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Abstract. The Legendre wavelet based method has been employed in this paper to investigate
neutral delay differential equations. The highest order derivative is approximated by Legendre
wavelet using the integral operator technique. Then integrations of Legendre wavelet are used
to approximate the lower order derivatives and unknown function. To get an algebraic system
of linear or nonlinear equations, approximated values of unknown function and its derivatives
are substituted in neutral delay differential equations. On solving the developed system, we
get unknown wavelet coefficients and subsequently the approximate solution. To analyze the
theoretical usability of the approach, the upper bound of error norm is established. Moreover, the
theoretical results are confirmed through few numerical experiments. A comparison of the results
of presented method with method available in literature is given to conclude the superiority of
the proposed method.
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1. INTRODUCTION

The term “delay” in differential equations refers to the temporal latencies between
observation and control action in the mathematical formulation of natural and tech-
nological problems. So we can say that a differential equation in which delay exist in
unknown variable and/or its derivatives, is known as delay differential equation. It oc-
curs in many real-life problems, such as SARS-CoV-2, where there is a temporal lag
between the period of an infected person transmits the virus, and the time susceptible
person get infected. The main reason for which, neutral delay differential equations
(NDDEs) is getting attention is that it plays vital role in many areas of sciences.
NDDEs have wide range of applications in applied mathematics, physics, ecology,
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engineering, etc. For example, in biological science, delay differential equation ex-
hibit better picture of population fluctuation than ordinary differential equation [16].
It has many applications in the dynamical system too. As a result, it can be claimed
that most of the mathematical problems have a time delay.

We shall investigate the following type of neutral delay differential equation (NDDE):

w′′(t) = f (t,w(t),w(t −π1(t,w(t))),w′(t),w′(t −π2(t,w(t))),

w′′(t),w′′(t −π3(t,w(t)))), t ∈ [α,β], (1.1)

with initial and delay conditions

w(t) = φ(t), t ≤ α, (1.2)

and boundary conditions (BCs):

y(α) = ξ, and y(β) = η, (1.3)

where f : [α,β]×R5 −→R is a differentiable function, π1(t,w(t)), π2(t,w(t)), and
π3(t,w(t)) are continuous functions on [α,β]×R such that t −π1(t,w(t)), t −π2(t,
w(t)), t −π3(t,w(t))< β. Also, φ(t) represents the initial function which is given in
Vanani and Aminataei [23].

In the late 1970s, technique for solving second-order delay differential equation
having constant delay with boundary conditions was given by Nevers and Schmitt
[11], where they solved the problem by using Euler’s method and shooting technique.

In literature review, we found various methods which have been used to solve
DDEs, like finite difference, Richardson method and collocation method (see [10],
[6],[15], [19], [14], [20]). For more details about the collocation methods for a vari-
ety of differential equations, please refer to ([4],[1],[2],[3], [7], [17], [18]). However
very few people have obtained numerical solution of second order DDEs for non
constant delay with BCs. For example, convergent method of order three was given
by Backke and Jackiewicz [6] where they applied Richardson’s extrapolation tech-
nique, and Cahlon and Nachman [8] solved time dependent delay problems using
Atkinson’s product integration technique.

In recent decades, methods based on wavelet basis function has grown manifolds
and the main reason of its attraction is that, they are more efficient and gives more ac-
curate numerical results as compared to other well known methods (see [5],[14],[21],
[13]). Wavelets are a powerful and efficient mathematical tool that divides a data
function into multiple frequency constituents and investigates each constituent with
a resolution that corresponds to its scale [22].

This paper aims to propose integral operator approach in which the highest order
derivative is approximated in terms of Legendre wavelet for solving second order
NDDEs with boundary conditions. The paper’s outline is presented as follows. In
Section 2, we present definition of multiresolution analysis, basic definition of wave-
let, Legendre wavelet and function approximation by Legendre wavelet. In Section 3,
we discussed our method for solving NDDEs. We carried out the Legendre wavelet’s



LEGENDRE WAVELET METHOD FOR DELAY DIFFERENTIAL EQUATIONS 37

convergence analysis in Section 4. Section 5, consist of two linear and one nonlinear
problem respectively, to demonstrate the proposed method’s validation using max-
imum absolute errors. Moreover, we made a comparison between exact solution and
existing method such as direct block method [15].

2. PRELIMINARY CONSIDERATIONS

This section gives an insight into the basic definitions that is used in the rest part
of the paper.

Definition 2.1. A multiresolution analysis (MRA), which is also referred as the
wavelet’s ‘heart’, was first introduced in the year 1989. It plays a vital role in writ-
ing the wavelet in a broad sense. It gives the ability to write any arbitrary function
w ∈ L 2(R) over the multiresolution approximation space. MRA’s goal is to break
down the entire function spaces into spaces,V k and W k, namely wavelet subspace
and scaling function subspace, respectively. An arbitrary function w ∈ L 2(R) is
projectable on V k, if V k satisfies the following conditions:

(1) V k ⊂ V k+1,
(2)

⋃
k∈Z V k = L 2(R), i.e.,{V k}’s are dense in L 2(R),

(3) The collection {φ(t −n),n ∈ Z } forms an orthonomal basis for V 0,
(4) w(.) ∈ V k ⇐⇒ w(2.) ∈ V k+1, for all k ∈ N,
(5)

⋂
k∈Z V k = {0}, i.e., there is nothing common in all the subspaces.

The wavelet subspace is defined in the following manner:

W k =
{

ψ
λ

k ; k,λ ∈ Z
}
,

where W k is orthogonal complement of V k in V k+1 such that

V k+1 = V k ⊕W k. (2.1)

On repeating the above steps, we get

V K = V K0 ⊕
K−1⊕
k=K0

W k, K > K0. (2.2)

If PV K project any arbitrary function w(t) ∈ L 2(R) on V k, we can conclude from
dense criteria of MRA that

PV K w(t)−→ w(t), as K −→ ∞. (2.3)

From equations (2.2) and (2.3), we can define scaling function projection and wavelet
projection in the following way:

PV K w(t)≈ ∑
λ

µ̃λ

k φ
λ

k (t), (2.4)
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PV K w(t)≈ ∑
λ

µ̃λ
K0

φ
λ
K0
(t)+∑

λ

K−1

∑
k=K0

µλ

k ψ
λ

k (t), (2.5)

where the coefficients µλ

k and µ̃λ
K0

can be evaluated by applying the orthogonal prop-
erty of the wavelet ψ(t) and scaling function φ(t) as

µ̃λ
K0

=
∫

∞

−∞

w(t)φλ
K0
(t)dt, µλ

k =
∫

∞

−∞

w(t)ψλ

k (t)dt. (2.6)

2.1. Wavelet and Legendre Wavelet

Definition 2.2. Any orthogonal system which comes from MRA is called mother
wavelet, if its total integration is exactly zero. i.e.∫

∞

−∞

ψ(t)dt = 0.

The dilation and translation of mother wavelet gives birth to a group of functions
which is referred as wavelet, and defined as:

ψ
T
D(t) =

1√
D

ψ

(
t −T

D

)
, D ̸= 0,T ∈ R, (2.7)

where D and T are representing dilation and translation parameters, respectively
([9], [12]). On restricting these two parameters upto the discrete values D = D−k

0 ,
T = λT0D−k

0 , where D0 > 1 and T0 > 1, we get the following discrete wavelet:

ψ
λ

k =
(√

D0

)k
(Dk

0t −λT0). (2.8)

Definition 2.3. The nth-order Legendre polynomials having weight function w(t)=
1, denoted by Pn(t) are orthogonal system on the interval [−1,1], it can be determined
by the following recurrence relation:

Pm+1(t) =
(

2m+1
m+1

)
tPm(t)−

(
m

m+1

)
Pm−1(t), m = 1,2,3 . . .

P0(t) = 1, P1(t) = t, . . . .

Now, we define Legendre wavelet with four arguments in such a way that Lλ

k (t) =
L(k,λ,m, t) over the interval [0,1) [24],

Lλ

k (t) =

{√
m+ 1

2 2
k
2 Pm(2kt −λ), t ∈

[
λ−1
2k , λ+1

2k

)
0, elsewhere

(2.9)

where ’m’ denotes the order of Legendre polynomial varying from 0 to a fixed posit-
ive value M − 1, λ = 1,2,3.....2k − 1 . The family of Legendre wavelet produces an
orthonormal basis of L 2(R). For each pair of m and λ, we can re-write the Legendre
wavelet in single index in the form:

Lı(t) = Lλ

k (t), (2.10)
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where the wavelet number ı satisfies, ı = λ+2k−1m.

2.1.1. Approximation of function by Legendre wavelet

An arbitrary function w ∈ L 2[0,1) is capable of being expanded into series of
Legendre wavelet as [25], from equation (2.5), we get

w(t) = ∑
λ

µ̃λ
K0

Lλ
K0
(t)+∑

λ

K−1

∑
k=K0

µλ

k Lλ

k (t) =
∞

∑
ı=1

µıLı(t). (2.11)

To get the best approximation, we truncate the infinite series given in equation (2.11)
in the manner shown below for a fixed natural number N:

w(t) ≈
N

∑
ı=1

µıLı(t) = µT L(t), (2.12)

where

µT = [µ1,µ2, ....µN ],

L(t) = [L1(t),L2(t)....LN(t)]T ,

where N = 2k−1M and collocation points are determined by t(p) = p−0.5
N , where

1 ≤ p ≤ N, N = 2K , K ∈ N.

2.1.2. Integration of Legendre Wavelet

Let us denote the first and second integrations of Legendre wavelet by I1 and I2.
These integrations can be easily calculated using equation (2.9) and can be expressed
as follows:

I 1
ı (t) =

∫ t

0
Lı(t̃)dt̃,

I 2
ı (t) =

∫ t

0

∫ t

0
Lı(t̃)dt̃dt̃.

The above integrations can be obtained as :

I 1
ı (t) =



(
1√
2

)k
ρ( 1

2m+1){Pm+1(t)−Pm−1(t)−Pm+1(−1)

+Pm−1(−1)}, t ∈ [ν1, ν2)(
1√
2

)k
ρ( 1

2m+1){Pm+1(1)−Pm−1(1)−Pm+1(−1)

+Pm−1(−1)}, t ∈ [ν2, 1)
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I 2
ı (t) =



(
1√
2

)3k
ρ( 1

2m+1){(
1

2m+2){Pm+2(t)−Pm(t)−Pm+2(−1)+Pm(−1)}
−
( 1

2m−2

)
{Pm(t)−Pm−2(t)−Pm(−1)+Pm−2(−1)}

−2(t +1){Pm+1(−1)+Pm−1(−1)}}, t ∈ [ν1, ν2)(
1√
2

)3k
ρ( 1

2m+1){(
1

2m+2){Pm+1(1)−Pm−1(1)−Pm+1(−1)

+Pm−1(−1)}− ( 1
2m−2){Pm(1)−Pm−2(1)−Pm(−1)

+Pm−2(−1)}−2{Pm+1(−1)+Pm−1(−1)}+(t −1)
×{Pm+1(1)−Pm−1(1)−Pm+1(−1)+Pm−1(−1)}}, t ∈ [ν2, 1)

where ν1 =
λ−1
2k , ν2 =

λ+1
2k and ρ =

√
2m+1

2 .

3. METHOD FOR SOLUTION OF NDDE

For the sake of convenience, we use ‘∑’ instead of ∑
n
ı=1 throughout the paper.

Now, approximate the higher order derivative in the form of Legendre wavelet

w′′(t)≈ ∑dıLı(t). (3.1)

Now, integrate equation (3.1) twice from 0 to t, we get

w′(t)≈ ∑dıI
1

ı (t)+w′(0), (3.2)

w(t)≈ ∑dıI
2

ı (t)+ tw′(0)+w(0). (3.3)

On putting t = 1 in equation (3.3), we get

w(1)≈ w(0)+w′(0)+∑dıI
2

ı (1),

w′(0)≈ w(1)−w(0)−∑dıI
2

ı (1). (3.4)

On substituting w′(0) in equations (3.2) and (3.3), we get the following equations:

w′(t)≈ ∑dıI
1

ı (t)+Λ−∑dıI
2

ı (1), (3.5)

w(t)≈ ∑dıI
2

ı (t)+ t(Λ−∑dıI
2

ı (1))+w(0), (3.6)

where Λ = w(1)−w(0).
Replace t by (t − π3(t,w(t))), (t − π2(t,w(t))) and (t − π1(t,w(t))) in equations

(3.1), (3.5) and (3.6) respectively, we get

w′′(t −π3(t,w(t)))≈ ∑dıLı(t −π3(t,w(t))), (3.7)

w′(t −π2(t,w(t)))≈ ∑dıI
1

ı (t −π2(t,w(t)))+w′(0), (3.8)

w(t −π1(t,w(t)))≈ ∑dıI
2

ı (t −π1(t,w(t)))+(t −π1(t,w(t)))

× (Λ−∑dıI
2

ı (1))+w(0). (3.9)
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On substituting the values from equations (3.1) and ((3.5)-(3.9)), in equation (1.1) we
get the following system of equation:

∑dıLı ≈ f (t,∑dıI
2

ı (t)+ t(Λ−∑dıI
2

ı (1))+w(0),∑dıI
2

ı (t −π1(t,w(t)))

+(t −π1(t,w(t)))× (Λ−∑dıI
2

ı (1))+w(0),∑dıI
1

ı (t)

+Λ−∑dıI
2

ı (1),∑dıI
1

ı (t −π2(t,w(t)))

+Λ−∑dıI
2

ı (1),∑dıLı(t),∑dıLı(t −π3(t,w(t)))). (3.10)

We determine the Legendre wavelet coefficients by solving the above system of equa-
tions. Then, in order to obtain the approximate solution, we put the values of these
coefficients into equation (3.6). While dealing with nonlinear NDDE, we employ
Newton’s method to solve the resulting system.

4. CONVERGENCE ANALYSIS

The convergence analysis of Legendre wavelet basis is covered in this section.
To demonstrate the convergence analysis of the proposed method we use the ana-

lytic version of equation (3.6) as

w(t) =
∞

∑
ı=1

dıI
2

ı (t)+ t(Λ−
∞

∑
ı=1

dıI
2

ı (1))+w(0). (4.1)

Theorem 1. Let w(t)∈L 2[0,1] be such that
∣∣w′′(t)

∣∣≤α0,∀ t ∈ (0,1) and α0 > 0.
If w′′(t) = ∑

∞
i dıLı(t), then we have the following inequality:∣∣dı

∣∣≤ 2−
k
2 σα0℘, (4.2)

where σ =
√

m+ 1
2 and ℘ is constant defined in the proof below.

Proof. We have

w′′(t) =
∞

∑
ı=1

dıLı(t), (4.3)

∣∣dı
∣∣= ∣∣∣∣∫ 1

0
w′′(t)Lı(t)dt

∣∣∣∣≤ sup
t∈[0,1]

∣∣w′′(t)
∣∣∫ t

0

∣∣Lı(t)
∣∣dt ≤ α02−

k
2 σ℘.

Taking inner product of equation (4.3) and applying orthonormality condition of
Lı(t), we get equation (4.2). We have applied mean value theorem for integral and

℘=
∫ 1
−1 |P

′
m+1(t)−P ′

m−1(t)|dt√
2m+1

. Therefore, we have

|dı| ≤ 2−
k
2 σα0℘. (4.4)

□
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Theorem 2. Let the analytic and approximate solution of equation (1.1) is denoted
by w(t) and PV K w(t) respectively and w(t)∈L 2[0,1],

∣∣w′′(t)
∣∣≤ α0,∀ t ∈ (0,1) with

α0 > 0. If εK is the error of the approximation then we have following inequality:∥∥∥εK

∥∥∥
2
≤ 1

3
ρ

2
α0ℑ

2(F−λ)2−K+1.

Proof. Suppose w(t) ∈ L 2[0,1] be the analytical solution of (1.1) and PV K w(t) is
the projection of w(t) on the multiresolution space V K . To obtain the error norm,
we calculate the L 2 norm of the difference of exact solution w(t) and projection
PV K w(t) of it. Detailed description of determining the error norm’s upper bound is
given below: We have∥∥∥εK

∥∥∥
2
=
∥∥∥w(t)−PvK w(t)

∥∥∥
2

=
∥∥∥ ∞

∑
k=K+1

2K+1−1

∑
ı=2K

dıI
2

ı (t)−
∞

∑
k=K+1

2K+1−1

∑
ı=2K

dıI
2

ı (1)
∥∥∥

2
.

Using Minskowski inequality, we get∥∥∥εK

∥∥∥
2
≤
∥∥∥ ∞

∑
k=K+1

2K+1−1

∑
ı=2K

dıI
2

ı (t)
∥∥∥

2
+
∥∥∥ ∞

∑
k=K+1

2K+1−1

∑
ı=2K

dıI
2

ı (1)
∥∥∥

2

≤
∥∥∥ ∞

∑
k=K+1

2K+1−1

∑
ı=2K

dıI
2

ı (t)
∥∥∥

2
+
∥∥∥ ∞

∑
k=K+1

2K+1−1

∑
ı=2K

dıI
2

ı (1)
∥∥∥

2
(4.5)

≤
∞

∑
k=K+1

2K+1−1

∑
ı=2K

|dı|
(∫ 1

0
|I 2

ı (t)|2dt
) 1

2

+
∞

∑
k=K+1

2K+1−1

∑
ı=2K

|dı|

(∫ 1

0
|I 2

ı (1)|2dt
) 1

2

. (4.6)

Now, consider the Cauchy’s formula for repeating integration as

InLı(t) =
1

(n−1)!

∫ t

0
(t − s)n−1Lı(s)ds. (4.7)

For n = 2, we get

I2Lı(t) = I 2
ı (t) =

∫ t

0
(t − s)2Lı(s)ds.

Now,

I2Lı(t) =
∫

ν2

ν1

(t − s)ρ2
k
2 Pm(2ks−λ)ds =

∫ 1

−1
(t − ς+λ

2k )ρ2
k
2 2−kPm(ς)dς

=
∫ 1

−1

(2kt − ς−λ)

2k ρ2−
k
2 Pm(ς)dς
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≤ 2
−3k

2 ρ

max
−1≤t≤1

|P ′
m+1(t)−P ′

m−1(t)|

2m+1

∫ 1

−1
(2kt − ς−λ)dς

|I2Lı(t)|= |I 2
ı (t)| ≤ 2

−3k+2
2 ρℑF, (4.8)

where ς = 2ks−λ, ℑ =
max

−1≤t≤1
|P ′

m+1(t)−P ′
m−1(t)|

2m+1 and F= max
t∈[0,1]

|(2kt −λ)|.

In similar fashion, we can get

|I2Lı(1)|= |I 2
ı (1)| ≤ 2

−3k+2
2 (2k −λ)ρℑ, (4.9)

where ℑ =
max

−1≤t≤1
|P ′

m+1(t)−P ′
m−1(t)|

2m+1 . On substituting equations (4.2), (4.8) and (4.9) in
equation (4.6) and after simplification, we get∥∥∥εK

∥∥∥
2
≤

∞

∑
k=K+1

2K+1−1

∑
ı=2K

2−2k+1
ρ

2
α0ℑ

2
(
F+2k −λ

)
≤

∞

∑
k=K+1

2−2k+1
{

ρ
2
α0ℑ

2
(
F+2k −λ

)}
(2K+1 −2K)

≤ 2K
∞

∑
k=K+1

2−2k+1
ρ

2
α0ℑ

2
(
F+2k −λ

)
∥∥∥εK

∥∥∥
2
≤ 1

3
ρ

2
α0ℑ

2(F−λ)2−K+1. (4.10)

□

From equation (4.10) we can say that the error and the resolution level K are related
to each other inversely, which implies that as K → ∞, then

∥∥∥εK

∥∥∥→ 0.

5. NUMERICAL EXAMPLES

Problem 1. Let

w′′(t)+w′(t)+
√

cos tw′(
√

t)+(sin(
√

t)+ et)w(sin t) = f (t), (5.1)

which satisfies the BCs:
w(0) = 1, w(1) = e.

The exact solution is

w(t) = et . (5.2)

The source function f (t) can be calculated with the help of exact solution.

We have applied Legendre wavelet series method (LWSM) for solving equation
(5.1). The obtained maximum absolute errors (MAE) and CPU time for various
convergence parameters (M, K) are reported in Table 1. The table shows clearly that
as we increase the values of the convergence parameters (M, K), the MAE decreases
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gradually and CPU time increases at a low rate. A comparison of exact solution with
LWSM solution is displayed in Figure 1.

TABLE 1. MAE with CPU time of Problem 1

(M,K) Exact solution MAE CPU time (seconds)
(8,1) 2.5536 2.2662e−12 0.1180
(8,2) 2.6346 3.6326e−13 0.2442
(8,3) 2.6761 1.7764e−15 0.7261
(8,4) 2.6971 8.8818e−16 2.5288

FIGURE 1. Graph of exact and LWSM solutions of Problem 1 for
M = 8 and K = 4

Problem 2. Let

w′′(t) =−2e−t +
w(t)

2
+ e

−t
2 w

( t
2

)
, t ∈ [0,1], (5.3)

which satisfies the BCs:

w(0) = 0, w(1) = e−1.

The exact solution is

w(t) = te−t . (5.4)

The source function f (t) can be calculated with the help of the exact solution.

We have applied LWSM for solving equation (5.3). The obtained MAE and
CPU time for various convergence parameters (M, K) are reported in Table 2. The
table shows clearly that as we increase the values of the convergence parameters
(M, K),the MAE decreases gradually and CPU time increases at a low rate. A com-
parison of exact solution with LWSM solution is displayed in Figure 2.
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TABLE 2. MAE with CPU time of Problem 2

(M,K) Exact solution MAE CPU time (seconds)
(8,1) 0.3671 7.2649e−12 0.1072
(8,2) 0.3677 1.0288e−12 0.1696
(8,3) 0.3678 4.0523e−15 0.4781
(8,4) 0.3679 1.6653e−16 1.6053

From Table 2, we can see that the MAE of the developed method is 1.0288e−012
where as the MAE in [15] is 2.3421e−08, so we can say that the developed method
is more accurate.

FIGURE 2. Graph of exact and LWSM solutions of Problem 2 for
M = 8 and K = 4

Problem 3. Let

w(t)w′′(t)+w′(t)+
√

cos tw′(t)(
√

t)+ sin(
√

t)+ etw(sin t) = f (t), (5.5)

which satisfies the BCs:
w(0) = 1, w(1) = e.

The exact solution is

w(t) = et . (5.6)

The source function f (t) can be calculated with the help of exact solution.

We have applied LWSM for solving equation (5.5). The obtained MAE and
CPU time for various convergence parameters (M, K) are reported in Table 3. The
table shows clearly that as we increase the values of the convergence parameters
(M, K),the MAE decreases gradually and CPU time increases at a low rate. A com-
parison of exact solution with LWSM solution is displayed in Figure 3.
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TABLE 3. MAE with CPU time of Problem 3

(M,K) Exact solution MAE CPU time (seconds)
(8,1) 2.5536 2.4698e−12 0.2279
(8,2) 2.6346 4.0767e−13 0.3362
(8,3) 2.6761 2.2204e−15 0.7627
(8,4) 2.6971 8.8818e−16 2.4628

FIGURE 3. Graph of exact and LWSM solutions of Problem 3 for
M = 8 and K = 4

CONCLUSION

In this paper, we have used LWSM to get the numerical solution of second order
NDDEs. We have employed integral operator technique, i.e., the highest order de-
rivative is approximated in terms of Legendre wavelet basis and then the integrations
of Legendre wavelet are used to approximate the unknown variable and its lower or-
der derivatives. The advantage of this technique is that we don’t need to deal with
the BCs separately. These conditions are automatically taken into consideration. We
approximate delay term directly by using Legendre wavelet, and not by any series
expansion such as Taylor series. In addition, the proposed method converges signi-
ficantly fast as compared to previous method such as direct block method [15] and is
easy to execute. For all computational work we have used MATLAB 2021, intel i5
and windows 10.
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