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Abstract. In this study, we introduce a generalization of P-function, called (M,P)-functions, via
weighted mean functions given by İşcan. Then, we prove some new inequalities for (M,P)-
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1. INTRODUCTION

Historically, pedagogically and logically, the study of convex functions begins in
the context of real-valued functions of real variable. Convex functions have import-
ant applications and at same time they give rise to a variety of generalizations. The
geometric definition of a convex function specifies the following. A real-valued func-
tion is said to be convex if the line segment connecting two points of its graph lies
above the graph. Equivalently, a real-valued function is convex if its epigraph (the set
of points on or above its graph) is convex. A convex function f : [a,b] ⊂ R→ R is
bounded and its restriction to (a,b) is continuous. Simple examples of convex func-
tions are f (x) = x2 on (−∞,∞), g(x) = sinx on [−π,0], k(x) = |x| on (−∞,∞). The
analytic definition of a convex function is as follows.

Definition 1. The function f : [a,b]⊂R→R, is said to be convex if the following
inequality holds

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y) (1.1)

for all x,y ∈ [a,b] and λ ∈ [0,1]. We say that f is concave if (− f ) is convex.

Definition 2 ([5]). A function f : I ⊆ R → R is P function or that f belongs to
the class of P(I), if it is nonnegative and, for all x,y ∈ I and λ ∈ [0,1], satisfies the
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following inequality;

f
(
λx+(1−λ)y

)
≤ f (x)+ f (y). (1.2)

Convex functions play an important role in many areas of mathematics. They are
especially important in the study of optimization problems where they are distin-
guished by a number of convenient properties. The generalized condition of convex-
ity, i.e. MN-convexity with respect to arbitrary means M and N, was proposed in
1933 by Aumann [4]. Recently many authors have dealt with these generalizations.
In particular, Niculescu [14] compared MN-convexity with relative convexity. In [3],
Anderson et al. studied certain generalizations of these notions for a positive-valued
function of a positive variable as follows:

Definition 3. A function M : (0,∞)× (0,∞)→ (0,∞) is called a mean function if
the following conditions are satisfied.

(M1) M(u,v) = M(v,u),
(M2) M(u,u) = u,
(M3) u < M(u,v)< v whenever u < v,
(M4) M(λu,λv) = λM(u,v) for all λ > 0.

Example 1. For u,v ∈ (0,∞)

M(u,v) = A(u,v) = A =
u+ v

2
is the Arithmetic Mean,

M(u,v) = G(u,v) = G =
√

uv

is the Geometric Mean,

M(u,v) = H(u,v) = H = A−1(u−1,v−1) =
2uv

u+ v
is the Harmonic Mean,

M(u,v) = L(u,v) = L =

{ u−v
lnu−lnv u ̸= v

u u = v

is the Logarithmic Mean,

M(u,v) = I(u,v) = I =

{
1
e

(uu

vv

) 1
u−v u ̸= v

u u = v

is the Identric Mean,

M(u,v) = Mp(u,v) = Mp =

{
A1/p(up,vp) =

(up+vp

2

)1/p
p ∈ R\{0}

G(u,v) =
√

uv p = 0

is the p-Power Mean, In particular, we have the following inequality

M−1 = H ≤ M0 = G ≤ L ≤ I ≤ A = M1.
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In [3], Anderson et al. gave a new definition of MN-convex functions called MN-
midpoint convex with the help of M and N weighted mean as follows.

Definition 4. Let M and N be two means defined on the intervals I ⊂ (0,∞) and
J ⊂ (0,∞) respectively, a function f : I → J is called MN-midpoint convex if it satis-
fies

f (M(u,v))≤ N ( f (u), f (v))
for all u,v ∈ I.

In [9], İşcan gave a new definition of function called weighted mean function as
follows.

Definition 5. A function M : (0,∞)× (0,∞)× [0,1]→ (0,∞) is called a weighted
mean function if
(WM1) M(u,v,λ) = M(v,u,1−λ).
(WM2) M(u,u,λ) = u.
(WM3) u<M(u,v,λ)< v whenever u< v and λ∈ (0,1) . Also {M(u,v,0),M(u,v,1)}

= {u,v} .
(WM4) M(αu,αv,λ) = αM(u,v,λ) for all α > 0.
(WM5) Let λ ∈ [0,1] be fixed. Then M(u,v,λ) ≤ M(w,v,λ) whenever u ≤ w and

M(u,v,λ)≤ M(u,ω,λ) whenever v ≤ ω.
(WM6) Let u,v ∈ (0,∞) be fixed and u ̸= v. Then M(u,v, .) is a strictly monotone and

continuous function on [0,1] .
(WM7) M (M(u,v,λ),M(z,w,λ),s) = M (M(u,z,s),M(v,w,s),λ) for all u,v,z,w ∈

(0,∞) and s,λ ∈ [0,1].
(WM8) M(u,v,sλ1 + (1− s)λ2) = M (M(u,v,λ1),M(u,v,λ2),s) for all u,v ∈ (0,∞)

and s,λ1,λ2 ∈ [0,1].

Remark 1 ([9]). According to the above definition every weighted mean function
is a mean function with λ = 1/2. Also, By (WM6) we can say that for each x ∈
[u,v]⊆ (0,∞) there exists a λ ∈ [0,1] such that x = M(u,v,λ). Morever;

i) If M(u,v, .) is a strictly increasing, then M(u,v,0) = u and M(u,v,1) = v
whenever u < v (i.e. M(u,v,λ) is in the positive direction)

ii) If M(u,v, .) is a strictly deccreasing, then M(u,v,0) = v and M(u,v,1) = u
whenever u < v (i.e. M(u,v,λ) is in the negative direction) and
M(u,v, .)([0,1]) = [min{u,v} ,max{u,v}] .

Throughout this paper, we will assume that different weighted means have the
same direction unless otherwise stated.

Example 2 ([9]).

M(u,v,λ) = A(u,v,λ) = Aλ = (1−λ)u+λv

is the Weighted Arithmetic Mean,

M(u,v,λ) = G(u,v,λ) = Gλ = u1−λvλ
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is the Weighted Geometric Mean,

M(u,v,λ) = H(u,v,λ) = Hλ = A−1(u−1,v−1,λ) =
uv

λu+(1−λ)v

is the Weighted Harmonic Mean,

M(u,v,λ) = Mp(u,v,λ) = Mp,λ ={
A1/p(up,vp,λ) = ((1−λ)xp +λyp)1/p p ∈ R\{0}

G(u,v,λ) = u1−λvλ p = 0

is the p-Power Mean. In particular, we have the following inequality

M−1,λ = Hλ ≤ M0,λ = Gλ ≤ M1,λ = Aλ ≤ Mp,λ

for all x,y ∈ (0,∞), t ∈ [0,1] and p ≥ 1.

İşcan [9] proved the equalities in the following proposition.

Proposition 1. If M : (0,∞)×(0,∞)× [0,1]→ (0,∞) is a weighted mean function,
then the following identities hold:

M (M (a,M(a,b,s),λ) ,M (b,M(a,b,s),λ) ,s) = M(a,b,s), (1.3)

M (M(a,b,λ),M(b,a,λ),1/2) = M(a,b,1/2). (1.4)

Many different definitions of convexity have been made by mathematicians until
now. One of these definition was given by İşcan as follows.

Definition 6 ([9]). Let M and N be two weighted means defined on the intervals
I ⊆ (0,∞) and J ⊆ (0,∞) respectively, a function f : I → J is called MN-convex
(concave) if it satisfies

f (M(u,v,λ))≤ (≥)N ( f (u), f (v),λ)

for all u,v ∈ I and λ ∈ [0,1] .

We note that by considering the special cases of M and N, we obtain several dif-
ferent results. For some recent results related to convex functions, MN-convexity and
some kinds of convexity obtained by using weighted means, see [1,4,6,7,11–14,16].

Definition 7 ([9]). Let M and N be two weighted means defined on the intervals
[u,v] ⊆ (0,∞) and J ⊆ (0,∞) respectively and f : [u,v] → J be a function. We say
that f is symmetric with respect to M(u,v,1/2), if it satisfies

f (M(u,v,λ)) = f (M(u,v,1−λ))

for all λ ∈ [0,1] .
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Definition 8 ([10]). A function f defined on [a,b] is said to be of bounded variation
on [a,b] if its total variation Var( f ) on [a,b] is finite, where

Var( f ) = sup
n

∑
j=1

∣∣ f (t j)− f (t j−1)
∣∣ , (1.5)

the supremum being taken over all partitions

a = t0 < t1 < ... < tn = b (1.6)

of the interval [a,b]; here, n ∈ N is arbitrary and so is the choice of values t1, ..., tn−1
in [a,b] which, however, must satisfy (1.6).

Obviously, all functions of bounded variation on [a,b] form a vector space. A
norm on this space is given by

∥ f∥= | f (a)|+Var( f ). (1.7)

The normed space thus defined is denoted by BV [a,b], where BV suggest ”bounded
variation”.

In 1905, E. Almansi [2] proved the following theorem.

Theorem 1. Let f and f ′ be continuous functions on the interval (a,b) and let
f (a) = f (b) and

∫ b
a f (x)dx = 0. Then∫ b

a

[
f (x)

]2dx ≤
(

b−a
2π

)2 ∫ b

a
[ f ′(x)]2dx. (1.8)

The aim of this paper is to give a new definition called (M,P)-function of P-
functions that belongs to the class of P(I) via the weighted means, obtain new in-
equalities using (M,P)-functions and present some properties of (M,P)-functions.

2. MAIN RESULTS

Definition 9. Let I ⊂ (0,∞) be an interval, let M : I × I × [0,1] → (0,∞) be a
weighted mean function and let f : I → R be a function. Then f is said to be an
(M,P)-function if the inequality

f
(
M(x,y, t)

)
≤ f (x)+ f (y)

holds for all x,y ∈ I and t ∈ [0,1].

Remark 2. If we choose M as the weighted arithmetic mean in Definition 9, we
obtain the class of P-function.

Remark 3. If f : I → R is an (M,P)-function on I,

f (x)≥ 0 ∀x ∈ I.

Theorem 2. Every MN-convex function is an (M,P)-function.
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Proof. Let M : I × I × [0,1]→ (0,∞), N : J × J × [0,1]→ (0,∞) be two weighted
mean functions on intervals J ⊂ (0,∞), I ⊂ (0,∞) respectively and f : I → J be a
MN-convex function. Then we can write

f
(
M(x,y, t)

)
≤ N ( f (x), f (y), t) (2.1)

for all x,y ∈ I and all t ∈ [0,1].
On the other hand, we can write

f (x)≤ f (x)+ f (y)

and
f (y)≤ f (x)+ f (y).

Then, we obtain,

N
(

f (x), f (y), t
)
≤ N

(
f (x)+ f (y), f (x)+ f (y), t

)
= f (x)+ f (y). (2.2)

So, using (2.1) and (2.2), the proof is completed. □

Theorem 3 (Hermite-Hadamard’s inequalities for (M,P)-functions). Let M be a
weighted mean function defined on the interval I ⊂ (0,∞) and f : I → J is an (M,P)-
function. If the following integral exists, then we have the following inequalities for
(M,P)-functions

f
(
M(x,y,1/2)

)
≤ 2

∫ 1

0
f
(
M(x,y, t)

)
dt ≤ 2[ f (x)+ f (y)] (2.3)

for all x,y ∈ I with x < y.

Proof. Since f is (M,P)-function, using (WM1) and (1.4) equality, we have

f
(
M(x,y,1/2)

)
= f
(

M
(
M(x,y, t),M(x,y,1− t),1/2

))
(2.4)

≤ f
(
M(x,y, t)

)
+ f
(
M(x,y,1− t)

)
for all t ∈ [0,1]. Integrating both sides of (2.4) inequality respect to t over [0,1], we
obtain ∫ 1

0
f
(
M(x,y,1/2)

)
dt = f

(
M(x,y,1/2)

)
(2.5)

≤
∫ 1

0
f
(
M(x,y, t)

)
dt +

∫ 1

0
f
(
M(x,y,1− t)

)
dt

= 2
∫ 1

0
f
(
M(x,y, t)

)
dt.

Otherwise, we can write

f
(
M(x,y, t)

)
≤ f (x)+ f (y) (2.6)
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for all t ∈ [0,1]. Integrating both sides of (2.6) inequality respect to t over [0,1], we
obtain ∫ 1

0
f
(
M(x,y, t)

)
dt ≤ f (x)+ f (y). (2.7)

Then, using (2.5) and (2.7) inequalities, we get the desired result. □

Remark 4. Let I ⊂ (0,∞) and f : I → R. If f is an (M,P)-function and M = A
(A is the weighted arithmetic mean), then using (2.3), we have the following Hermite-
Hadamard’s inequalities (see [5], Theorem 3.1).

f
(
A(x,y,1/2)

)
= f

(
x+ y

2

)
≤ 2

∫ 1

0
f
(
A(x,y, t)

)
dt

= 2
∫ 1

0
f
(
(1− t)x+ ty

)
dt

=
2

y− x

∫ y

x
f (u)du

≤ 2[ f (x)+ f (y)].

Remark 5. Let I ⊂ (0,∞) and f : I → R. If f is an (M,P)-function and M = G
(G is the weighted geometric mean), then using (2.3), we have the following Hermite-
Hadamard’s inequalities (see [15], Theorem 2.2, Corollary 2.2, for h(t)=1).

f
(
G(x,y,1/2)

)
= f (

√
xy)≤ 2

∫ 1

0
f
(
G(x,y, t)

)
dt

= 2
∫ 1

0
f
(
x1−tyt)dt

=
2

lny− lnx

∫ y

x

f (u)
u

du

≤ 2[ f (x)+ f (y)].

Remark 6. Let I ⊂ (0,∞) and f : I → R. If f is an (M,P)-function and M = H
(H is the weighted harmonic mean), then using (2.3), we have the following Hermite-
Hadamard’s inequalities (see [8], Theorem 4).

f
(
H(x,y,1/2)

)
= f

(
2xy

x+ y

)
≤ 2

∫ 1

0
f
(
H(x,y, t)

)
dt

= 2
∫ 1

0
f
(

xy
tx+(1− t)y

)
dt

=
2xy

y− x

∫ y

x

f (u)
u2 du

≤ 2[ f (x)+ f (y)].

Theorem 4. If f : [a,b]⊂ (0,∞)→R is an (M,P)-function, f is bounded on [a,b].
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Proof. Since f is an (M,P)-function, f (x)≥ 0 respect to Remark 3 for all x∈ [a,b].
Then, f is a function bounded below. Also, we can write x = M(a,b, t) for ∀x ∈ [a,b]
and ∃ t ∈ [0,1]. Then, we get

f (x) = f
(
M(a,b, t)

)
≤ f (a)+ f (b) = k

and f is a function bounded above. Consequently, f is a bounded function. □

Theorem 5. Let M be weighted mean defined on the interval I ⊂ (0,∞). If f :
I → R is an (M,P)-function and α > 0, then α f is an (M,P)-function.

Proof. Since f is an (M,P)-function, we have

α f
(
M(x,y, t)

)
≤ α

(
f (x)+ f (y)

)
= α f (x)+α f (y).

This shows that α f is an (M,P)-function. So, the proof of theorem is completed. □

Theorem 6. Let M be weighted mean function defined on the interval I ⊂ (0,∞).
If fα : I → R be an arbitrary family of (M,P)-functions and let f (x) = supα fα(x). If
K = {u ∈ I : f (u)< ∞} is nonempty, then K is an interval and f is an (M,P)-function
on K.

Proof. Let t ∈ [0,1] and x,y ∈ K be arbitrary. Also, since fα is an (M,P)-function,
fα is bounded. Then

f
(
M(x,y, t)

)
= supα fα

(
M(x,y, t)

)
≤ supα ( fα(x)+ fα(y))

≤ supα fα(x)+ supα fα(y)

= f (x)+ f (y)
< ∞.

This shows simultaneously that K is an interval, since it contains every point between
any two of its points and that f is an (M,P)-function on K. The proof of the theorem
is completed. □

Theorem 7. Let M be weighted mean function defined on the interval [x,y] ⊆
(0,∞). If function f : [x,y]→ R is an (M,P)-function and symmetric with respect to
M(x,y,1/2), then we have

f
(
M(x,y,1/2)

)
≤ 2 f (u)≤ 2

[
f (x)+ f (y)

]
(2.8)

for all u ∈ [x,y].

Proof. Let u ∈ [x,y] be arbitrary point. Then there exist a t ∈ [0,1] such that u =
M(x,y, t). Since f : [x,y] → J is an (M,P)-function and symmetric with respect to
M(x,y,1/2), by using equality (1.4) we have

f
(
M(x,y,1/2)

)
= f
(

M
(
M(x,y, t),M(x,y,1− t),1/2

))
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≤ f
(
M(x,y, t)

)
+ f
(
M(x,y,1− t)

)
= f
(
M(x,y, t)

)
+ f
(
M(x,y, t)

)
= 2 f (u).

Thus, we obtain the left-hand side of inequality (2.8). Secondly, since f is an (M,P)-
function and (WM5) with (1.4), we get

2 f (u) = f
(
M(x,y, t)

)
+ f
(
M(x,y, t)

)
≤ f (x)+ f (y)+ f (x)+ f (y)

= 2 f (x)+2 f (y)

= 2 [ f (x)+ f (y)] .

So, the proof of the theorem is completed. □

Theorem 8. Let M be weighted mean function defined on the interval I ⊂ (0,∞). If
the functions f ,g : → R are (M,P)-functions, then f +g is also an (M,P)-function.

Proof. Since f and g are (M,P)-functions, we have

f
(
M(x,y, t)

)
≤ f (x)+ f (y)

and
g
(
M(x,y, t)

)
≤ g(x)+g(y)

for all x,y ∈ I and t ∈ [0,1]. Then we can write

( f +g)
(
M(x,y, t)

)
= f
(
M(x,y, t)

)
+g
(
M(x,y, t)

)
≤ f (x)+ f (y)+g(x)+g(y)

= f (x)+g(x)+ f (y)+g(y)

= ( f +g)(x)+( f +g)(y).

So, this completes the proof. □

Theorem 9. Let 0 < a < b and M : [a,b]× [a,b]× [0,1] → (0,∞) be a weighted
mean function defined on [a,b], f : [a,b]→ (0,∞), f and f ′ be continuous functions
on (a,b) with f (a) = f (b) and

∫ 1
0 f
(
M(a,b, t)

)
dt = 0. If | f ′| is an (M,P)-function

on [a,b], then the following inequality holds∫ 1

0
f 2(M(a,b, t)

)
dt ≤

[
| f ′(a)|+ | f ′(b)|

]2
4π2

∫ 1

0
(ϕ′(t))2dt,

where ϕ(t) = M(a,b, t), ∀t ∈ [0,1].

Proof. Let ϕ(t) = M(a,b, t) and ℏ(t) = f ◦ ϕ(t). Since ϕ is strictly monotone,
ϕ ∈ BV[0,1], then ϕ′ ∈ L[0,1]. Also, we can write ϕ(0) = a, ϕ(1) = b and therefore
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ℏ(0) = f
(
M(a,b,0)

)
= f (a) = f (b) = f

(
M(a,b,1)

)
= ℏ(1). Also, since

∫ 1
0 ℏ(t)dt =∫ 1

0 f
(
M(a,b, t)

)
dt = 0, ϕ satisfies the hypothesis of Theorem 1. So that, we can write∫ 1

0
ℏ2(t)dt ≤ 1

4π2

∫ 1

0

(
ℏ′(t)

)2dt. (2.9)

Then, we have,

1
4π2

∫ 1

0

(
ℏ′(t)

)2dt =
1

4π2

∫ 1

0

[
f ′
(
ϕ(t)

)
ϕ
′(t)
]2dt

=
1

4π2

∫ 1

0
| f ′
(
ϕ(t)

)
|2
(
ϕ
′(t)
)2 dt.

Since | f ′| is (M,P)-function on [a,b], we get

1
4π2

∫ 1

0

(
ℏ′(t)

)2dt ≤ 1
4π2

∫ 1

0

[
| f ′(a)|+ | f ′(b)|

]2 (
ϕ
′(t)
)2 dt (2.10)

=

[
| f ′(a)|+ | f ′(b)|

]2
4π2

∫ 1

0
(ϕ′(t))2dt.

Using (2.9) and (2.10), we get the desired result. □

Corollary 1. If we take M = A (A is the weighted arithmetic mean) in Theorem 9,
we get ∫ b

a
f 2(x)dx ≤ (b−a)3

4π2

[
| f ′(a)|+ | f ′(b)|

]2
.

Corollary 2. If we take M = G (G is the weighted geometric mean) in Theorem 9,
we get ∫ b

a

f 2(x)
x

dx ≤ [lnb− lna]2(b2 −a2)

8π2

[
| f ′(a)|+ | f ′(b)|

]2
.

Corollary 3. If we take M = H (H is the weighted harmonic mean) in Theorem 9,
we get ∫ b

a

f 2(x)
x2 dx ≤ (b3 −a3)(b−a)2

12(ab)2π2

[
| f ′(a)|+ | f ′(b)|

]2
.

Theorem 10. Let 0 < a < b and M : [a,b]× [a,b]× [0,1]→ (0,∞) be a weighted
mean function defined on [a,b], f : [a,b]→ (0,∞), f and f ′ be continuous functions
on (a,b) with f (a) = f (b) and

∫ 1
0 f
(
M(a,b, t)

)
dt = 0. If | f ′|q is an (M,P)-function

on [a,b], then the following inequality holds

∫ 1

0
f 2(M(a,b, t)

)
dt ≤

[
| f ′(a)|q + | f ′(b)|q

] 2
q

4π2

(∫ 1

0

∣∣ϕ′(t)
∣∣2p dt

) 1
p

,

where 1
p +

1
q ,q > 1, ϕ(t) = M(a,b, t), ∀t ∈ [0,1].
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Proof. Let ϕ(t) = M(a,b, t) and ℏ(t) = f ◦ ϕ(t). Since ϕ is strictly monotone,
ϕ ∈ BV[0,1], then ϕ′ ∈ L[0,1]. Also, we can write ϕ(0) = a, ϕ(1) = b and therefore
ℏ(0) = f

(
M(a,b,0)

)
= f (a) = f (b) = f

(
M(a,b,1)

)
= ℏ(1). Also, since

∫ 1
0 ℏ(t)dt =∫ 1

0 f
(
M(a,b, t)

)
dt = 0, ϕ is satisfies the hypothesis of Theorem 1. So that, we can

write ∫ 1

0
ℏ2(t)dt ≤ 1

4π2

∫ 1

0

(
ℏ′(t)

)2dt. (2.11)

Using Hölder inequality, we have

1
4π2

∫ 1

0

(
ℏ′(t)

)2dt =
1

4π2

∫ 1

0

[
f ′
(
ϕ(t)

)
ϕ
′(t)
]2dt

=
1

4π2

∫ 1

0
| f ′
(
ϕ(t)

)
|2
∣∣ϕ′(t)

∣∣2 dt

≤ 1
4π2

(∫ 1

0

(∣∣ f ′(ϕ(t))∣∣2)q
dt

) 1
q
(∫ 1

0

(∣∣ϕ′(t)
∣∣2)p

dt

) 1
p

=
1

4π2

(∫ 1

0

(∣∣ f ′(ϕ(t))∣∣q)2
dt

) 1
q
(∫ 1

0

∣∣ϕ′(t)
∣∣2p dt

) 1
p

.

Since | f ′|q is (M,P)-function on [a,b], we get

1
4π2

∫ 1

0

(
ℏ′(t)

)2dt ≤ 1
4π2

(∫ 1

0

(
| f ′(a)|q + | f ′(b)|q

)2
dt

) 1
q
(∫ 1

0

∣∣ϕ′(t)
∣∣2p dt

) 1
p

=

[
| f ′(a)|q + | f ′(b)|q

] 2
q

4π2

(∫ 1

0

∣∣ϕ′(t)
∣∣2p dt

) 1
p

. (2.12)

Using (2.11) and (2.12), we get the desired result. □

Corollary 4. If we take M = A (A is the weighted arithmetic mean) in Theorem
10, we get ∫ b

a
f 2(x)dx ≤ (b−a)3

4π2

[
| f ′(a)|q + | f ′(b)|q

] 2
q .

Corollary 5. If we take M = G (G is the weighted geometric mean) in Theorem
10, we get

∫ b

a

f 2(x)
x

dx ≤ [lnb− lna]3−
1
p (b2p −a2p)

1
p

4π2(2p)
1
p

[
| f ′(a)|q + | f ′(b)|q

] 2
q .
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Corollary 6. If we take M = H (H is the weighted harmonic mean) in Theorem
10, we get∫ b

a

f 2(x)
x2 dx ≤ (b−a)3− 1

p (ab)(b1−4p −a1−4p)
1
p

4π2(1−4p)
1
p

[
| f ′(a)|q + | f ′(b)|q

] 2
q .
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