

ON SOME FIXED POINT THEOREMS FOR ĆIRIĆ OPERATORS

MĂDĂLINA MOGA AND RADU TRUȘCĂ

Received 28 November, 2022

Abstract. In this paper, we will present existence and localization fixed point theorems and stability results for the fixed point problem involving some very general classes of operators (singlevalued and multi-valued), namely for Ćirić type operators. Then, an application to homotopy principles is given. Our results complement and extend the works in the literature.

2010 *Mathematics Subject Classification:* 47H10; 54H25

Keywords: metric space, fixed point, Ciric type operator, data dependence, well-posedness, Ulam-Hyers stability

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and $f: X \to X$ be an operator. For each $x \in X$, we denote $O(x, \infty) = \{x, f(x), \ldots, f^{n}(x), \ldots\}.$

Let x_0 be a given point in *X* and $r > 0$. The set $B(x_0; r) := \{x \in X : d(x_0, x) < r\}$ is the open ball of center x_0 and radius *r*, while $\tilde{B}(x_0; r) := \{x \in X : d(x_0, x) \le r\}$ is the closed ball of center x_0 and radius *r*.

We will now recall some definitions and well-known results, which will be useful throughout the paper.

Definition 1 ($[4,$ Ciric Definition page 268]). Let (X, d) be a metric space and f: $X \rightarrow X$ be an operator. Then *X* is said to be f-orbitally complete if every Cauchy sequence contained in $O(x, \infty)$, for some $x \in X$, converges in X.

In the above context, a sequence of Picard iterates starting from $x_0 \in X$ is a sequence $x_n := f^n(x_0)$, for $n \in \mathbb{N}^*$.

Definition 2 ([\[4,](#page-15-0) Ciric Definition 1]). Let (X,d) be a metric space. Then, f: *Y* ⊆ $X \rightarrow X$ is a single-valued Ciric type operator with constant q if there exists a number $q \in (0,1)$, such that for all $x, y \in Y$ we have

 $d(f(x), f(y)) \leq q \cdot \max \{d(x,y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))\}.$ © 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license [CC](http://creativecommons.org/licenses/by/4.0/) [BY 4.0.](http://creativecommons.org/licenses/by/4.0/)

872 M. MOGA AND R. TRUSCĂ

Let (X, d) be a metric space. By $P(X)$ we denote the family of all nonempty subsets of *X*, and the family of all nonempty and closed subsets of *X* is denoted with $P_{cl}(X)$. Throughout the paper, we consider the following distances (see, e.g., [\[9,](#page-15-1)[10\]](#page-15-2)):

(1) The gap functional (generated by d) between a point $a \in X$ and a set $Y \in P(X)$ is

$$
D(a,Y) \coloneqq \inf \{ d(a,y) \mid y \in Y \}.
$$

(2) The Pompeiu-Hausdorff functional (generated by *d*) between two sets $A, B \in$ $P(X)$ is

$$
H(A, B) := \max \left\{ \sup_{a \in A} (\inf_{b \in B} d(a, b)), \sup_{b \in B} (\inf_{a \in A} d(a, b)) \right\}.
$$

If F: $X \to P(X)$ is a multi-valued operator, then its fixed point set is denoted by $Fix(F) := \{x \in X \mid x \in F(x)\}\$, while the graph of F is the set $Graph(F) := \{(x, y) \in F(x)\}$ $X \times X \mid y \in F(x)$. The set of all strict fixed points of F is denoted by SFix(*F*), i.e., there exists $x^* \in X$ such that $F(x^*) = \{x^*\}.$

In this paper, we will present several existence and localization fixed point theorems and stability results for the fixed point problem involving some very general classes of operators (single-valued and multi-valued), namely for Ciric type operators. Then, some applications to homotopy principles are given. Our results complement and extend some works in the literature, see e.g. $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$ $[1-4, 6, 8, 11]$.

2. A STUDY OF THE FIXED POINT EOUATION WITH GENERALIZED CIRIC OPERATORS

In this section, the single-valued case is taken into consideration. We first recall Cirić's Theorem which appeared in the well-known paper from 1974, see [[4\]](#page-15-0).

Theorem 1 ([\[4,](#page-15-0) Ciric Theorem 1]). Let (X, d) be a metric space and f: $X \rightarrow X$ be *a* Ciric type operator with constant $q \in (0,1)$. Suppose that X is f-orbitally complete. *Then:*

(i) f *has a unique fixed point* x^* *in* X *and* $\lim_{n \to \infty} f^n(x) = x^*$, *i.e.*, f *is a Picard operator;*

(*ii*)
$$
d(f^{n}(x), x^{*}) \leq \frac{q^{n}}{1-q}d(x, f(x)),
$$
 for every $x \in X$ and every $n \in \mathbb{N}^{*}$.

Our first main result, which generalizes the above theorem, is an existence, uniqueness and localization for the unique fixed point of a single-valued Ciric type operator.

Theorem 2. *Let* (X, d) *be a complete metric space,* $x_0 \in X$ *and* $r > 0$ *. We consider* f: $B(x_0; r) \rightarrow X$ a single-valued Ćirić type operator with constant $q \in (0, \frac{1}{2})$ $(\frac{1}{2})$. We also *suppose that*

$$
d(x_0, f(x_0)) < \frac{1 - 2q}{1 - q}r.
$$

Then **f** *has a unique fixed point* $x^* \in B(x_0; r)$ *,* $f^n(x_0) \in B(x_0; r)$ *, for all* $n \in \mathbb{N}$ *and the sequence* $(f^n(x_0))_{n\in\mathbb{N}}$ *of Picard iterates starting from* x_0 *converges to* x^* *as* $n \longrightarrow \infty$ *.*

Proof. Let $0 < s < r$ such that

$$
d(x_0, f(x_0)) \le \frac{1-2q}{1-q}s < \frac{1-2q}{1-q}r.
$$

The sequence $(x_n)_{n \in \mathbb{N}}$, with $x_n := f^n(x_0)$, has the recurrent form $x_{n+1} = f(x_n)$, for all $n \in \mathbb{N}$. Then,

$$
d(x_1, x_2) = d(f(x_0), f(x_1))
$$

\n
$$
\leq q \max \{d(x_0, x_1), d(x_0, x_1), d(x_1, x_2), d(x_0, x_2) d(x_1, x_1)\}
$$

\n
$$
= q \max \{d(x_0, x_1), d(x_1, x_2), d(x_0, x_2)\}
$$

\n
$$
\leq q \max \{d(x_0, x_1), d(x_1, x_2), d(x_0, x_1) + d(x_1, x_2)\}
$$

\n
$$
= q(d(x_0, x_1) + d(x_1, x_2)),
$$

implying

$$
d(x_1,x_2) \leq \frac{q}{1-q}d(x_0,x_1).
$$

We denote $h \coloneqq \frac{q}{1}$ $\frac{q}{1-q}$, thus $\frac{1-2q}{1-q} = 1-h$ with $h \in (0,1)$. Using the mathematical induction, we can prove the inequality

$$
d(x_{n-1},x_n) \leq h^{n-1}d(x_0,x_1)
$$

holds for all $n \in \mathbb{N}^*$. We also know that $d(x_0, x_1) \le (1 - h)s$. By taking a point $n \in \mathbb{N}^*$ arbitrarily, we obtain

$$
d(x_0, x_n) \le d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{n-1}, x_n)
$$

\n
$$
\le d(x_0, x_1) + hd(x_0, x_1) + \dots + h^{n-1}d(x_0, x_1)
$$

\n
$$
= d(x_0, x_1)(1 + h + \dots + h^{n-1})
$$

\n
$$
= \frac{1 - h^n}{1 - h}d(x_0, x_1) \le \frac{1}{1 - h}d(x_0, x_1) \le s,
$$

proving that all elements of the sequence are in the closed ball $\tilde{B}(x_0; s)$.

We will continue by proving that the sequence considered is Cauchy in *X*. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}^*$. We compute

$$
d(x_m, x_{m+n}) \le d(x_m, x_{m+1}) + \dots + d(x_{m+n-1}, x_{m+n})
$$

\n
$$
\le h^m d(x_0, x_1) + \dots + h^{m+n-1} d(x_0, x_1)
$$

\n
$$
= h^m d(x_0, x_1) (1 + h + \dots + h^{n-1})
$$

\n
$$
= h^m \frac{1 - h^n}{1 - h} d(x_0, x_1)
$$

874 M. MOGA AND R. TRUSCĂ

$$
\leq \frac{h^m}{1-h}\mathbf{d}(x_0,x_1).
$$

This relation leads us to the conclusion that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Moreover, due to the completeness of (X, d) , we obtain it is also convergent to a point $x^* \in$ $\tilde{B}(x_0; s)$. We will prove that x^* is a fixed point. We compute the following inequality

$$
d(x^*, f(x^*)) \le d(x^*, x_{n+1}) + d(x_{n+1}, f(x^*))
$$

\n
$$
\le d(x^*, x_{n+1}) + q \max \{d(x_n, x^*), d(x_n, x_{n+1}), d(x^*, f(x^*)),
$$

\n
$$
d(x^*, x_{n+1}), d(x_n, f(x^*))\}
$$

\n
$$
\le d(x^*, x_{n+1}) + q \max \{d(x_n, x_{n+1}), d(x^*, x_{n+1}), d(x_n, x^*) + d(x^*, f(x^*))\}
$$

\n
$$
\le d(x^*, x_{n+1}) + q[d(x_n, x_{n+1}) + d(x_{n+1}, x^*) + d(x^*, f(x^*))],
$$

which implies

$$
d(x^*, f(x^*)) \leq \frac{1+q}{1-q} d(x_{n+1}, x^*) + \frac{q}{1-q} [d(x_n, x_{n+1})],
$$
 for all $n \in \mathbb{N}$.

We only need to let $n \longrightarrow \infty$ in the above inequality, and we will obtain $d(x^*, f(x^*)) =$ 0, proving that x^* is a fixed point for f.

For the uniqueness of the fixed point, we suppose by contradiction that there exists another fixed point y^* , with $x^* \neq y^*$. Then,

$$
d(x^*, y^*) = d(f(x^*), f(y^*))
$$

\n
$$
\leq q \max \{d(x^*, y^*), d(x^*, x^*), d(y^*, y^*), d(x^*, y^*), d(y^*, x^*)\} = qd(x^*, y^*),
$$

\nhich is a contradiction due to the fact that $q < \frac{1}{2}$.

which is a contradiction due to the fact that $q < \frac{1}{2}$ 2

We now denote by $S(Y, X)$ the family of all operators from *Y* to *X*, where *X* is a metric space and *Y* a closed subset of *X*, and by

 $\mathcal{S}_{\partial Y}(Y,X) \coloneqq \{ \text{f} \in \mathcal{S}(Y,X) \text{ such that } \text{f}_{|_{\partial Y}}: \partial Y \to X \text{ is fixed point free} \}.$

We will introduce the concept of a family of single-valued \acute{C} irić type operators with constant *q*.

Definition 3. Let (X, d) be a metric space and (J, ρ) be a metric space. We say that ${f_{\lambda}: \lambda \in J} \subset S(Y,X)$ is a family of single-valued Ciric type operators with constant $q \in (0,1)$ if the following conditions are satisfied: there exist $p \in (0,1]$ and $M > 0$ such that

(i) for all $x_1, x_2 \in Y$ and $\lambda \in J$, we have

$$
d(f_{\lambda}(x_1), f_{\lambda}(x_2)) \le q \max \{d(x_1, x_2), d(x_1, f_{\lambda}(x_1)), d(x_2, f_{\lambda}(x_2)),
$$

$$
d(x_1, f_{\lambda}(x_2)), d(x_2, f_{\lambda}(x_1))\};
$$

(ii) for all $x \in Y$ and $\lambda, \mu \in J$, we have

$$
d(f_{\lambda}(x),f_{\mu}(x)) \leq M[\rho(\lambda,\mu)]^p.
$$

The following homotopy result can now be proved.

Theorem 3. *Let* (*X*,d) *be a complete metric space and Y be a closed subset such that* int $Y \neq \emptyset$ *. Let* (J, ρ) *be a connected metric space and* $\{f_{\lambda} : \lambda \in J\}$ *be a family of* single-valued Ćirić type operators with constant $q \in (0, \frac{1}{2})$ $\frac{1}{2}$) from $S_{\partial Y}(Y,X)$. Then the *following conclusions occur:*

- (*i*) If there exists a point $\lambda_0^* \in J$, such that the equation $f_{\lambda_0^*}(x) = x$ has a solution, *then the equation* $f_{\lambda}(x) = x$ *has a unique solution for any* $\lambda \in J$;
- *(ii) If* $f_{\lambda}(x_{\lambda}) = x_{\lambda}$ *, for any* $\lambda \in J$ *, then the operator*

$$
j\colon J\to \text{int }Y, j(\lambda)=x_{\lambda}
$$

is continuous.

Proof. We will begin the proof by considering two fixed points, x_{λ} a fixed point of f_{λ} and x_{μ} a fixed point of f_{μ} . Then,

$$
d(x_{\lambda}, x_{\mu}) = d(f_{\lambda}(x_{\lambda}), f_{\mu}(x_{\mu}))
$$

\n
$$
\leq d(f_{\lambda}(x_{\lambda}), f_{\lambda}(x_{\mu})) + d(f_{\lambda}(x_{\mu}), f_{\mu}(x_{\mu})).
$$

Taking $d(f_\lambda(x_\lambda), f_\lambda(x_\mu))$ separately, we compute

$$
d(f_{\lambda}(x_{\lambda}), f_{\lambda}(x_{\mu})) \leq q \max \{d(x_{\lambda}, x_{\mu}), d(x_{\lambda}, f_{\lambda}(x_{\lambda})), d(x_{\mu}, f_{\lambda}(x_{\mu})), d(x_{\lambda}, f_{\lambda}(x_{\mu})),d(x_{\mu}, f_{\lambda}(x_{\lambda}))\}
$$

= $q \max \{d(x_{\lambda}, x_{\mu}), d(x_{\mu}, f_{\lambda}(x_{\mu})), d(x_{\lambda}, f_{\lambda}(x_{\mu}))\}$
\$\leq q \max \{d(x_{\lambda}, x_{\mu}), d(x_{\lambda}, x_{\mu}) + d(x_{\lambda}, f_{\lambda}(x_{\mu})), d(x_{\lambda}, f_{\lambda}(x_{\mu}))\}\$
= $q [d(x_{\lambda}, x_{\mu}) + d(x_{\lambda}, f_{\lambda}(x_{\mu}))],$

which implies

$$
d(f_{\lambda}(x_{\lambda}), f_{\lambda}(x_{\mu})) \leq \frac{q}{1-q}d(x_{\lambda}, x_{\mu}).
$$

Using the latter inequality together with the first one, we obtain

$$
d(x_{\lambda}, x_{\mu}) \leq \frac{q}{1-q} d(x_{\lambda}, x_{\mu}) + d(f_{\lambda}(x_{\mu}), f_{\mu}(x_{\mu}))
$$

$$
\leq \frac{q}{1-q} d(x_{\lambda}, x_{\mu}) + M[\rho(\lambda, \mu)]^{p}
$$

entailing

$$
\mathrm{d}(x_\lambda,x_\mu)\leq \frac{1-q}{1-2q}M\left[\rho(\lambda,\mu)\right]^p.
$$

Let us consider the set

$$
Q = \{ \lambda \in J \mid \exists x_{\lambda} \in \text{int } Y \text{ such that } x_{\lambda} = f_{\lambda}(x_{\lambda}) \}.
$$

In addition to *J* being a connected space, by proving that *Q* is both closed and open, will lead us to $Q = J$, proving (i). For the closedness of Q , let $(\lambda_n)_{n \in \mathbb{N}} \subset Q$ such that

876 M. MOGA AND R. TRUSCĂ

 $\lambda_n \to \lambda^*$, and we show that $\lambda^* \in Q$. We consider $x_{\lambda_m} = f_{\lambda_m}(x_{\lambda_m})$ and $x_{\lambda_n} = f_{\lambda_n}(x_{\lambda_n})$ and we know that

$$
\mathrm{d}(x_{\lambda_m}, x_{\lambda_n}) \le \frac{1-q}{1-2q} M \left[\rho(\lambda_m, \lambda_n) \right]^p. \tag{2.1}
$$

We already know that the sequence $(\lambda_n)_{n \in \mathbb{N}}$ is Cauchy in *J*, which implies that for an arbitrary $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ with $m, n \in \mathbb{N}$, $m, n > n_{\varepsilon}$ such that

$$
\rho(\lambda_m, \lambda_n) < \varepsilon. \tag{2.2}
$$

We will denote $\frac{\varepsilon^p M(1-q)}{1-q}$ $\frac{d\mathbf{u}(1-\mathbf{q})}{1-2\mathbf{q}} =: \mathbf{\varepsilon}' > 0$. Using this notation, together with relations (2.1) and (2.2) , we get

$$
\mathrm{d}(x_{\lambda_m},x_{\lambda_n})<\varepsilon',
$$

which proves the sequence (x_{λ_n}) is Cauchy in *X*. Also, since (X, d) is a complete space, we obtain (x_{λ_n}) is a convergent sequence in *Y*. Let us now denote the limit of this sequence by x_{λ^*} , and we compute

$$
d(x_{\lambda^*}, f(x_{\lambda^*})) \leq d(x_{\lambda^*}, x_{\lambda_{n+1}}) + d(x_{\lambda_{n+1}}, f(x_{\lambda^*}))
$$

\n
$$
\leq d(x_{\lambda^*}, x_{\lambda_{n+1}}) + q \max \{d(x_{\lambda_n}, x_{\lambda^*}), d(x_{\lambda_n}, x_{\lambda_{n+1}}), d(x_{\lambda^*}, f(x_{\lambda^*})),
$$

\n
$$
d(x_{\lambda_n}, f(x_{\lambda^*})), d(x_{\lambda^*}, x_{\lambda_{n+1}}) \}
$$

\n
$$
\leq d(x_{\lambda^*}, x_{\lambda_{n+1}}) + q \left[d(x_{\lambda_n}, x_{\lambda^*}) + d(x_{\lambda_n}, x_{\lambda_{n+1}}) + d(x_{\lambda^*}, f(x_{\lambda^*})) + d(x_{\lambda_n}, f(x_{\lambda^*})) + d(x_{\lambda_n}, x_{\lambda_{n+1}}) \right].
$$

The inequality obtained above implies that for all $n \in \mathbb{N}$,

$$
d(x_{\lambda^*}, f(x_{\lambda^*})) \leq \frac{1}{1-2q} \left[(1+2q) d(x_{\lambda_n}, x_{\lambda^*}) + q \left(d(x_{\lambda_n}, x_{\lambda_{n+1}}) + d(x_{\lambda}^*, x_{\lambda_{n+1}}) \right) \right],
$$

and by letting $n \longrightarrow \infty$, we get that x_{λ^*} is a fixed point for f. Since f is fixed point free on its boundary, then λ^* belongs to Q , proving it is closed.

In order to show that *Q* is open, we consider $\lambda_0 \in Q$. Then, there exists a point $x_{\lambda_0} \in \text{int } Y$ such that $x_{\lambda_0} = f_{\lambda_0}(x_{\lambda_0})$. Now, we will prove the existence of an $\varepsilon > 0$ and an open ball $B(\lambda_0; \varepsilon) \subset Q$. Due to int *Y* being an open set and $x_{\lambda_0} \in \text{int } Y$, there exists an open ball $B(x_{\lambda_0}; r) \subseteq \text{int } Y$. We consider arbitrary $\varepsilon > 0$ such that $\varepsilon^p < \frac{1-2q}{M(1-q)}$ $\frac{1}{M(1-q)}$ ^r and an arbitrary $\lambda \in B(\lambda_0; \varepsilon)$, and we prove that $\lambda \in Q$. Let us begin by estimating the following distance

$$
d(f_{\lambda}(x_{\lambda_0}), x_{\lambda_0}) = d(f_{\lambda}(x_{\lambda_0}), f_{\lambda_0}(x_{\lambda_0}))
$$

\n
$$
\leq M(\rho(\lambda, \lambda_0))^p \leq M\varepsilon^p
$$

\n
$$
\leq \frac{1 - 2q}{1 - q}r.
$$

From the inequality above, we get that the operator

$$
f_{\lambda}: B(x_{\lambda_0};r) \to X
$$

is a Ciric type operator, and using the local fixed point theorem for Ciric type operators, we obtain that $Fix(f_{\lambda}) \neq \emptyset$, implying $\lambda \in Q$.

Based on what we proved so far, the operator j is single-valued. We consider $λ$, *µ* ∈ *J* and we have

$$
d(j(\lambda),j(\mu)) \leq \frac{1-q}{1-2q} M[\rho(\lambda,\mu)]^p.
$$

Letting

$$
\rho(\lambda,\mu) < \delta := \left[\frac{\epsilon(1-2q)}{M(1-q)}\right]^{\frac{1}{p}},
$$

we immediately obtain that $d(j(\lambda), j(\mu)) < \varepsilon$, proving that j is a continuous operator. □

3. A STUDY OF THE FIXED POINT EQUATION WITH MULTI-VALUED GENERALIZED ĆIRIĆ OPERATORS

We first consider some notions related to our main results.

Definition 4. An operator F: $X \to P_{cl}(X)$ is said to be a multi-valued generalized contraction if for every $x, y \in X$ there exist non-negative numbers p, q, r , which may depend on both *x* and *y*, such that $sup\{p+2q+2r \mid x, y \in X\}$ < 1 and

$$
H(F(x), F(y)) \le p \cdot d(x, y) + q \cdot [D(x, F(x)) + D(y, F(y))] + r \cdot [D(x, F(y)) + D(y, F(x))].
$$

Definition 5 ($[2, A$ $[2, A$. Amini-Harandi Definition 2.1]). Let (X, d) be a metric space. The set-valued map F: $Y \subseteq X \rightarrow P_{b,cl}(X)$ is said to be a multi-valued Ciric type operator with constant *k* (named a *k*-set-valued quasi-contraction in [\[2\]](#page-15-7)) if

$$
H(F(x), F(y)) \le k \max \{d(x, y), D(x, F(x)), D(y, F(y)), D(x, F(y)), D(y, F(x))\},\
$$

for any $x, y \in X$, where $0 \le k \le 1$.

We have the following example of a multi-valued \acute{C} irić type operator, which is not a multi-valued generalized contraction.

Example 1*.* Let

$$
X_1 = \left\{ \frac{m}{n} : m = 0, 1, 2, 4, 6, \dots; n = 1, 3, 7, \dots, 2k + 1, \dots \right\},
$$

$$
X_2 = \left\{ \frac{m}{n} : m = 1, 2, 4, 6, 8, \dots; n = 2, 5, 8, \dots, 3k + 2, \dots \right\},
$$

where $k \in \mathbb{N}$ and let $X = X_1 \cup X_2$. Let us define $F: X \to X$ by

$$
F(x) = \begin{cases} \left\{ \frac{2}{3}x, \frac{6}{7}x \right\}, & x \in X_1, \\ \frac{1}{5}x, & x \in X_2. \end{cases}
$$

The mapping F is a multi-valued Ciric type operator with $q = \frac{6}{7}$ $\frac{6}{7}$. If both *x* and *y* are in X_1 or in X_2 , then

$$
H(F(x), F(y)) \le \frac{6}{7}d(x, y).
$$

If we take $x \in X_1$ and $y \in X_2$, then we have that

$$
x \ge \frac{7}{30}y \text{ implies } H(F(x), F(y)) = \frac{6}{7}\left(x - \frac{7}{30}y\right) \le \frac{6}{7}\left(x - \frac{1}{5}y\right) = \frac{6}{7}D(x, F(y)),
$$

$$
x < \frac{7}{30}y \text{ implies } H(F(x), F(y)) = \frac{6}{7}\left(\frac{7}{30}y - x\right) \le \frac{6}{7}(y - x) = \frac{6}{7}d(x, y).
$$

Therefore, we have that F satisfies the following condition:

$$
H(F(x), F(y)) \le \frac{6}{7} \max \{d(x, y), D(x, F(y)), D(y, F(x))\},\
$$

and hence, it is a multi-valued \acute{C} irić type operator.

In the following step, we show that F is not a multi-valued generalized contraction on *X*. Let $x = 1$ and $y = \frac{1}{2}$ $\frac{1}{2}$. Then we have that

$$
p \cdot d(x,y) + q \cdot [D(x, F(x)) + D(y, F(y))] + r \cdot [D(x, F(y)) + D(y, F(x))] =
$$

= $\frac{1}{2}p + \frac{4}{10}q + \frac{88}{70}r < (p + 2q + 2r)\frac{88}{140} <$
 $< \frac{88}{140} < \frac{53}{70} = H(F(x), F(y)),$

as $p+2q+2r < 1$. Thus, we can see that F is not a multi-valued generalized contraction.

If (X, d) is a metric space and F: $X \to P(X)$ is a multi-valued operator, then a sequence $(x_n)_{n \in \mathbb{N}}$ from *X* is called a sequence of Picard type starting from $(x, y) \in$ Graph(*F*) if $x_0 = x, x_1 = y$ and $x_n \in F(x_{n-1}), n \in \mathbb{N}^*$.

The following lemma is useful for our following results.

Lemma 1 (Cauchy's Lemma). Let (a_n) , (b_n) be two sequences of positive numbers such that $\sum_{n\geq 0}$ $a_n < \infty$ and $\lim_{n \to \infty} b_n = 0$. Then $\lim_{n \to \infty} a_n$ $\frac{n}{2}$ ∑ *k*=0 *an*−*kb^k* \setminus = 0*.*

Theorem 4 ([\[2,](#page-15-7) A. Amini-Harandi Theorem 2.2]). *Let* (*X*,d) *be a complete metric* Δ *space. Let* $\mathrm{F}\colon X\to P_{b,cl}(X)$ *be a multi-valued* \acute{C} *irić type operator with constant k* $<\frac{1}{2}$ $\frac{1}{2}$. *Then,* F *has a fixed point.*

Here we will give a constructive proof of this theorem, as well as some data dependence and stability results for the fixed point problem $x \in F(x)$.

Theorem 5. Let (X, d) be a complete metric space. Let $F: X \to P_{cl}(X)$ be a multi*valued* Ciric type operator with constant $k < \frac{1}{2}$ 2 *. Then:*

- *(i)* Fix $(F) \neq \emptyset$ *and for every* $(x, y) \in Graph(F)$ *there exists a sequence* $(x_n)_{n \in \mathbb{N}}$ *of Picard type starting from* $x_0 := x$, $x_1 := y$ which converge to a fixed point *x* [∗] *of* F*;*
- *(ii)* the fixed point equation $x \in F(x)$ has the data dependence property, i.e., for *any* x^* ∈ Fix(*F*) *and any G*: X → $P(X)$ *such that* Fix(*G*) $\neq \emptyset$ *and the inequality* $H(F(x), G(x)) \leq \eta$ *holds for all* $x \in X$ *and some* $\eta > 0$ *, there is* $u^* \in Fix(G)$ *such that*

$$
d(x^*,u^*) \leq \frac{(1+k)q}{1-k}\eta,
$$

where $1 < q < \frac{1}{2^d}$ $\frac{1}{2k}$;

(iii) the fixed point equation is well-posed, i.e., for every sequence $(u_n)_{n\in\mathbb{N}} \subset X$ *such that*

$$
D(u_n, F(u_n)) \longrightarrow 0,
$$

 $as n \longrightarrow \infty$, we have that $u_n \longrightarrow x^*$, as $n \longrightarrow \infty$.

(iv) if $q < \frac{1}{2}$ $\frac{1}{2}$, then the fixed point equation has the Ostrowski stability property, *i.e., for any sequence* $(u_n)_{n \in \mathbb{N}} \subset X$ with $D(u_{n+1}, F(u_n)) \longrightarrow 0$ *as* $n \longrightarrow \infty$ *, we have that* $u_n \longrightarrow x^*$;

Proof. In order to prove (i), let $x_0 \in X$ and we construct the sequence $(x_n)_{n \in \mathbb{N}}$ of Picard type starting from $x_0 := x$ having the general term $x_n \in F(x_{n-1}), n \in \mathbb{N}^*$. We prove that this sequence is Cauchy.

Let $x_1 \in F(x_0)$ and $1 < q < \frac{1}{2k}$. Then, there exists $x_2 \in F(x_1)$ such that $d(x_1, x_2) \le$ $qH(F(x_0), F(x_1))$. Then, we have:

$$
d(x_1, x_2) \le qk \cdot \max\{d(x_0, x_1), D(x_0, F(x_0), D(x_1, F(x_1)), D(x_0, F(x_1)), D(x_1, F(x_0))\}
$$

$$
\le qk \cdot \max\{d(x_0, x_1), d(x_1, x_2), D(x_0, F(x_1))\}
$$

$$
\le qk \cdot \max\{d(x_0, x_1), d(x_1, x_2), d(x_0, x_2))\}
$$

$$
\le qk \cdot \max\{d(x_0, x_1), d(x_1, x_2), d(x_0, x_1) + d(x_1, x_2)\}
$$

$$
\le qk(d(x_0, x_1) + d(x_1, x_2)).
$$

Hence,

$$
d(x_1,x_2) \leq \frac{qk}{1-qk}d(x_0,x_1).
$$

We denote $\beta := \frac{qk}{1}$ $\frac{q\pi}{1-qk}$ < 1. Then $d(x_1, x_2) \leq \beta d(x_0, x_1)$. Using mathematical induction we get that:

$$
d(x_n,x_{n+1}) \leq \beta^n d(x_0,x_1).
$$

and

$$
d(x_m, x_{m+n}) \le d(x_m, x_{m+1}) + \dots + d(x_{m+n+1}, x_{m+n})
$$

$$
\le \beta^m d(x_0, x_1) + \dots + \beta^{m+n+1} d(x_0, x_1) = \beta^m \frac{1 - \beta^n}{1 - \beta} d(x_0, x_1).
$$

It follows that

$$
d(x_m,x_{m+n}) \leq \frac{\beta^m}{1-\beta}d(x_0,x_1).
$$

Due to the fact that the series $\sum \beta^m$ is convergent, we get the sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy. Since (X, d) is a complete metric space, the sequence $(x_n)_{n \in \mathbb{N}}$ is convergent to an element $x^* \in X$. We show first that $x^* \in \text{Fix}(F)$. Indeed, we have

$$
0 \le D(x^*, F(x^*)) \le d(x^*, x_{n+1}) + D(x_{n+1}, F(x^*))
$$

\n
$$
\le d(x^*, x_{n+1}) + H(F(x_n), F(x^*))
$$

\n
$$
\le d(x^*, x_{n+1}) + k \cdot \max \{d(x_n, x^*), D(x_n, F(x_n), D(x^*, F(x^*)),
$$

\n
$$
D(x_n, F(x^*)), D(x^*, F(x_n))\}
$$

\n
$$
\le d(x^*, x_{n+1}) + k \cdot \max \{d(x_n, x^*), d(x_n, x_{n+1}), D(x^*, F(x^*)),
$$

\n
$$
D(x_n, F(x^*)), d(x^*, x_{n+1})\}.
$$

In the above inequality if we let $n \rightarrow \infty$, then we get that

0 ≤ $D(x^*, F(x^*))$ ≤ $kD(x^*, F(x^*))$.

Thus $D(x^*, F(x^*)) = 0$ and so $x^* \in Fix(F)$.

For proving (ii), let $x^* \in Fix(F)$ and $1 < q < \frac{1}{2k}$. Then, there exists $u^* \in G(u^*)$ such that

$$
d(x^*, u^*) \leq qH(F(x^*), G(u^*))
$$

\n
$$
\leq qH(F(x^*), F(u^*)) + q\eta
$$

\n
$$
\leq qk \cdot \max \{d(x^*, u^*), D(u^*, F(u^*)), D(x^*, F(u^*)), D(u^*, F(x^*))\} + q\eta
$$

\n
$$
\leq qk \cdot \max \{d(x^*, u^*), D(u^*, G(u^*)) + \eta, D(x^*, G(u^*)) + \eta\} + q\eta
$$

\n
$$
\leq qk \cdot \max \{d(x^*, u^*), \eta, d(x^*, u^*) + \eta\} + q\eta
$$

\n
$$
\leq qk(d(x^*, u^*) + \eta) + q\eta,
$$

thus we obtain

$$
\mathrm{d}(x^*, u^*) \le \frac{(1+k)q}{1-kq}\eta.
$$

Thus, the fixed point equation with a multi-valued Ciric type operator has the data dependence property.

Concerning conclusion (iii), in order to prove that the fixed point equation for F is well-posed, we take the sequence $(u_n)_{n \in \mathbb{N}} \subset X$ such that $D(u_n, F(u_n)) \longrightarrow 0$, as *n* → ∞. Then, we have $d(u_n, x^*)$ ≤ $D(u_n, F(u_n))$ + $H(F(u_n), F(x^*))$. Furthermore, we can write:

$$
d(u_n, x^*) \le D(u_n, F(u_n)) + k \cdot \max \{d(u_n, x^*), D(u_n, F(u_n)), D(x^*, F(x^*)),
$$

\n
$$
D(x^*, F(u_n)), D(u_n, F(x^*)))\}
$$

\n
$$
\le D(u_n, F(u_n)) + k \cdot \max \{d(u_n, x^*), d(u_n, x^*) + D(x^*, F(u_n)),
$$

\n
$$
D(x^*, F(u_n)), D(u_n, F(x^*))\}
$$

\n
$$
\le D(u_n, F(u_n)) + k(d(u_n, x^*) + D(x^*, F(u_n)))
$$

\n
$$
\le D(u_n, F(u_n)) + k(2d(u_n, x^*) + D(u_n, F(u_n))),
$$

implying

$$
d(u_n,x^*) \leq \frac{1+k}{1-2k}D(u_n,F(u_n)) \longrightarrow 0, n \longrightarrow \infty.
$$

Regarding (iv), we will show that the operator F: $X \to P(X)$ has the Ostrowski property. Let us take the sequence $(u_n)_{n \in \mathbb{N}} \subset X$ such that

$$
d(u_{n+1},x^*) \le D(u_{n+1},F(u_n)) + D(F(u_n),x^*).
$$
 (3.1)

We take separately $D(F(u_n), x^*)$ from the above inequality and we have that

$$
D(F(u_n), x^*) = H(F(u_n), F(x^*)) \le k \cdot \max \{d(u_n, x^*), D(u_n, F(u_n)), D(x^*, F(x^*)),
$$

$$
D(x^*, F(u_n)), D(u_n, F(x^*))\}
$$

$$
\le k(d(u_n, x^*) + D(x^*, F(u_n))).
$$

Thus $D(F(u_n), x^*) \leq \frac{k}{1-k} d(u_n, x^*)$ and denote $\alpha := \frac{k}{1-k} < 1$. We replace this result in the relation (3.1) and it follows that

$$
d(u_{n+1},x^*) \le D(u_{n+1},F(u_n)) + \alpha d(u_n,x^*)
$$

\n
$$
\le D(u_{n+1},F(u_n)) + \alpha D(u_n,F(u_{n-1})) + \alpha^2 d(u_{n-1},x^*)
$$

\n
$$
\le \dots \le D(u_{n+1},F(u_n)) + \alpha D(u_n,F(u_{n-1})) + \alpha^2 d(u_{n-1},x^*) + \dots
$$

\n
$$
+ \alpha^n D(u_1,F(u_0)) + \alpha^{n+1} d(u_0,x^*)
$$

\n
$$
= \sum_{k=0}^n \alpha^{n-k} D(u_{k+1},F(u_k)) + \alpha^{n+1} d(u_0,x^*)
$$

882 M. MOGA AND R. TRUŞCĂ

Since $\alpha < 1$, using Cauchy's lemma (see [1\)](#page-7-0), we get $d(u_{n+1}, x^*) \rightarrow 0$.

We will now give a theorem that shows that, under an additional condition, the fixed point set and the strict fixed point set of a multi-valued Ciric type operator coincide.

Theorem 6. Let (X, d) be a complete metric space. Let $F: X \to P_{cl}(X)$ be a multi*valued* Ciric *type operator with constant* $k < 1$ *. Suppose that* $SFix(F) \neq \emptyset$ *. Then* $Fix(F) = SFix(F) = \{x^*\}.$

Proof. We will prove that F has a unique fixed point in *X*. Since $SFix(F) \neq \emptyset$ we know that there exists $x^* \in X$ such that $F(x^*) = \{x^*\}$. We suppose that there exists $z \in Fix(F)$ such that $z \neq x^*$. We have

$$
d(x^*, z) \le H(F(x^*), F(z))
$$

\n
$$
\le k \max \{d(z, x^*), D(z, F(z)), D(x^*, F(x^*)), D(x^*, F(z)), D(z, F(x^*))\}
$$

\n
$$
\le k d(z, x^*).
$$

This is a contradiction for $k < 1$. Therefore $SFix(F) = Fix(F) = \{x^*\}.$

Now we will prove a local fixed point theorem.

Theorem 7. *Let* (X, d) *be a complete metric space,* $x_0 \in X$ *and* $r > 0$ *. We consider* the multi-valued operator $\mathrm{F}\colon \tilde{B}(x_0;r) \to P_{cl}(X)$ such that there exists k $\in\left(0,\frac{1}{2}\right)$ 2 *with*

$$
H(F(x), F(y)) \le k \max \{d(x, y), D(x, F(x)), D(y, F(y)), D(x, F(y)),
$$

$$
D(y, F(x))\}, \text{ for all } x, y \in \tilde{B}(x_0; r).
$$

We also suppose that

$$
D(x_0, F(x_0)) < \frac{1-2k}{1-k}r.
$$

Then, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ *of Picard iterates starting from* x_0 *which converges to a fixed point of* F*.*

Proof. Since $D(x_0, F(x_0)) < \frac{1-2k}{1-k}$ $\frac{1-2k}{1-k}r$ we get there exists $x_1 \in F(x_0)$ such that

$$
\mathrm{d}(x_0,x_1)<\frac{1-2k}{1-k}r.
$$

Moreover,

$$
H(F(x_0), F(x_1)) \le k \max \{d(x_0, x_1), D(x_0, F(x_0)), D(x_1, F(x_1)), D(x_0, F(x_1)),
$$

\n
$$
D(x_1, F(x_0))\}
$$

\n
$$
= k \max \{d(x_0, x_1), D(x_0, F(x_0)), D(x_1, F(x_1)), D(x_0, F(x_1))\}
$$

\n
$$
\le k \max \{d(x_0, x_1), D(x_1, F(x_1)), d(x_0, x_1) + D(x_1, F(x_1)))\}
$$

\n
$$
\le k \max \{d(x_0, x_1), H(F(x_0), F(x_1)), d(x_0, x_1) + H(F(x_0), F(x_1))\}
$$

$$
= k \max (d(x_0, x_1) + H(F(x_0), F(x_1))),
$$

and thus

$$
H(F(x_0), F(x_1)) \leq \frac{k}{1-k}d(x_0,x_1) < \frac{k}{1-k}\frac{1-2k}{1-k}r.
$$

We will now denote $h := \frac{k}{1 - k}$ $\frac{k}{1-k}$, which immediately implies $\frac{1-2k}{1-k} = 1 - h$, with $h \in (0,1)$. Hence,

$$
H(F(x_0), F(x_1)) < h(1-h)r.
$$

Thus, there exists $x_2 \in F(x_1)$ such that $d(x_1, x_2) < h(1-h)r$. We assume

$$
p(n): \text{ there exists } x_n \in \mathbb{F}(x_{n-1}) \text{ such that } d(x_{n-1}, x_n) < h^{n-1}(1-h)r,
$$

and compute

$$
H(F(x_{n-1}), F(x_n)) \le k \max \{ d(x_{n-1}, x_n), D(x_{n-1}, F(x_{n-1})), D(x_n, F(x_n)),
$$

\n
$$
D(x_{n-1}, F(x_n)), D(x_n, F(x_{n-1})) \}
$$

\n
$$
\le k \max \{ d(x_{n-1}, x_n), D(x_n, F(x_n)), D(x_{n-1}, F(x_n)) \}
$$

\n
$$
\le k \max \{ d(x_{n-1}, x_n), D(x_n, F(x_n)), d(x_{n-1}, x_n) + D(x_n, F(x_n)) \}
$$

\n
$$
\le k (d(x_{n-1}, x_n) + H(F(x_{n-1}), F(x_n))),
$$

which implies

$$
H(F(x_{n-1}), F(x_n)) \leq hd(x_{n-1}, x_n) < h^n(1-h)r.
$$

Using the latter inequality, we get the existence of a point $x_{n+1} \in F(x_n)$ such that the relation $p(n+1)$ holds, and therefore we proved $p(n)$ by mathematical induction. Again, by means of mathematical induction, one can easily prove the assumption

$$
t(n): d(x_0,x_n) < (1-h^n)r,
$$

which shows that all the elements of the sequence $(x_n)_{n \in \mathbb{N}}$ are in the closed ball $\tilde{B}(x_0; r)$. Due to the following inequality

$$
d(x_m, x_{m+n}) \le d(x_m, x_{m+1}) + \dots + d(x_{m+n-1}, x_{m+n})
$$

\n
$$
\le h^m (1-h)(1+\dots + h^{n-1})r \le h^m (1-h)\frac{1-h^n}{1-h}r \le h^m r,
$$

the sequence $(x_n)_{n \in \mathbb{N}} \subset B(x_0; s)$ is Cauchy, thus convergent to a point $x^* \in \tilde{B}(x_0; r)$. We finish the proof with showing $x^* \in Fix(F)$, for which we compute

$$
D(x^*, F(x^*)) \le d(x^*, x_{n+1}) + H(F(x_n), F(x^*))
$$

\n
$$
\le d(x^*, x_{n+1}) + k \max \{d(x_n, x^*), D(x_n, F(x_n)), D(x^*, F(x^*)),
$$

\n
$$
D(x_n, F(x^*)), D(x^*, F(x_n))\}
$$

\n
$$
\le d(x^*, x_{n+1}) + k \max \{d(x_n, x^*) + D(x_n, F(x_n)),
$$

\n
$$
d(x_n, x^*) + D(x^*, F(x^*))\}
$$

$$
\leq d(x^*,x_{n+1}) + kd(x_n,x^*) + kd(x_n,x_{n+1}) + kD(x^*,F(x^*)).
$$

By considering $n \longrightarrow \infty$, we get the desired conclusion. \Box

By the above proof, we immediately get the following result.

Theorem 8. Let (X, d) be a complete metric space, $x_0 \in X$ and $r > 0$. We consider the multi-valued operator $\text{F}\colon B(x_0;r) \to P_{cl}(X)$ such that there exists $k \in \left(0,\frac{1}{2}\right)$ 2 *with*

$$
H(F(x), F(y)) \le k \max \{d(x, y), D(x, F(x)), D(y, F(y)), D(x, F(y)),
$$

$$
D(y, F(x)) \}, \text{ for all } x, y \in B(x_0; r).
$$

We also suppose that

$$
D(x_0, F(x_0)) < \frac{1-2k}{1-k}r.
$$

Then, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ *of Picard iterates starting from* x_0 *which converges to a fixed point of* F*.*

Proof. Let $s \in (0,r)$ such that

$$
D(x_0, F(x_0)) < \frac{1-2k}{1-k}s < \frac{1-2k}{1-k}r.
$$

For our conclusion, we follow the approach given in the above proof for the operator $F: \vec{B}(x_0, s) \to P(X).$

Remark 1*.* It is an open question to obtain, by the above approach, a local fixed point theorem and related stability results for a multi-valued Ciric type operators with constant $k \in (0,1)$. For a different approach and a general existence result, see [\[7\]](#page-15-8).

We now introduce the notion of a family of multi-valued \acute{C} irić type operators with constant $k \in (0,1)$.

Definition 6. Let (X,d) be a metric space. Then, the family $(F_t)_{t \in [0,1]}$ (where $F_t: Y \subseteq X \to P(X)$, for each $t \in [0,1]$) is a family of multi-valued Ćirić type operators with constant *k* if $k \in (0,1)$ and the following conditions are satisfied:

$$
\rm(i)
$$

$$
H(F_t(x_1), F_t(x_2)) \le k \max \{d(x_1, x_2), D(x_1, F_t(x_1)), D(x_2, F_t(x_2)), D(x_1, F_t(x_2)),
$$

$$
D(x_2, F_t(x_1))\}, \text{ for all } x_1, x_2 \in Y, t \in [0, 1].
$$

(ii) $H(F_t(x), F_s(x)) \leq |\phi(t) - \phi(s)|$, for all $t, s \in [0, 1]$ and $x \in Y$, where $\phi: [0,1] \to \mathbb{R}$ is strictly increasing and continuous.

Using the previous definitions, we can state, as an application of the multi-valued local fixed point theorem, a homotopy principle for multi-valued Ciric type operators. The result generalizes a similar theorem given for multi-valued contraction, given by Frigon and Granas, see [\[5\]](#page-15-9).

Theorem 9. *Let* (X,d) *be a complete metric space,* $U \subset X$ *be an open set and* F: $[0,1] \times \overline{U} \rightarrow P_{cl}(X)$ *be a multi-valued operator with closed graph. We denote* $F_t := F(t, \cdot)$ *, for* $t \in [0, 1]$ *. We suppose:*

(i) $(F_t)_{t \in [0,1]}$ *is a family of multi-valued Ćirić type operators with a constant* $k \in (0, \frac{1}{2})$ $(\frac{1}{2})$;

(*ii*)
$$
x \notin F_t(x)
$$
. for all $(t,x) \in [0,1] \times \partial U$.

Then F_0 *has a fixed point if and only if* F_1 *has a fixed point.*

Proof. Let $x^* \in U$ such that $x^* \in F_0(x^*)$. We define the set

$$
Q = \{(t, x) \in [0, 1] \times U : x \in Fix(F_t)\}.
$$

We observe that *Q* is nonempty, since $(0, x^*) \in Q$. Next, we consider the following partial order relation on *Q*

$$
(t,x) \le (s,y)
$$
 if and only if $t \le s$ and $d(x,y) \le \frac{2(1-k)(\phi(s) - \phi(t))}{1-2k}$,

where ϕ is the function associated to the family $(F_t)_{t \in [0,1]}$ of multi-valued Ciric type operators with constant $k \in (0,1)$. We will use for *Q* the Kuratowski-Zorn Lemma (saying that if a partially ordered set *Q* has the property that every chain *P* in *Q* has an upper bound in *Q*, then the set *Q* contains at least one maximal element.)

We consider $P \subset Q$ a totally ordered subset (a chain in *Q*) and define

$$
t^* = \sup\left\{t : (t,x) \in P\right\}.
$$

We also consider a sequence $\{(t_n, x_n)\}\$ in *P* such that

$$
(t_n, x_n) \le (t_{n+1}, x_{n+1})
$$
 and $t_n \longrightarrow t^*$.

Then, taking into consideration the partial order relation on *Q*, we obtain that

$$
d(x_m,x_n) \leq \frac{2(1-k)\left(\phi(t_m)-\phi(t_n)\right)}{1-2k}
$$
, for all $m > n$.

As a consequence, the sequence (x_n) is Cauchy, therefore it converges to an element $x^* \in \overline{U}$. Since F has closed graph, and it is fixed point free on the boundary of *U*, we get that $(t^*, x^*) \in Q$. Moreover, we have $(t, x) \le (t^*, x^*)$ for every $(t, x) \in P$, proving that (*t* ∗ , *x* ∗) is an upper bound of *P*. Due to the Kuratowski-Zorn lemma, *Q* admits a maximal element $(t_0, x_0) \in Q$. Thus, x_0 is a fixed point of $F_{t_0}(x_0)$.

We will show now, by contradiction, that $t_0 = 1$. We assume that $t_0 \neq 1$. Hence, there exist $t_1 \in (t_0, 1]$ and $r > 0$ such that

$$
0 < \frac{(1-k)(\phi(t_1) - \phi(t_0))}{1 - 2k} < r
$$

and $B(x_0; r) \subset U$. We also have the following inequality

$$
D(x_0, F_{t_1}(x_0)) \leq D(x_0, F_{t_0}(x_0)) + H(F_{t_0}(x_0), F_{t_1}(x_0)) \leq |\phi(t_1) - \phi(t_0)|.
$$

This implies

$$
D(x_0, F_{t_1}(x_0)) < \frac{1-2k}{1-k}r.
$$

Using the local fixed point theorem for multi-valued Ciric type operators, we obtain that there exists a fixed point x_1 of F_{t_1} such that $d(x_0, x_1) \le r$. Hence, (t_1, x_1) belongs to *Q* and $(t_0, x_0) < (t_1, x_1)$, which contradicts the maximality of (t_0, x_0) .

Conversely, if $F(1, \cdot)$ has a fixed point, then taking $t := 1 - t$ in the previous approach, we get that $F(0, \cdot)$ has a fixed point. The proof is complete. \Box

REFERENCES

- [1] C. D. Alecsa and A. Petrusel, "Some variants of Ciric's multi-valued contraction principle," An. *Univ. Vest Timis¸. Ser. Mat.-Inform.*, vol. LVII, no. 1, pp. 23–42, 2019, doi: [10.2478/awutm-2019-](http://dx.doi.org/10.2478/awutm-2019-0004) [0004.](http://dx.doi.org/10.2478/awutm-2019-0004)
- [2] A. Amini-Harandi, "Fixed point theory for set-valued quasi-contraction maps in metric spaces," *Appl. Math. Lett.*, vol. 24, pp. 1791–1794, 2011, doi: [10.1016/j.aml.2011.04.033.](http://dx.doi.org/10.1016/j.aml.2011.04.033)
- [3] L. B. Cirić, "Fixed points for generalized multi-valued contractions," *Math. Vesnik*, vol. 24, pp. 265–272, 1972.
- [4] L. B. Cirić, "A generalization of Banach's contraction principle," *Proc. Amer. Math. Soc.*, vol. 45, pp. 267–273, 1974, doi: [10.2307/2040075.](http://dx.doi.org/10.2307/2040075)
- [5] M. Frigon and A. Granas, "Resultats du type de Leray-Schauder pour des contractions multivoques," *Topol. Methods Nonlinear Anal*, vol. 4, no. 1, pp. 197–208, 1994.
- [6] A. Granas and J. Dugundji, *Fixed Point Theory*. Berlin: Springer, 2003. doi: [10.1007/978-0-](http://dx.doi.org/10.1007/978-0-387-21593-8) [387-21593-8.](http://dx.doi.org/10.1007/978-0-387-21593-8)
- [7] R. H. Haghi, S. Rezapour, and N. Shahzad, "On fixed points of quasi-contraction type multifunctions," *Applied Math. Letters*, vol. 25, pp. 843–845, 2012, doi: [10.1016/j.aml.2011.10.029.](http://dx.doi.org/10.1016/j.aml.2011.10.029)
- [8] M. Moga, "On some qualitative properties of Ciric's fixed point theorem," Stud. Univ. Babes-*Bolyai Math.*, vol. 67, no. 1, pp. 47–54, 2022, doi: [10.24193/subbmath.2022.1.04.](http://dx.doi.org/10.24193/subbmath.2022.1.04)
- [9] G. Petruşel, "Generalized multivalued contractions which are quasi-bounded," *Demonstratio Math.*, vol. 40, pp. 639–648, 2007, doi: [10.1515/dema-2007-0314.](http://dx.doi.org/10.1515/dema-2007-0314)
- [10] I. A. Rus, A. Petrusel, and G. Petrusel, "Fixed point theorems for set-valued Y-contractions," *In: Fixed Point Theory and its Applications, Banach Center Publ.*, vol. 77, pp. 227–237, 2007.
- [11] R. Truscă, "Some local fixed point theorems and applications to open mapping principles and continuation results," *Arab. J. Math.*, vol. 10, no. 3, pp. 711–723, 2021, doi: [10.1007/s40065-021-](http://dx.doi.org/10.1007/s40065-021-00331-3) [00331-3.](http://dx.doi.org/10.1007/s40065-021-00331-3)

Authors' addresses

Mădălina Moga

Babes-Bolyai University Cluj-Napoca, Faculty of Mathematics and Computer Science, Kogălniceanu Street, No. 1, 400084 Cluj-Napoca, Romania

E-mail address: madalina.moga@math.ubbcluj.ro

Radu Truscă

(Corresponding author) Babes¸-Bolyai University Cluj-Napoca, Faculty of Mathematics and Computer Science, Kogalniceanu Street, No. 1, 400084 Cluj-Napoca, Romania ˘

E-mail address: radu.trusca@math.ubbcluj.ro