 (2.2)

So, using (2.1) and (2.2) , the proof is completed. \Box

Theorem 3 (Hermite-Hadamard's inequalities for (*M*,*P*)-functions). *Let M be a weighted mean function defined on the interval* $I \subset (0, \infty)$ *and* $f : I \to J$ *is an* (M, P) *function. If the following integral exists, then we have the following inequalities for* (*M*,*P*)*-functions*

$$
f(M(x, y, 1/2)) \le 2 \int_0^1 f(M(x, y, t)) dt \le 2[f(x) + f(y)] \tag{2.3}
$$

for all $x, y \in I$ *with* $x < y$.

Proof. Since f is (M, P) -function, using (WM1) and [\(1.4\)](#page-3-0) equality, we have

$$
f(M(x, y, 1/2)) = f(M(M(x, y, t), M(x, y, 1-t), 1/2))
$$
\n
$$
\le f(M(x, y, t)) + f(M(x, y, 1-t))
$$
\n(2.4)

for all $t \in [0,1]$. Integrating both sides of (2.4) inequality respect to *t* over [0,1], we obtain

$$
\int_0^1 f(M(x, y, 1/2)) dt = f(M(x, y, 1/2))
$$
\n
$$
\leq \int_0^1 f(M(x, y, t)) dt + \int_0^1 f(M(x, y, 1-t)) dt
$$
\n
$$
= 2 \int_0^1 f(M(x, y, t)) dt.
$$
\n(2.5)

Otherwise, we can write

$$
f\big(M(x, y, t)\big) \le f(x) + f(y) \tag{2.6}
$$

for all $t \in [0,1]$. Integrating both sides of (2.6) inequality respect to *t* over [0,1], we obtain

$$
\int_0^1 f(M(x, y, t)) dt \le f(x) + f(y).
$$
 (2.7)

Then, using [\(2.5\)](#page-5-4) and [\(2.7\)](#page-6-0) inequalities, we get the desired result. \Box

Remark 4*.* Let $I \subset (0, \infty)$ and $f: I \to \mathbb{R}$. If f is an (M, P) -function and $M = A$ (A) is the weighted arithmetic mean), then using (2.3) , we have the following Hermite-Hadamard's inequalities (see $[5]$, Theorem 3.1).

$$
f(A(x, y, 1/2)) = f\left(\frac{x+y}{2}\right) \le 2 \int_0^1 f(A(x, y, t)) dt
$$

=
$$
2 \int_0^1 f((1-t)x + ty) dt
$$

=
$$
\frac{2}{y-x} \int_x^y f(u) du
$$

$$
\le 2[f(x) + f(y)].
$$

Remark 5*.* Let $I \subset (0, \infty)$ and $f: I \to \mathbb{R}$. If *f* is an (M, P) -function and $M = G$ (G is the weighted geometric mean), then using (2.3) , we have the following Hermite-Hadamard's inequalities (see [\[15\]](#page-11-12), Theorem 2.2, Corollary 2.2, for $h(t)=1$).

$$
f(G(x, y, 1/2)) = f(\sqrt{xy}) \le 2 \int_0^1 f(G(x, y, t)) dt
$$

$$
= 2 \int_0^1 f(x^{1-t}y^t) dt
$$

$$
= \frac{2}{\ln y - \ln x} \int_x^y \frac{f(u)}{u} du
$$

$$
\le 2[f(x) + f(y)].
$$

Remark 6*.* Let $I \subset (0, \infty)$ and $f: I \to \mathbb{R}$. If *f* is an (M, P) -function and $M = H$ (H is the weighted harmonic mean), then using (2.3) , we have the following Hermite-Hadamard's inequalities (see [\[8\]](#page-11-13), Theorem 4).

$$
f(H(x, y, 1/2)) = f\left(\frac{2xy}{x+y}\right) \le 2 \int_0^1 f\left(H(x, y, t)\right) dt
$$

=
$$
2 \int_0^1 f\left(\frac{xy}{tx + (1-t)y}\right) dt
$$

=
$$
\frac{2xy}{y-x} \int_x^y \frac{f(u)}{u^2} du
$$

$$
\le 2[f(x) + f(y)].
$$

Theorem 4. *If f* : $[a,b] \subset (0,\infty) \to \mathbb{R}$ *is an* (M,P) *-function, f is bounded on* $[a,b]$ *.*

Proof. Since *f* is an (M, P) -function, $f(x) \ge 0$ respect to Remark [3](#page-4-2) for all $x \in [a, b]$. Then, *f* is a function bounded below. Also, we can write $x = M(a, b, t)$ for $\forall x \in [a, b]$ and $\exists t \in [0,1]$. Then, we get

$$
f(x) = f(M(a,b,t)) \le f(a) + f(b) = k
$$

and *f* is a function bounded above. Consequently, *f* is a bounded function. \Box

Theorem 5. Let M be weighted mean defined on the interval $I \subset (0, \infty)$. If f: $I \rightarrow \mathbb{R}$ *is an* (M, P) *-function and* $\alpha > 0$ *, then* αf *is an* (M, P) *-function.*

Proof. Since *f* is an (*M*,*P*)-function, we have

$$
\alpha f(M(x, y, t)) \leq \alpha (f(x) + f(y))
$$

= $\alpha f(x) + \alpha f(y)$.

This shows that αf is an (M, P) -function. So, the proof of theorem is completed. \square

Theorem 6. Let M be weighted mean function defined on the interval $I \subset (0, \infty)$. *If* $f_\alpha: I \to \mathbb{R}$ *be an arbitrary family of* (M, P) *-functions and let* $f(x) = \sup_\alpha f_\alpha(x)$ *. If* $K = \{u \in I : f(u) < \infty\}$ *is nonempty, then K is an interval and f is an* (M, P) *-function on K.*

Proof. Let $t \in [0,1]$ and $x, y \in K$ be arbitrary. Also, since f_α is an (M, P) -function, *f*^α is bounded. Then

$$
f(M(x, y, t)) = \sup_{\alpha} f_{\alpha}(M(x, y, t))
$$

\n
$$
\leq \sup_{\alpha} (f_{\alpha}(x) + f_{\alpha}(y))
$$

\n
$$
\leq \sup_{\alpha} f_{\alpha}(x) + \sup_{\alpha} f_{\alpha}(y)
$$

\n
$$
= f(x) + f(y)
$$

\n
$$
< \infty.
$$

This shows simultaneously that K is an interval, since it contains every point between any two of its points and that f is an (M, P) -function on K . The proof of the theorem is completed. □

Theorem 7. Let M be weighted mean function defined on the interval $[x, y] \subseteq$ (0,∞)*. If function f* : [*x*, *y*] → R *is an* (*M*,*P*)*-function and symmetric with respect to* $M(x, y, 1/2)$ *, then we have*

$$
f(M(x, y, 1/2)) \le 2f(u) \le 2[f(x) + f(y)] \tag{2.8}
$$

for all $u \in [x, y]$ *.*

Proof. Let $u \in [x, y]$ be arbitrary point. Then there exist a $t \in [0, 1]$ such that $u =$ $M(x, y, t)$. Since $f: [x, y] \rightarrow J$ is an (M, P) -function and symmetric with respect to $M(x, y, 1/2)$, by using equality [\(1.4\)](#page-3-0) we have

$$
f(M(x, y, 1/2)) = f(M(M(x, y, t), M(x, y, 1-t), 1/2))
$$

$$
\leq f(M(x,y,t)) + f(M(x,y,1-t))
$$

= $f(M(x,y,t)) + f(M(x,y,t))$
= $2f(u)$.

Thus, we obtain the left-hand side of inequality (2.8) . Secondly, since f is an (M, P) function and $(WM5)$ with (1.4) , we get

$$
2f(u) = f(M(x, y, t)) + f(M(x, y, t))
$$

\n
$$
\leq f(x) + f(y) + f(x) + f(y)
$$

\n
$$
= 2f(x) + 2f(y)
$$

\n
$$
= 2[f(x) + f(y)].
$$

So, the proof of the theorem is completed. $□$

Theorem 8. Let M be weighted mean function defined on the interval $I \subset (0, \infty)$. If *the functions* $f, g: \rightarrow \mathbb{R}$ *are* (M, P) *-functions, then* $f + g$ *is also an* (M, P) *-function.*

Proof. Since *f* and *g* are (*M*,*P*)-functions, we have

$$
f(M(x, y, t)) \le f(x) + f(y)
$$

and

$$
g(M(x, y, t)) \le g(x) + g(y)
$$

for all $x, y \in I$ and $t \in [0, 1]$. Then we can write

$$
(f+g)(M(x,y,t)) = f(M(x,y,t)) + g(M(x,y,t))
$$

\n
$$
\leq f(x) + f(y) + g(x) + g(y)
$$

\n
$$
= f(x) + g(x) + f(y) + g(y)
$$

\n
$$
= (f+g)(x) + (f+g)(y).
$$

So, this completes the proof. \Box

Theorem 9. Let $0 < a < b$ and M: $[a,b] \times [a,b] \times [0,1] \rightarrow (0,\infty)$ be a weighted *mean function defined on* [a,b], f : [a,b] \rightarrow (0, ∞), f and f' be continuous functions on (a,b) with $f(a) = f(b)$ and $\int_0^1 f(M(a,b,t))dt = 0$. If $|f'|$ is an (M,P) -function *on* [*a*,*b*]*, then the following inequality holds*

$$
\int_0^1 f^2(M(a,b,t))dt \leq \frac{\left[|f'(a)|+|f'(b)|\right]^2}{4\pi^2} \int_0^1 (\varphi'(t))^2 dt,
$$

where $\varphi(t) = M(a, b, t)$, $\forall t \in [0, 1]$ *.*

Proof. Let $\varphi(t) = M(a, b, t)$ and $\hbar(t) = f \circ \varphi(t)$. Since φ is strictly monotone, $\varphi \in BV[0,1]$, then $\varphi' \in L[0,1]$. Also, we can write $\varphi(0) = a$, $\varphi(1) = b$ and therefore

 $\hbar(0) = f(M(a,b,0)) = f(a) = f(b) = f(M(a,b,1)) = \hbar(1)$. Also, since $\int_0^1 \hbar(t)dt =$ $\int_0^1 f(M(a,b,t)) dt = 0$, φ satisfies the hypothesis of Theorem [1.](#page-4-3) So that, we can write

$$
\int_0^1 \hbar^2(t)dt \le \frac{1}{4\pi^2} \int_0^1 (\hbar'(t))^2 dt.
$$
 (2.9)

Then, we have,

$$
\frac{1}{4\pi^2} \int_0^1 (h'(t))^2 dt = \frac{1}{4\pi^2} \int_0^1 [f'(\varphi(t))\varphi'(t)]^2 dt \n= \frac{1}{4\pi^2} \int_0^1 |f'(\varphi(t))|^2 (\varphi'(t))^2 dt.
$$

Since $|f'|$ is (M, P) -function on $[a, b]$, we get

$$
\frac{1}{4\pi^2} \int_0^1 (\hbar'(t))^2 dt \le \frac{1}{4\pi^2} \int_0^1 \left[|f'(a)| + |f'(b)| \right]^2 (\varphi'(t))^2 dt \qquad (2.10)
$$

$$
= \frac{\left[|f'(a)| + |f'(b)| \right]^2}{4\pi^2} \int_0^1 (\varphi'(t))^2 dt.
$$

Using (2.9) and (2.10) , we get the desired result. \Box

Corollary 1. *If we take M* = *A* (*A is the weighted arithmetic mean) in Theorem [9,](#page-8-0) we get*

$$
\int_{a}^{b} f^{2}(x)dx \leq \frac{(b-a)^{3}}{4\pi^{2}}\big[|f'(a)|+|f'(b)|\big]^{2}.
$$

Corollary 2. *If we take* $M = G$ (G is the weighted geometric mean) in Theorem [9,](#page-8-0) *we get*

$$
\int_{a}^{b} \frac{f^{2}(x)}{x} dx \leq \frac{[\ln b - \ln a]^{2}(b^{2} - a^{2})}{8\pi^{2}} \left[|f'(a)| + |f'(b)| \right]^{2}.
$$

Corollary 3. *If we take* $M = H$ *(H is the weighted harmonic mean) in Theorem [9,](#page-8-0) we get*

$$
\int_{a}^{b} \frac{f^{2}(x)}{x^{2}} dx \leq \frac{(b^{3} - a^{3})(b - a)^{2}}{12(ab)^{2} \pi^{2}} \left[|f'(a)| + |f'(b)| \right]^{2}.
$$

Theorem 10. Let $0 < a < b$ and M: $[a,b] \times [a,b] \times [0,1] \rightarrow (0,\infty)$ be a weighted *mean function defined on* [a,b], f : [a,b] \rightarrow (0, ∞), f and f' be continuous functions on (a,b) with $f(a) = f(b)$ and $\int_0^1 f(M(a,b,t))dt = 0$. If $|f'|^q$ is an (M,P) -function *on* [*a*,*b*]*, then the following inequality holds*

$$
\int_0^1 f^2(M(a,b,t))dt \le \frac{\left[|f'(a)|^q + |f'(b)|^q\right]^{\frac{2}{q}}}{4\pi^2} \left(\int_0^1 |\varphi'(t)|^{2p} dt\right)^{\frac{1}{p}},
$$

 $where \frac{1}{p} + \frac{1}{q}, q > 1, \varphi(t) = M(a, b, t), \forall t \in [0, 1].$

Proof. Let $\varphi(t) = M(a, b, t)$ and $\hbar(t) = f \circ \varphi(t)$. Since φ is strictly monotone, $\varphi \in BV[0,1]$, then $\varphi' \in L[0,1]$. Also, we can write $\varphi(0) = a$, $\varphi(1) = b$ and therefore $\hbar(0) = f(M(a,b,0)) = f(a) = f(b) = f(M(a,b,1)) = \hbar(1)$. Also, since $\int_0^1 \hbar(t)dt =$ $\int_0^1 f(M(a,b,t)) dt = 0$, φ is satisfies the hypothesis of Theorem [1.](#page-4-3) So that, we can write

$$
\int_0^1 \hbar^2(t)dt \le \frac{1}{4\pi^2} \int_0^1 (\hbar'(t))^2 dt.
$$
 (2.11)

Using Hölder inequality, we have

$$
\frac{1}{4\pi^2} \int_0^1 (\hbar'(t))^2 dt = \frac{1}{4\pi^2} \int_0^1 [f'(\varphi(t))\varphi'(t)]^2 dt \n= \frac{1}{4\pi^2} \int_0^1 |f'(\varphi(t))|^2 |\varphi'(t)|^2 dt \n\leq \frac{1}{4\pi^2} \left(\int_0^1 (|f'(\varphi(t))|^2)^q dt \right)^{\frac{1}{q}} \left(\int_0^1 (|\varphi'(t)|^2)^p dt \right)^{\frac{1}{p}} \n= \frac{1}{4\pi^2} \left(\int_0^1 (|f'(\varphi(t))|^q)^2 dt \right)^{\frac{1}{q}} \left(\int_0^1 |\varphi'(t)|^{2p} dt \right)^{\frac{1}{p}}.
$$

Since $|f'|^q$ is (M, P) -function on $[a, b]$, we get

$$
\frac{1}{4\pi^2} \int_0^1 (\hbar'(t))^2 dt \le \frac{1}{4\pi^2} \left(\int_0^1 (|f'(a)|^q + |f'(b)|^q)^2 dt \right)^{\frac{1}{q}} \left(\int_0^1 |\varphi'(t)|^{2p} dt \right)^{\frac{1}{p}}
$$

$$
= \frac{\left[|f'(a)|^q + |f'(b)|^q \right]^{\frac{2}{q}}}{4\pi^2} \left(\int_0^1 |\varphi'(t)|^{2p} dt \right)^{\frac{1}{p}}.
$$
(2.12)

Using (2.11) and (2.12) , we get the desired result. \Box

Corollary 4. *If we take* $M = A$ (A *is the weighted arithmetic mean) in Theorem [10,](#page-9-2) we get*

$$
\int_{a}^{b} f^{2}(x)dx \leq \frac{(b-a)^{3}}{4\pi^{2}}\left[|f'(a)|^{q}+|f'(b)|^{q}\right]^{\frac{2}{q}}.
$$

Corollary 5. *If we take* $M = G$ (G is the weighted geometric mean) in Theorem *[10,](#page-9-2) we get*

$$
\int_a^b \frac{f^2(x)}{x} dx \le \frac{[\ln b - \ln a]^{3 - \frac{1}{p}} (b^{2p} - a^{2p})^{\frac{1}{p}}}{4\pi^2 (2p)^{\frac{1}{p}}} \left[|f'(a)|^q + |f'(b)|^q \right]^{\frac{2}{q}}.
$$

Corollary 6. If we take $M = H$ (*H* is the weighted harmonic mean) in Theorem *[10,](#page-9-2) we get*

$$
\int_a^b \frac{f^2(x)}{x^2} dx \leq \frac{(b-a)^{3-\frac{1}{p}}(ab)(b^{1-4p}-a^{1-4p})^{\frac{1}{p}}}{4\pi^2(1-4p)^{\frac{1}{p}}} \left[|f'(a)|^q+|f'(b)|^q\right]^{\frac{2}{q}}.
$$

REFERENCES

- [1] J. Aczél, "A generalization of the notion of convex functions," *Norske Vid. Selsk. Forhd., Trondhjem*, vol. 19, no. 24, pp. 87–90, 1947.
- [2] E. Almansi, "Sopra una delle esperienze di Plateau," *Ann. Mat. Pure Appl.*, vol. 3, no. 12, pp. 1–17, 1905.
- [3] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, "Generalized convexity and inequalities," *Journal of Mathematical Analysis and Applications*, vol. 335, no. 2, pp. 1294–1308, nov 2007, doi: [10.1016/j.jmaa.2007.02.016.](http://dx.doi.org/10.1016/j.jmaa.2007.02.016)
- [4] G. Aumann, "Konvexe Funktionen und Induktion bei Ungleichungenzwischen Mittelverten," *Bayer. Akad. Wiss. Math.-Natur. Kl. Abh., Math. Ann.*, vol. 109, pp. 405–413, 1933.
- [5] S. S. Dragomir, J. Pečarić, and L. E. Persson, "Some inequalities of Hadamard type," Soochow *Journal of Mathematics*, vol. 21, no. 3, pp. 335–341, 1995.
- [6] **I.**İşçan, "Hermite-Hadamard type inequalities for harmonically convex functions," *Hacet. J. Math. Stat.*, vol. 43, no. 6, pp. 935–942, 2014.
- [7] **I.I**scan, "Ostrowski type inequalities for *p*-convex functions," *New Trends in Mathematical Sciences*, vol. 4, no. 3, pp. 140–150, 2016, doi: [10.20852/ntmsci.2016318838.](http://dx.doi.org/10.20852/ntmsci.2016318838)
- [8] İ.İşcan, S. Numan, and K. Bekar, "Hermite-Hadamard and Simpson type inequalities for differentiable harmonically P-functions," *British Journal of Mathematics and Computer Science*, vol. 4, no. 14, pp. 1908–1920, 2014, doi: [10.9734/BJMCS/2014/10338.](http://dx.doi.org/10.9734/BJMCS/2014/10338)
- [9] İ.İscan, "On weighted means and MN-convex functions," *Turkish Journal of Inequalities*, vol. 5, no. 2, pp. 70–81, 2021.
- [10] E. Kreyszig, *Introductory Functional Analysis with Applications*. University of Windsor, Newyork Santa Barbara London Sydney Toronto, 1978.
- [11] J. Matkowski, "Convex functions with respect to a mean and acharacterization of quasi-arithmetic means," *Real Anal. Exchange*, vol. 29, pp. 229–246, 2003/2004.
- [12] T. Z. Mirkovic, "New inequalities of Wirtinger type for convex and MN-Convex Fuctions," *Facta Universitatis, Series: Mathematics and Informatics*, vol. 34, no. 2, pp. 165–173, 2019, doi: [10.22190/FUMI1902165M.](http://dx.doi.org/10.22190/FUMI1902165M)
- [13] C. P. Niculescu, "Convexity according to the geometric mean," *Math. Inequal. Appl.*, vol. 3, no. 2, pp. 155–167, 2000, doi: [10.7153/mia-03-19.](http://dx.doi.org/10.7153/mia-03-19)
- [14] C. P. Niculescu, "Convexity according to means," *Math. Inequal. Appl.*, vol. 6, pp. 571–579., 2003, doi: [10.7153/mia-06-53.](http://dx.doi.org/10.7153/mia-06-53)
- [15] M. A. Noor, K. I. Noor, and M. U. Awan, "Some inequalities for geometrically-arithmetically *h*-convex functions," *Creat. Math. Inform.*, vol. 24, no. 2, pp. 193–200, 2015.
- [16] A. W. Roberts and D. E. Varberg, *Convex functions*. Academic Press, New York, 1973.

Authors' addresses

Erhan Set

(Corresponding author) Ordu University, Faculty of Sciences and Arts, Department of Mathematics, Ordu, Turkey

E-mail address: erhanset@yahoo.com

966 E. SET, A. KARAOĞLAN, İ. İŞCAN, AND N. KILIÇ

Ali Karaoğlan

Ordu University, Faculty of Sciences and Arts, Department of Mathematics, Ordu, Turkey *E-mail address:* alikaraoglan@odu.edu.tr

˙Imdat ˙Is¸can

Giresun University, Faculty of Sciences and Arts, Department of Mathematics, Giresun, Turkey *E-mail address:* imdat.iscan@giresun.edu.tr

Neslihan Kılıç

Ordu University, Faculty of Sciences and Arts, Department of Mathematics, Ordu, Turkey *E-mail address:* neslimavi1907@gmail.com