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Abstract. In this paper, we introduce ∞-cotilting objects in an extriangulated category. The
definition given unifies those of Wakamatsu cotilting modules and of cotilting objects in an ex-
triangulated category. We give a similar Bazzoni characterization and a partial Auslander-Reiten
correspondence between ∞-cotilting objects and resolving subcategories in an extriangulated cat-
egory, which recovers several different results from the literature. More importantly, extensions
of the known results for Wakamatsu cotilting modules and for cotilting objects are very natural,
but nontrivial, and we use a new method to prove them. At the same time, we give a dual version
respect to the ∞-tilting objects.
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1. INTRODUCTION

Let R be an artin algebra. A finitely generated (left) R-module W is called (n-
)cotilting if Ext i

R(W,W ) = 0 for all i ≥ 1, the injective dimension of W is at most
n, and there is a long exact sequence Wn → ··· → W1 → W0 → DR → 0 with each
Wi in addW (the closure of W under finite direct sums and summands). The celeb-
rated ’Auslander-Reiten correspondence’ of [1] establishes a very natural bijection
between (basic) cotilting modules and contravariantly finite resolving subcategories
of the category of finitely generated R-modules. Note that there is also a dual version
of this correspondence for tilting modules and covariantly finite coresolving subcat-
egories.

One can also define (n-)tilting objects in the (big) module category of an arbitrary
ring R. One of the many celebrated results in this direction is due to Bazzoni [2,
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Theorem 3.11], who showed that an R-module W is (n-)cotilting if and only if the
following are equivalent for all R-modules M:

(1) There is an exact sequence 0 → M →W 0 → ·· · →W n;
(2) ExtiR(M,W) = 0 for all i ≥ 1.

In the decades since they first appeared, there have been many successful attempts
to extend the ’Auslander-Reiten correspondence’ and/or ’Bazzoni characterization’
to various new contexts and levels of generality. One example are the Wakamatsu
cotilting modules, where the injective dimension of W and resolution of injective co-
generator E by addW are both allowed to be infinite, see [5, Theorem 2.10]. Another
are cotilting objects in triangulated categories, see [3, Theorems 3.7 and 3.15].

In the recent seminal work [6], Nakaoka and Palu unified the axioms of exact (so
as a special case abelian) and triangulated categories to define extriangulated categor-
ies. The theory they developed has inspired many efforts at unifying constructions
which have been made independently in exact (or abelian) and triangulated categor-
ies. One example has been tilting objects (and more generally subcategories), for
which a generalized definition, an Auslander-Reiten correspondence, and a Bazzoni
characterization are all successfully given in [8, Theorems 1and 2].

Motivated by this idea, in this paper, we takes this a step further to introduce ∞-
cotilting (and dually ∞-tilting) objects in extriangulated categories. The definition
given unifies those of Wakamatsu cotilting modules and of cotilting objects in an
extriangulated category. Our main aim is to establish an Auslander-Reiten corres-
pondence and Bazzoni characterization for these new objects.

The definition and main results in this paper are very natural, but nontrivial, exten-
sions of the known results for Wakamatsu cotilting modules and for cotilting objects
in extriangulated categories. In particular, the proof techniques are new.

2. PRELIMINARIES

Throughout the article, C denotes an additive category. All subcategories con-
sidered are full additive subcategories closed under isomorphisms. We denote by
C (A,B) the set of morphisms from A to B in C . If f ∈ C (A,B), g ∈ C (B,C), we de-
note composition of f and g by g f . We recall the definition and some basic properties
of extriangulated categories from [6] and [8].

Suppose that C is equipped with a biadditive functor E : C op ×C → Ab, where
Ab is the category of abelian groups. For any pair of objects A,C ∈ C , an element
δ ∈ E(C,A) is called an E-extension. Zero element δ ∈ E(C,A) is called the spilt
E-extension.

For any δ ∈ E(C,A) and δ′ ∈ E(C′,A′), since C and E are additive, we can define
the E-extension

δ⊕δ
′ ∈ E(C⊕C′,A⊕A′)
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Since E is a bifunctor, for any a ∈ C (A,A′) and c ∈ C (C′,C), we have E-extensions

E(C,a)(δ) ∈ E(C,A′), E(c,A)(δ) ∈ E(C′,A.

We abbreviate E(C,a)(δ) and E(c,A)(δ) to a∗δ and c∗δ, respectively.

Definition 2.1. [6, Definition 2.3] A morphism (a,c) : δ → δ′ of E-extensions δ ∈
E(C,A) and δ′ ∈ E(C′,A′) is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C′)
satisfying a∗δ = c∗δ′.

Two sequences of morphisms A x→ B
y→ C and A x′→ B′ y′→ C in C are said to be

equivalent if there exists an isomorphism b ∈ C (B,B′) which makes the following
diagram commutative.

A x // B
y //

b∼=
��

C

A x′ // B′ y′ // C

We denote the equivalence class of A x→ B
y→C by [A x→ B

y→C].

For any A,C ∈ C , we denote as 0 = [A
[10]→ A⊕C

[0 1]→ C].

Definition 2.2. [6, Definition 2.9] Let s be a correspondence which associates an
equivalence class s(δ) = [A x→ B

y→ C] to any E-extension δ ∈ E(C,A). This s is
called a realization of E if it satisfies the following condition.

Let δ∈E(C,A) and δ′ ∈E(C′,A′) be any two E-extension with s(δ)= [A x→B
y→C]

and s(δ′) = [A′ x′→ B′ y′→ C′]. Then, for any morphism (a,c) : δ → δ′, there exists a
morphism b ∈ C (B,B′) which makes the following diagram commutative.

A x //

a
��

B
y //

b
��

C

c
��

A x′ // B′ y′ // C′

In this case, we say the sequence A x→ B
y→C realizes δ.

Remark that this condition does not depend on the choices of the representatives
of the equivalence classes. In the above situation, we say the triplet (a,b,c) realizes
(a,c).

Definition 2.3. [6, Definition 2.10] Let C , E be as above. A realization s of E is
said to be additive, if it satisfies the following conditions.

(1) for any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0;
(2) for any pair of E-extension δ ∈E(C,A) and δ′ ∈E(C′,A′), s(δ⊕δ′) = s(δ)⊕

s(δ′).
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Definition 2.4. [6, Definition 2.12] We call the triplet (C ,E,s) an externally tri-
angulated category, or for short, extriangulated category if it satisfies the following
conditions:

(ET1) E : C op ×C → Ab is a biadditive functor.
(ET2) s is an additive realization of E.
(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C′,A′) be any pair of E-extensions, realized as

s(δ) = [A x→B
y→C] and s(δ′) = [A′ x′→B′ y′→C′]. For any commutative square

in C ,

A x //

a
��

B
y //

b
��

C

A′ x′ // B′ y′ // C′

there exists a morphism (a,c) : δ → δ′ which is realized by (a,b,c).
(ET3)op Dual of (ET 3).

(ET4) Let (A,δ,D) and (B,δ′,F) be two E-extensions realized by A
f→ B

f ′→ D and

B
g→ C

g′→ F, respectively. Then there exist an object E ∈ C , a commutative
diagram

A
f // B

f ′ //

g
��

D

d
��

A h // C h′ //

g′
��

E

e
��

F F

in C and an E-extension δ′′ ∈ C (E,A) realized by A h→C h′→ E, which satisfy
the following compatibilities:
(i) D d→ E e→ F realizes E(F, f ′)(δ′),

(ii) E(d,A)(δ′′) = δ,
(iii) E(E, f )(δ′′) = E(e,B)(δ′).

(ET 4op) Dual of (ET 4).

For an extriangulated category C , we use the following notation [6, 8].

• A sequence A a→B b→C is called conflation if it realizes some E-extension δ∈
E(C,A), in which case, the morphism a is called an inflation, the morphism

b is called an deflation and we call A a→ B b→C
δ

99K an E-triangle.

• Let A a→ B b→C
δ

99K be an E-triangle, A is called the CoCone of the deflation
b: B →C, and denote it by CoCone(b); C is called the Cone of the inflation
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a: A → B, and denote it by Cone(a). Note that the CoCone of a deflation and
the Cone of an inflation are well-defined by [6, Remark 3.10].

Remark 2.5. Let C be an extriangulated category.

(1) [6, Remark 2.16] Both inflations and deflations are closed under composi-
tion.

(2) A subcategory T of C is called extension-closed if for any E-triangle A a→
B b→C

δ
99K with A, C ∈ T we have B ∈ T .

The following condition is analogous to the weak idempotent completeness in
exact category (see [6, Condition 5.8]).

(Condition (WIC)) Consider the following conditions.

(1) Let f ∈ C (A,B), g ∈ C (B,C) be any composable pair of morphisms. If g f is
an inflation, then so is f .

(2) Let f ∈ C (A,B), g ∈ C (B,C) be any composable pair of morphisms. If g f is
an deflation, then so is g.

Definition 2.6. [6, Definition 3.23] Let C be an extriangulated category. An object

I is called injective if for any E-triangle A x→ B
y→ C

δ
99K and any morphism c ∈

C (A, I), there exists a morphism b ∈ C (B, I), satisfying b◦ x = c.
The subcategory consisting of injective (resp., projective) objects in C is denoted

by I (resp., P).

Definition 2.7. Let X be a subcategories of C and E an object of X . We call E
is an E-injective cogenerator of X if E(X ,E) = 0 and for any object X ∈ X , there
is an E-triangle X → E0 → X1 99K with X1 ∈ X and E0 ∈ addE.

The E-projective generator can be defined dually.

In particular, we know that an E-injective cogenerator of C is an injective object
and an E-projective generator of C is an projective object.

It is easy to show E-injective cogenerator (resp., E-projective generator) of X is
unique under isomorphism.

Definition 2.8. A subcategory X ⊂ C is called coresolving if it contains I ,
closed under extensions and Cones of inflations. Resolving subcategory can be
defined dually.

Definition 2.9. [6, Definition 3.25] Let (C ,E,s) be an extriangulated category. If

for any object A ∈ C , there exists an E-triangle A → I → A1
δ

99K, with I ∈ I , then
we say the extriangulated category (C ,E,s) has enough injectives. Dually, if for any
object C ∈ C , there exists an E-triangle C1 → P →C

σ
99K, with P ∈ P , then we say

the extriangulated category (C ,E,s) has enough projectives.
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Liu and Nakaoka [4, 5.1 and 5.2] defined the higher extension groups in an ex-
triangulated category having enough projectives and injectives. They showed the
following result.

Lemma 2.10. [4, Proposition 5.2] Let A
f→ B

g→C
δ

99K be an E-triangle. For any
object X ∈ C , there are long exact sequences

· · · → Ei(X ,A)
f∗→ Ei(X ,B)

g∗→ Ei(X ,C)

→ Ei+1(X ,A)
f∗→ Ei+1(X ,B)

g∗→ Ei+1(X ,C)→ ···

· · · → Ei(C,X)
f ∗→ Ei(B,X)

g∗→ Ei(A,X)

→ Ei+1(C,X)
f ∗→ Ei+1(B,X)

g∗→ Ei+1(C,X)→ ···

In particularly, there exist long exact sequences

C (X ,A)
C (X , f )→ C (X ,B)

C (X ,g)→ C (X ,C)
(δ♯)X→ E(X ,A)

f∗→ E(X ,B)
g∗→ E(X ,C)→ ···

C (C,X)
C (g,X)→ C (B,X)

C ( f ,X)→ C (A,X)
(δ♯)X→ E(C,X)

g∗→ E(B,X)
f ∗→ E(A,X)→ ·· ·

For a subcategory X ⊆ C , we define

X ⊥ = {Y ∈ C | Ei(X ,Y ) = 0,∀i ≥ 1, X ∈ X }.

and
⊥X = {Y ∈ C | Ei(Y,X) = 0,∀i ≥ 1, X ∈ X }.

Definition 2.11. A subcategory X ⊆ C is called self-orthogonal provided that

X ⊆ X ⊥

Definition 2.12. [8, lemma 2] An E-triangle sequence in C is defined as a se-
quence

· · · → Xn+1
dn+1→ Xn

dn→ Xn−1 → ···

such that for any n, there are E-triangles Kn+1
gn→ Xn

fn→ Kn
δn
99K and the differential

dn = gn−1 fn, where gn is an inflation and fn is a deflation.

The symbol X̂n (resp., X̌n) denotes the subcategory of objects A ∈ C such that
there exists an E-triangle sequence

Xn → Xn−1 → ··· → X0 → A(resp.,A → X0 → X1 → ·· · → Xn)

with each Xi (resp., X i) is contained in X .
We denote the union of all X̂n (resp., X̌n) for all nonnegative n by X̂ (resp., X̌ ).
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3. ∞-COTILTING (RESP., TILTING) OBJECTS

In this section, we always assume that
(1) C = (C ,E,s) is an extriangulated category which admits products and direct

sums;
(2) C admits an E-injective cogenerator E and an E-projective generator Q, see

Definition 2.7;
(3) C satisfies Condition(WIC).

Let W be an object. Denote addW by the closure of W under finite direct sums and
summands. Firstly, we introduce two important subcategories which are contained
in ⊥W and W⊥, respectively. Denote by W X the subcategory of all objects A ∈ W⊥

such that there is an infinite E-triangle sequence in C

· · · →W2
d2→W1

d1→W0
d0→ A

with Wi ∈ addW and CoCone( fi) ∈W⊥,for i ≥ 0, where f0 = d0 and fi is defined in
Definition 2.12. Dually, denote by XW the subcategory of all objects A ∈ ⊥W such
that there is an infinite E-triangle sequence in C

A d0

→W 0 d1

→W 1 d2

→W 2 → ·· ·
with W i ∈ addW and Cone(gi) ∈ ⊥W for i ≥ 0, where g0 = d0 and gi is defined in
Definition 2.12.

Lemma 3.1. If W is a self-orthogonal object. Then
(1) the subcategory W X is closed under extensions, direct summands , and Cones

of inflations;
(2) the subcategory XW is closed under extensions, direct summands , and CoCones

of deflations.

Proof. It follows from [8, Lemma 8]. □

Now, we give the definition of ∞-cotilting (resp., tilting) object in an extriangulated
category.

Definition 3.2. Let W be a non-zero object and E an E-injective cogenerator of
C . We call W an ∞-cotilting object if the following conditions are satisfied:

(1) W is a self-orthogonal object in C ;
(2) E ∈ W X .

If, moreover, W has injective dimension n for some positive integer n and E ∈
( ˆaddW )n, W is called n-cotilting object.

Definition 3.3. Let T be a non-zero object and Q an E-projective generator of C .
We call T an ∞-tilting object if the following conditions are satisfied:

(1) T is a self-orthogonal object in C ;



1032 Z. ZHANG AND S. WANG

(2) Q ∈ XT .

If, moreover, T has projective dimension n for some positive integer n and Q ∈
( ˇaddT )n, T is called n-tilting object.

Example 3.4. (1) Let C be a triangulated category and W a n-cotilting (resp.,
n-tilting) object, then W is obvilusely an ∞-cotilting (resp. ∞-tilting) object
with finite injective (resp., projective) dimension in our sense.

(2) Let C be an extriangulated category. If addW is a cotilting (resp.,tilting)
subcategory in the sense of [8, Definitions 8 and 7], then W is an ∞-cotilting
(resp. ∞-tilting) object object with finite projective (resp., injective) dimen-
sion in our sense.

(3) Let Λ be an artin algebra. Consider the finitely generated left Λ-module
category. Then W is Wakamatsu cotilting (resp., Wakamatsu tilting) in the
sense of [5, section 2] if and only if W is ∞-cotilting (resp., ∞-tilting) object
in our sense.

Proof. We only prove (3). Let W be an ∞-cotilting object in our sense. Since DΛ

is an injective module, DΛ ∈ W X by Definition 3.2. So W is a Wakamatsu cotilting
module. Conversely, let W be a Wakamatsu cotilting module. By [5, Propositions 2.1
and 2.2], we have W X = S⊥ for some left Λ module S. So for any injective Λ module
E, we have E ∈ S⊥ = W X . Hence W is an ∞-cotilting object in our sense.

Dually, let W be an ∞-tilting object in our sense. Clearly Λ ∈ XW . So So W is a
Wakamatsu tilting module. Conversely, let W be a Wakamatsu tilting module. Since
P ⊆ addΛ, P ⊆ XW by lemma 3.1. So W is an ∞-tilting object in our sense. □

By Definition 3.2, if W is an ∞-cotilting object, there exists an E-triangle sequence

· · · →W1
d1→W0

d0→ E (†)

with Wi ∈ addW .
By Definition 2.12 we can break it into several E-triangle:

Ki
gi→Wi

fi→ Ki−1 99K

where di = gi−1 fi for all i ≥ 1.
In the following we always denote CoCone(di) by Ki for each i ≥ 1 and denote

CoCone(d0) by K0, then Ki ∈ W⊥ for all i ≥ 0. Dually, if T is an ∞-tilting object,
then there exists an E-triangle sequence

Q d0

→ T 0 d1

→ T 1 → ··· (‡)

with T i ∈ addT .
In the following, we always denote Cone(di) by Li+1 for each i ≥ 0 and denote

Cone(d0) by L0, then Li ∈ ⊥T for all i ≥ 0. Let X be a subcategory of C and A an
object, a morphism f : XA → A is called right X -approximation of A if XA ∈X and
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the morphism C (X , f ) : C (X ,XA)→ C (X ,A) is epic for any object X ∈ X . A left
X -approximation of A is defined dually.

From here to the end of this section, we always assume that any M ∈ ⊥W admits a
left addW -approximation and any M ∈W⊥ admits a right addW -approximation.

Lemma 3.5. Let W be an object in C .
(1) If W is an ∞-cotilting object. Then ⊥(∏i∈N Ki ⊕W )⊆ XW for i ≥ 0.
(2) If W is an ∞-tilting object. Then (

⊕
i∈N Li ⊕W )⊥ ⊆ W X for i ≥ 0.

Proof. We only prove (1) and the proof of (2) is dually. Let M ∈ ⊥(∏i∈N Ki ⊕W ),
then M ∈ ⊥W and M ∈ ⊥Ki for each i ≥ 0. Since E is the injective cogenerator for

C , there exists an E-triangle M → Em → M1
δM
99K for some nonnegative integer m by

Definition 2.7. Since W is an ∞-tilting object, E ∈ W X . So there exist an E-triangle
sequence following from the E-triangle sequence (†):

· · · →W m
1 →W m

0 → Em

with Wi ∈ addW .
So by ET(3) we have the following commutative diagram:

Km
1

��

Km
1

��
S //

��

W m
0

//

f0

��

M1 //

M //

��

Em //

δ0

��

M1
δM //

Since M ∈ ⊥K1, the E-triangle in the first column splits. So there exists an inflation
M → S. By the Condition (WIC)), there exists an inflation y : M → W m

0 . By the
assumption, M admits a left addW -approximation. Let x : M → X be a left addW -

approximation. By [4, Proposition 1.20], we have an E-triangle M
(−x

y )→ X ⊕W m
0 →

M1 99K. Since x is a left addW -approximation, we can easily show (−x
y ) is a left

addW -approximation of M. So M1 ∈ ⊥1W . Since M ∈ ⊥W and X ⊕W m ∈ addW ,
M1 ∈ ⊥W . Applying the functor C (M1,−) to the E-triangles Ki+1 →Wi → Ki which
is following from (†) for each i ≥ 1, respectively, we get

(1) Ek(M1,Ki)∼= Ek+1(M1,Ki+1)

for any k ≥ 1 and i ≥ 0 by Lemma 2.10. Applying the functor C (−,Ki+1) to the
E-triangle M → X ⊕W m

0 → M1 99K. Since Ki ∈W⊥ and X ⊕W m
0 ∈ addW , we get

(2) Ek+1(M1,Ki+1)∼= Ek(M,Ki+1)
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for any k ≥ 1 and i ≥ 0. Hence Ek(M1,Ki) ∼= Ek(M,Ki+1) = 0 for each i ≥ 0 and
k ≥ 1. So M1 ∈ ⊥Ki and M1 ∈ ⊥(∏i∈N Ki ⊕W ). Repeating the same argument for M1
in the E-triangle M → X ⊕W m

0 → M1 99K and so on, we obtain that M ∈ XW . □

By Lemma 3.5, we can get that ∞-cotilting object actually generalize at the same
time both cotilting and tilting objects.

Corollary 3.6. W is an ∞-cotilting object if and only if it is an ∞-tilting object.

Proof. If W is an ∞-cotilting object, then W is self-orthogonal and ⊥(∏i∈N Ki ⊕
W ) ⊆ XW by Lemma 3.5. But P ⊆ ⊥(∏i∈N Ki ⊕W ). So P ⊆ XW and thus W is
∞-tilting. Conversely, when W is an ∞-tilting object, we have W is self-orthogonal
and (

⊕
i∈N Li ⊕W )⊥ ⊆ W X . But I ⊆ (

⊕
i∈N Li ⊕W )⊥. So I ⊆ W X and thus W is

∞-cotilting. □

When W is an n-cotilting object for some positive integer, there exist an E-triangle
sequence Wn →Wn−1 → ··· →W0 → E with Wi ∈ addW . Applying C (M,−) for any
M ∈ ⊥W to every E-triangle Ki+1 → Wi+1 → Ki 99K for 0 ≤ i ≤ n−1 and Kn = Wn.
We get E j(M,Ki) = 0 for any 0 ≤ i ≤ n and j ≥ 1. So ⊥(∏n

i=0 Ki ⊕W ) = ⊥W .
Hence it is reasonable to use ⊥(∏i∈N Ki ⊕W ) instead of ⊥W when W is an ∞-

cotilting object. The dual statement holds for n-tilting objects.
So we can prove the similar Bazzoni characterization of ∞-cotilting (tilting) ob-

jects in an extriangulated category.

Theorem 3.7. Let W be a self-orthogonal object. Then
(1) W is an ∞-cotilting object if and only if XW = ⊥(∏i∈N Ki ⊕W );
(2) T is an ∞-tilting object if and only if (

⊕
i∈N Li ⊕T )⊥ = T X .

Proof. We only prove (1) and the proof of (2) is dually. For the if part, clearly
P ⊆ ⊥(∏i∈N Ki ∏W ). Hence P ⊆ XW . So W is an ∞-tilting object by Definition
3.3. And thus W is ∞-cotilting by Corollary 3.6.

For the only if part, since W is an ∞-cotilting object, ⊥(∏i∈N Ki ⊕W ) ⊆ XW by

Lemma 3.5. Let M ∈ XW , then M ∈ ⊥W and there exists an E-triangle M h0

→ X0 →
M1 99K with X0 ∈ addW and M1 ∈ XW by the argument at the beginning of Section
3. We only need to show M ∈ ⊥Ki for each i ≥ 0.

Since W is ∞-cotilting, there exist an E-triangle sequence · · · → W1
d1→ W0

d0→ E
with Wi ∈ addW and Ki =CoCone(di) ∈W⊥ for any i ≥ 0 by Definition 3.1. For any
morphism g ∈ C (M,E). Since E is an E-injective object, there exists a morphism
a ∈ C (X0,E) such that g = ah0. Applying the functor C (X0,−) to the E-triangle
K0 →W0 → E 99K, we get an exact sequence

C (X0,W0)
C (X0,d0)−→ C (X0,E)→ E(X0,K0).

Since K0 ∈ W⊥, the morphism C (X0,d0) is epic. Thus there exists a morphism b ∈
C (X0,W0) such that a = d0b. So we get a morphism h0b ∈ C (M,W 0) such that
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g = (d0b)h0. Thus C (M,d0) is epic.

M h0
//

g

  
h0b
��

X0

∃b
~~

//

∃a
��

M1 //

K0 //W0 d0 // E //

Applying the functor C (M,−) to the E-triangle K0 →W0 → E 99K, we get an exact
sequence

C (M,W0)
C (M,d0)−→ C (M,E)→ E(M,K0)→ E(M,W0).

Since M ∈ ⊥W , we get E(M,K0) = 0, i.e. M ∈ ⊥1K0. Thus M ∈ ⊥K0. Since M1 ∈
XW ⊆ ⊥W , we can use the same argument to M1. So we get M1 ∈ ⊥K0. Moreover, by
applying the functor C (−,Kt+1) to the E-triangle M → X0 → M1 99K and the functor
C (M1,−) to the E-triangle Kt+1 →Wt+1 → Kt 99K, we get

E j(M1,Kt)∼= E j+1(M1,Kt+1)∼= E j(M,Kt+1)

for any t ≥ 0 and j ≥ 1. So E j(M1,Kt)∼=E j(M,Kt+1) for any t ≥ 0 and j ≥ 1. By the
induction, we conclude that E j(M,Kt) = 0 for any t ≥ 0 and j ≥ 1. Hence M ∈ ⊥Kt .
So M ∈ ⊥(∏i≥0 Ki). And the result follows. □

In [3, Theorem 3.15], the authors obtained the Auslander-Reiten correspondence
for tilting objects in an triangulated category. In that setting, X is a coresolving
subcategory with an E-projective generator such that C = X̌n and the latter condition
is actually essential to prove the Auslander-Reiten correspondence. In the tilting case,
the equality C = Ťn follows from the fact that T has finite projective dimension,
which fails in general for the case of the projective dimension is infinite, see [7,
Example 3.1] in modR, where R is an artin algebra.

Conscious of this central difference between the two contexts, we can only prove
a partial Auslander-Reiten correspondence for ∞-tilting (cotilting) objects in an ex-
triangulated category.

Proposition 3.8. Assume that W is an object of C . Then the association φ : W −→
XW is an injective map between the isomorphism classes of ∞-cotilting objects and
resolving subcategories with an E-injective cogenerator.

Proof. By the definition of the notation XW at the beginning of Section 2 and
Definition 2.7, we know W is an E-injective cogenerator of XW . By Lemma 3.5, P ⊆
XW . Since W is an ∞-cotilting object, XW is closed under extensions and CoCone of
deflations by Lemma 3.1. So XW is a resolving subcategory by Definition 2.8. Since
E-injective cogenerator is unique under isomorphism, φ is injective. □

Proposition 3.9. There exists a correspondence ψ between the class of resolving
subcategories X with an E-injective cogenerator and the isomorphism classes of
∞-cotilting objects, given by ψ : X −→W, where addW = X ∩X ⊥.
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Proof. Assume W1 is an E-injective cogenerator of X . Then Ei(X ,W1) = 0 for
any X ∈ X and i ≥ 1. Thus addW1 ⊆ X ∩X ⊥. Conversely, let A ∈ X ∩X ⊥.

Then there exists an E-triangle A → W 0
1 → B

δ
99K with W 0

1 ∈ addW1 and B ∈ X .
Since A ∈ X ⊥, E(B,A) = 0. So A ∈ addW1. Hence addW1 = X ∩X ⊥ = addW .
Thus W is an E-injective cogenerator of X . So X ⊆ XW . Since X is a resolving
subcategory, P ⊆ X . And thus P ⊆ XW . Also W is self-orthogonal, W is an ∞-
tilting objects by Definition 3.3. So W is an ∞-cotilting object by Corollary 3.6. □

We can collect the results in Propositions 3.8 and 3.9 and obtain the following
partial Auslander-Reiten correspondence for ∞-cotilting (tilting) objects in an extri-
angulated category.

Theorem 3.10.

(1) There is an inverse bijection between classes of ∞-cotilting objects W and
resolving subcategories X with an E-injective cogenerator, maximal among
those with the same E-injective cogenerator, and the assignments are φ: W 7→
XW and ψ : X 7→W with addW = X ∩X ⊥.

(2) There is an inverse bijection between classes of ∞-tilting objects T and coresolv-
ing subcategories Y with an E-projective generator, maximal among those
with the same E-projective generator, and the assignments are φ: T 7→ T X
and ψ: Y 7→ T with addT = ⊥Y ∩Y .

Proof. We only prove (1) and the proof of (2) is dually.
Let X be any resolving subcategory with an E-injective cogenerator W , then X ⊆

XW = (φ◦ψ)(X ) by Propositions 3.8 and 3.9. Thus, for any ∞-cotilting objects W ,
φ(W ) is maximal among those resolving subcategories with the same E-injective
cogenerator W .

Conversely, if X is a subcategory maximal among those with the previous prop-
erties, then W with addW = ⊥X ∩X is an E-injective cogenerator of X and
ψ(X ) = W is an ∞-cotilting object by Proposition 3.9. So W is an E-injective co-
generator of XW . Hence XW ⊆ X and X = (φ◦ψ)(X ). □
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