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Abstract. The new optimal efficient sufficient conditions are established for solvability and unique-
ness of a solution of the linear and nonlinear fourth order ordinary differential equations

u(4)(t) = p(t)u(t)+q(t) for t ∈ [a, b],

u(4)(t) = p(t)u(t)+ f (t,u(t)) for t ∈ [a, b],

under the following two-point boundary conditions

u(i)(a) = 0, u(i)(b) = 0 (i = 0,1),

and
u(i)(a) = 0 (i = 0,1,2), u(b) = 0,

where p ∈ L([a, b]; R) is a nonconstant sign function and f ∈ K([a, b]×R;R).
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1. INTRODUCTION

Consider on the interval I := [a, b] the fourth order ordinary differential equations

u(4)(t) = p(t)u(t)+q(t), (1.1)

and

u(4)(t) = p(t)u(t)+ f (t,u(t)), (1.2)

under the boundary conditions

u( j)(a) = 0, u( j)(b) = 0 ( j = 0,1), (1.31)

u( j)(a) = 0 ( j = 0,1,2), u(b) = 0, (1.32)

where p ∈ L(I; R), f ∈ K(I ×R;R).
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By a solution of problem (1.2), (1.31), (1.32) we understand a function u∈ C̃3(I;R),
which satisfies equation (1.2) a. e. on I, and conditions (1.31), (1.32).

The following notations are used throughout the paper:

• N is the set of all natural numbers;
• R=]−∞,+∞[, R+

0 = [0,+∞[, R+ =]0,+∞[, R−
0 = R\R+;

• C(I;R) is the Banach space of continuous functions u : I → R with the norm
∥u∥C = max{|u(t)| : t ∈ I};

• C̃(3)(I;R) is the set of functions u : I → R which are absolutely continuous
together with their third derivatives;

• L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with
the norm ∥p∥L =

∫ b
a |p(s)|ds;

• K(I×R;R) is the set of functions f : I×R→R satisfying the Carathéodory
conditions, i.e., f (·,x) : I → R is a measurable function for all x ∈R, f (t, ·) :
R→ R is a continuous function for almost all t ∈ I, and for arbitrary r > 0
the inclusion

sup{| f (t,x)| : |x| ≤ r} ∈ L(I; R+)

holds;
• For arbitrary x,y ∈ L(I; R), the notation

x(t)≼ y(t) (x(t)≽ y(t)) for t ∈ I,

means that x ≤ y (x ≥ y) and x ̸= y;
• We also use the notation [x]± = (|x|± x)/2.

The fourth order equations appear as model equations for a large class of higher or-
der differential equations, arising for example, in hydrodynamics, suspension bridge
models, etc. and have become the subject of many fundamental works. These studies
particulary focus on the questions of oscillatory properties and Green’s function sign
for some two-point boundary value problems (see, e.g., [2–5],[11–13]) which give
the basis for the study of questions of solvability and unique solvability of the fourth
order differential equations under different boundary conditions (see, e.g., [6]-[7],
[10], [14], [16], [17]).

The aim of our paper is to study the solvability of the above mentioned problems.
We have proved the unimprovable sufficient conditions of the unique solvability for
the linear problem, which show that the solvability of problem (1.1), (1.31), ((1.1),
(1.32)) depends only on the nonnegative (nonpositive) part of the coefficient p if
this nonnegative (nonpositive) part is small enough. Based on these results, for the
nonlinear problems, sufficient conditions of solvability have been proved, which in
some sense improves previously known results.

Below we present some definitions and results from the works [1], [15], on which
our paper is based.
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Definition 1. Equation

u(4)(t) = p(t)u(t) for t ∈ I (1.3)

is said to be disconjugate (non-oscillatory) on I if every nontrivial solution u has less
then four zeros on I, the multiple zeros being counted according to their multiplicity.

Definition 2. We will say that p∈D+(I) if p∈ L(I;R+
0 ), and problem (1.3), (1.31)

has a solution u such that

u(t)> 0 for t ∈ ]a, b[ . (1.4)

Definition 3. We will say that p∈D−(I) if p∈ L(I;R−
0 ), and problem (1.3), (1.32)

has a solution u such that inequality (1.4) holds.

Remark 1. Let p ∈ L(I; R+
0 )(p ∈ L(I; R−

0 )), and consider the equation

u(4)(t) = λ
4 p(t)u(t) for t ∈ I. (1.5)

In [15] it is shown that the set D+(I)(D−(I)) can be interpreted as a set of the func-
tions for which λ = 1 is the first eigenvalue of problem (1.5), (1.31) ((1.5), (1.32)).
Also the fact that λ > 0 is the first eigenvalue of problem (1.5), (1.31) ((1.5), (1.32))
is equivalent to the inclusion λ4 p ∈ D+(I) (λ4 p ∈ D−(I)).

The importance of the classes D+ and D− for our investigation follows from the
following propositions.

Proposition 1. ([15], Theorem 2) Let p ∈ L(I;R+
0 ). Then equation (1.3) is dis-

conjugate on I if and only if there exists p∗ ∈ D+(I) such that p(t)≼ p∗(t) on I.

Proposition 2. ([15], Theorem 4) Let p ∈ L(I;R−
0 ). Then equation (1.3) is dis-

conjugate on I if and only if there exists p∗ ∈ D−(I) such that p(t)≽ p∗(t) on I.

Also we need the following propositions:

Proposition 3. ([1], Theorem 5) Let p ∈ L(I,R), and Green’s function G of the
equation

u(4)(t) = [p(t)]+u(t), (1.61)
under boundary conditions (1.31) be totally positive kernel. Then problem (1.1),
(1.31) is uniquely solvable for an arbitrary q ∈ L(I,R).

Proposition 4. ([1], Theorem 4) Let p ∈ L(I;R), and Green’s function G of the
equation

u(4)(t) =−[p(t)]−u(t), (1.62)
under boundary conditions (1.32) be such that −G is totally positive kernel. Then
problem (1.1), (1.32) is uniquely solvable for an arbitrary q ∈ L(I,R).

Proposition 5. (Gantmacher-Krein, see [13]) Let i ∈ {1,2}, p ∈ L(I,R) be such
that equation (1.3) is disconjugate and G is Green’s function of problem (1.3), (1.31),
((1.3), (1.32)). Then (−1)i−1G is the totally positive kernel.
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2. MAIN RESULTS

2.1. Linear Problem

Theorem 1. Let i ∈ {1,2} and the function p0 ∈ L(I;R) be such that the equation

u(4)(t) = [p0(t)]+u(t) if i = 1,

u(4)(t) =−[p0(t)]−u(t) if i = 2,

is diconjugate on I. Then if the inequality

(−1)i−1[p(t)− p0(t)]≤ 0 for t ∈ I (2.1i)

holds, problem (1.1), (1.31) ((1.32)) is uniquely solvable.

From the last theorem with p0 = [p]+, by Proposition 1 immediately follows the
corollary.

Corollary 1. Let there exist p∗ ∈ D+(I) such that the inequality

[p(t)]+ ≼ p∗(t) for t ∈ I (2.21)

holds. Then problem (1.1), (1.31) is uniquely solvable.

Analogously, from the last theorem with p0 =−[p]−, by Proposition 2 we get

Corollary 2. Let there exist p∗ ∈ D−(I) such that the inequality

− [p(t)]− ≽ p∗(t) for t ∈ I (2.22)

holds. Then problem (1.1), (1.32) is uniquely solvable.

Remark 2. Condition (2.21) ((2.22)) in Corollary 1 (2) is optimal in the sense that
the inequality ≼ (≽) can not be replaced by the inequality ≤ (≥).

Corollary 3. Let there exist M ∈ R+
0 such that

M
b−a

2
+

∫ b

a
[[p(s)]+−M]+ds ≤ 192

(b−a)3 . (2.31)

Then problem (1.1), (1.31) is uniquely solvable.

Corollary 4. Let p ∈ L(I;R) and there exist M ∈ R+
0 such that

M
495
1024

(b−a)+
∫ b

a
[[p(s)]−−M]+ds ≤ 110

(b−a)3 . (2.32)

Then problem (1.1), (1.32) is uniquely solvable.

The validity of Corollary 3 (4) follows from Theorem 1 and the fact that con-
dition (2.31) ((2.32)) guarantees the disconjugacy of equation (1.61) ((1.62)) (see
[15], Theorems 3,5).
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2.2. Nonlinear Problem

Theorem 2. Let i ∈ {1, 2} and there exist r ∈R+ and g ∈ L(I;R+
0 ) such that a. e.

on I the inequality

−g(t)|x| ≤ (−1)i−1 f (t,x)sgnx ≤ δ(t, |x|) for |x|> r (2.4i)

holds, where the function δ ∈ K(I ×R+
0 ; R+

0 ) is nondecreasing in the second argu-
ment and

lim
ρ→+∞

1
ρ

∫ b

a
δ(s, ρ)ds = 0. (2.5)

Then if equation (1.61) ((1.62)) is disconjugate, problem (1.2), (2.31) ((2.32)) has at
least one solution.

Corollary 5. Let i ∈ {1, 2} and conditions (2.4i), (2.5) of Theorem 2 hold. Then
if condition (2.31) ((2.32)) is fulfilled, problem (1.2), (2.31) ((2.32)) has at least one
solution.

Theorem 3. Let p∗ ∈ D+(I) and a. e. on I the inequality

[ f (t,x1)− f (t,x2)]sgn(x1 − x2)< [p∗(t)− p(t)]|x1 − x2| (2.61)

holds for x1,x2 ∈ R, x1 ̸= x2. Then problem (1.2), (1.31) has at most one solution.

Theorem 4. Let p∗ ∈ D−(I) and a. e. on I the inequality

[ f (t,x1)− f (t,x2)]sgn(x1 − x2)> [p∗(t)− p(t)]|x1 − x2| (2.62)

holds for x1,x2 ∈ R, x1 ̸= x2. Then problem (1.2), (1.32) has at most one solution.

Example 1. Consider on I the equations

u(4)(t) = p(t)u(t)+ f0(t)|u(t)|αsgnu(t)+h(t), (2.7)

u(4)(t) = p(t)u(t)+ f0(t)
u(t)

(1+ |u(t)|)β
+h(t), (2.8)

where p, f0 ∈ L(I;R), α ∈ [0,1[ , and β ∈ ]0,1[ .
Then if

||[p]+||L ≤ 192
(b−a)3 for i = 1, ||[p]−||L ≤ 110

(b−a)3 for i = 2,

from Corollary 5 it follows that for an arbitrary h ∈ L(I;R) problem (2.7) (1.31)
((1.32)) has at least one solution.

Also, if a.e. on I the inequalities

f0(t)< p∗(t)− p(t) for i = 1, f0(t)> p∗(t)− p(t) for i = 2,

hold, from Corollary 1 if i = 1, and Corollary 2 if i = 2, it follows that for an arbitrary
h ∈ L(I;R) problem (2.8) (1.31) ((1.32)) has at most one solution.
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3. AUXILIARY PROPOSITIONS

Lemma 1. Let i ∈ {1,2}, p ∈ L(I;R),g ∈ L(I;R+
0 ) be the functions defined in

Theorem 2, and let the function p̃ ∈ L(I; R) admit the inequalities

p(t)−g(t)≤ p̃(t)≤ p(t) for t ∈ I, i = 1,

p(t)≤ p̃(t)≤ p(t)+g(t) for t ∈ I, i = 2, (3.1)

Then there exists a number ρ0 > 0 such that an arbitrary solution u of the equation

u(4)(t) = p̃(t)u(t)+q(t), (3.2)

under boundary condition (1.31) ((1.32)) admits the estimate

||u||C ≤ ρ0||q||L. (3.3)

To prove this proposition, we need Lemma 1.1 from [9].

Lemma 2. Let p̃, pk ∈ L(I;R), v0,vk ∈C(I;R) (k ∈ N),

lim
k→+∞

||vk − v0||C = 0, lim sup
k→+∞

||pk||L <+∞,

and

lim
k→+∞

∫ t

a
pk(s)ds =

∫ t

a
p̃(s)ds uniformly on I.

Then

lim
k→+∞

∫ t

a
pk(s)vk(s)ds =

∫ t

a
p̃(s)v0(s)ds uniformly on I. (3.4)

Proof. We will prove our lemma only for i = 1, for i = 2 the proof is similar.
Assume that Lemma 1 is not true. Then for all k ∈ N there exist functions pk,qk ∈
L(I;R) such that

h0(t)≤ pk(t)≤ p(t) for t ∈ I, (3.5)

where h0 := p−g, and the problem

u(4)k (t) = pk(t)uk(t)+qk(t), u( j)
k (a) = 0, u( j)

k (b) = 0 ( j = 0,1),

has a solution uk such that ||uk||C ≥ k||qk||L. Then if we suppose that

vk(t) = uk(t)/||uk||C, q̃k(t) = qk(t)/||uk||C,

we obtain

||vk||C = 1, ||q̃k||L ≤ 1
k
, (3.6)

and

v(4)k (t) = pk(t)vk(t)+ q̃k(t) for t ∈ I, (3.7)

v( j)
k (a) = 0, v( j)

k (b) = 0 ( j = 0,1),
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from which due to (3.5) and (3.6) we have

||v(4)k ||L ≤ ||h||L +
b−a

k
for t ∈ I, (3.8)

where h(t) = max(|h0(t)|, |p(t)|).
In view of the equality ||vk||C = 1, (3.8), and the boundary conditions (3.7), it is

clear that sequences {v( j)
k }+∞

k=1 ( j = 0, 3) are uniformly bounded and equicontinuous
on I. By the Arzela-Ascoli lemma, without loss of generality it can be assumed that
these sequences are uniformly convergent on I. Therefore there exists a function v0 ∈
C̃3(I; R) such that

v( j)
0 (t) = lim

k→+∞

v( j)
k (t)( j = 0, 3) uniformly on I, (3.9)

and due to (3.6) we have
||v0||C = 1. (3.10)

Set Pk(t) =
∫ t

a pk(s)ds. Then from (3.5) we get

Pk(a) = 0,
∫ t2

t1
h0(s)ds ≤ Pk(t2)−Pk(t1)≤

∫ t2

t1
p(s)ds (3.11)

for a ≤ t1 ≤ t2 ≤ b, and therefore the sequence {Pk}+∞

k=1 is uniformly bounded and
equicontinuous on I. Thus by the Arzela-Ascoli lemma, without loss of generality it
can be assumed that this sequence uniformly converges, i.e., there exists the function
P ∈C(I; R) such that

lim
k→+∞

Pk(t) = P(t) uniformly on I, (3.12)

for which from (3.11) it follows that∫ t2

t1
h0(s)ds ≤ P(t2)−P(t1)≤

∫ t2

t1
p(s)ds.

Consequently, the function P is absolutely continuous, and there exists a function
p̃ ∈ L(I; R) such that P(t) =

∫ t
a p̃(s)ds, and the inequality

h0(t)≤ p̃(t)≤ p(t) for t ∈ I (3.13)

holds. Then due to (3.9) and (3.12), from Lemma 2 follows the validity of equality
(3.4). Therefore if we integrate equation (3.7) from a to t, and pass to the limit as
k → +∞, due to conditions (3.6), (3.7), (3.9), and (3.4), we find that v0 is a solution
of the problem

v(4)0 (t) = p̃(t)v0(t), v( j)
0 (a) = 0, v( j)

0 (b) = 0 ( j = 0,1).

On the other hand, from the disconjugacy of equation (1.61) and inequality (3.13), in
view of Theorem 1 we have v0 ≡ 0, which is the contradiction with (3.10). Thus our
assumption is invalid and estimation (3.3) holds. □
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4. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Let i = 1. From disconjugacy of the equation u(4) = [p0]+u
on I, by Proposition 1 follows the existence of p∗ ∈ D+(I) such that [p0(t)]+ ≼
p∗(t) for t ∈ I. From the last inequality and (2.1i) it is clear that

[p(t)]+ ≤ [p0(t)]+ ≼ p∗(t) for t ∈ I,

and therefore due to Proposition 1 equation (1.61) is disconjugate on I. But due to Pro-
position 5 from the disconjugacy of equation (1.61) it follows that Green’s function
of problem (1.61), (1.31) is totally positive kernel. Now the validity of our theorem
immediately follows from Proposition 3.

For i = 2 the proof is similar with the only difference that instead of Propositions
1 and 3, Propositions 2 and 4 are used. □

Proof of Theorem 2. Set i = 1, and for t ∈ I define the functions

H(t, x) =

{
0 if |x|> r
f (t, x) if |x| ≤ r

, q∗(t) = max{|H(t, x)| : x ∈ R},

and

F−(t, x) =

{
[ f (t,x)sgnx]−

|x| if |x|> r

0 if |x| ≤ r
,

F+(t, x) =

{
[ f (t, x)sgnx]+ sgnx if |x|> r
0 if |x| ≤ r

.

Then it is clear that

f (t, x) = F+(t, x)−F−(t, x)x+H(t, x) for t ∈ I, x ∈ R, (4.1)

where due to condition (2.4i) we have the estimations

0 ≤ F−(t, x)≤ g(t), |F+(t, x)| ≤ δ(t, |x|) for t ∈ I, x ∈ R. (4.2)

Also due to condition (2.5), there exists a constant r0 > r sauch that

ρ0

(
||q∗||L +

∫ b

a
δ(s, ρ)ds

)
< ρ for ρ ≥ r0, (4.3)

where ρ0 is the constant defined in Lemma 1. Now consider the equation

u(t) = F(u)(t) for t ∈ I, (4.4)

where

F(u)(t) = χ(||u||C)
∫ b

a
G(t, s) f (s, u(s))ds,
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G is Green’s function of problem (1.3), (1.31), and the function χ : R+
0 → [0, 1] is

defined by the equality

χ(x) =


1 if 0 ≤ x ≤ r0

2− x
r0

if r0 < x < 2r0

0 if x ≥ 2r0

.

From the continuity of the functions G,∂G/∂t it follows that F maps C(I,R) into the
set {z ∈C(I,R) : ||z||C ≤ r1}, and is the compact operator, where

r1 = max
a≤s, t≤b

|G(t,s)|
∫ b

a
f ∗(s)ds, f ∗(t) = sup{| f (t, x)| : |x| ≤ 2r0}.

Then according to Schauder’s principle [8] equation (4.4) has a solution u. But from
the definition of Green’s function G, it is clear that u satisfies the boundary conditions
(1.31) and is the solution of the equation

u(4)(t) = χ(||u||C)[p(t)u(t)+ f (t, u(t))] for t ∈ I, (4.5)

which in view of (4.1) can be rewritten as equation (3.2) with

p̃(t) = χ(||u||C)[p(t)−F−(t, u(t))], q(t) = χ(||u||C)[F+(t, u(t))+H(t, u(t))].

Also from (4.2) and the fact that the function δ is nondecreasing in the second argu-
ment, estimations (3.1) and

|q(t)| ≤ δ(t, ||u||C)+q∗(t)

follow. Therefore all the assumptions of Lemma 1 are fulfilled and the estimation

||u||C ≤ ρ0

(
||q∗||L +

∫ b

a
δ(s, ||u||C)ds

)
is valid. Now if we assume that ||u||C > r0, we get the contradiction with inequality
(4.3). Consequently, ||u||C ≤ r0, and from (4.4) by the definition of the function χ we
get that u is a solution of problem (1.2), (1.31).

Let now i = 2. If we redefine the functions F±, p̃,q by the following way

F−(t, x) =

{
[ f (t, x)sgnx]− sgnx if |x|> r
0 if |x| ≤ r

,

F+(t, x) =

{
[ f (t,x)sgnx]+

|x| if |x|> r

0 if |x| ≤ r
,

p̃(t) = χ(||u||C)[p(t)+F+(t, u(t))],

q(t) = χ(||u||C)[F−(t, u(t))+H(t, u(t))],

then
f (t, x) = F+(t, x)x−F−(t, x)+H(t, x) for t ∈ I, x ∈ R, (4.6)
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and due to condition (2.4i) we have the estimations

0 ≤ F+(t, x)≤ g(t), |F−(t, x)| ≤ δ(t, |x|) for t ∈ I, x ∈ R. (4.7)

Now we can prove the theorem in a similar way as for the case i = 1 with these new
definitions (4.6) and (4.7). □

Proof of Theorem 3 (4). Assume that problem (1.2), (1.31) ((1.2), (1.32)) has
solutions u1 and u2 such that u1 ̸≡ u2. Let now u = u1 −u2, and

p0(t) =

{
f (t,x1)− f (t,x2)

u(t) if u(t) ̸= 0

−p(t) if u(t) = 0
.

Then u admits conditions (1.31) ((1.32)) and is a solution of the equation

u(4)(t) = (p(t)+ p0(t))u(t). (4.8)

where due to inequality (2.61) ((2.62)), the estimations

p(t)+ p0(t)< p∗(t) ( p(t)+ p0(t)> p∗(t)) a. e. on I

hold. Therefore from Corollary 1 (2) it follows that problem (4.8), (1.31) ((4.8),
(1.32)) has only the trivial solution, and thus u1 ≡ u2. □
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