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Abstract. In this paper we introduce the notion of a DC-prime filter in BL-algebras and obtain
some theorems in order to determine the relationships between this notion and some types of
filters in a BL-algebra. By some examples, we show that each of these concepts is different from
the other. Also, using the notion of DC-prime filters, a new class of BL-algebras are defined and
studied.
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1. INTRODUCTION

BL-algebras are the algebraic structures for Hájek’s basic logic. His motivations
for introducing BL-algebras were of two kinds. The first one was to provide an
algebraic counterpart of a propositional logic, called Basic Logic, which embod-
ies a fragment common to some of the most important many-valued logics, namely
Łukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic (BL for short)
is proposed as ”the most general” many-valued logic with truth values in [0,1] and
BL-algebras are the corresponding Lindenbaum-Tarski algebras. Hájek’s second mo-
tivation was to provide an algebraic mean for the study of continuous t-norms (or
triangular norms) on [0,1]. BL-algebras arise as Lindenbaum algebras from certain
logical axioms in a similar manner that Boolean algebras or MV-algebras do from
classical logic or Łukasiewicz logic, respectively [12]. Today this many valued logic
has been developed into a fuzzy logic, which meets together with the motivations
from the beginning of the twentieth century in one theory that connects quantum
mechanics, mathematical logic, probability theory, computer science, algebra, soft
computing, and many other important aspects of our modern world. Filters theory
plays an important role in studying these logical algebras and ordered semigroups.
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From logical point of view, various filters correspond to various sets of provable for-
mulas. Based on these results, some types of filters on BL-algebras have been widely
studied and some important results have been obtained. This was the motivation for
the researchers of this study to introduce some new filters in BL-algebras.

The structure of the paper is as follows: Section 2 is a recall of some definitions
and results about BL-algebras that are used in the paper. In Section 3, a new filter
(DC-prime filter) in BL-algebras and a new class of BL-algebras (DCP-BL-algebra)
are introduced and some of their basic properties are provided. Section 4 is the main
section of the paper. In this section, many new properties of DC-prime filters in BL-
algebras, are obtained. Also, the relationships between this new filter and other types
of filters in BL-algebras are investigated. In Section 5, many different characteriza-
tions and many important properties of DC-prime filters in BL-algebras, are proved.
Also, some new properties for prime filters, maximal filters and primary filters in
BL-algebras were established.

2. PRELIMINARIES

Definition 1 ([9, Definition 2.3.3]). A BL-algebra is an algebra (A,∧,∨,∗,→,0,1)
with four binary operations ∧,∨,∗,→ and two constants 0,1 such that:

(BL1) (A,∧,∨,0,1) is a bounded lattice L(A);
(BL2) (A,∗,1) is a commutative monoid;
(BL3) ∗ and → form an adjoint pair i.e, c ≤ a → b if and only if a ∗ c ≤ b, for all

a,b,c ∈ A;
(BL4) a∧b = a∗ (a → b);
(BL5) (a → b)∨ (b → a) = 1.

For a ∈ A and a natural number n we define an = a ∗ a ∗ · · · ∗ a, (n-times), and
a− = a → 0.

Theorem 1. In any BL-algebra A, the following properties hold for all x,y,z ∈ A:
(1) x ≤ y, if and only if x → y = 1, [9, Lemma 2.2.8-2.2.10];
(2) x → (y → z) = (x∗ y)→ z = y → (x → z), [9, Lemma 2.2.8-2.2.10];
(3) if x ≤ y, then y → z ≤ x → z and z → x ≤ z → y, [9, Lemma 2.2.8-2.2.10];
(4) x∗ y ≤ x,y, hence x∗ y ≤ x∧ y and x∗0 = 0, [9, Lemma 2.2.8-2.2.10];
(5) x ≤ y implies x∗ z ≤ y∗ z, [9, Lemma 2.2.8-2.2.10];
(6) 1 → x = x, x → x = 1, x ≤ y → x, x → 1 = 1, 0 → x = 1 and x ∗ x− = 0,

[9, Lemma 2.2.8-2.2.10];
(7) x ∗ y = 0, if and only if x ≤ y− and x ≤ y implies y− ≤ x−, [20, Theorem

13,14];
(8) x ≤ x−−, 1− = 0, 0− = 1, x−−− = x− and x−− ≤ x− → x, [20, Theorem

13,14];
(9) if x−− ≤ x−− → x, then x−− = x, [20, Theorem 13,14];

(10) x∨ y = ((x → y)→ y)∧ ((y → x)→ x), [9, Lemma 2.2.8-2.2.10];
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(11) x∗ (y∨ z) = (x∗ y)∨ (x∗ z), [6];
(12) (x∗ y)− = x → y−, [6];
(13) (x∧ y)∗ (y∧ z)≤ (x∧ z), [6];
(14) x∨(y∗z)≥ (x∨y)∗(x∨z) and we have xm∨yn ≥ (x∨y)mn, for any m,n ∈N,

[7];
(15) (y∧ z)→ x = (y → x)∨ (z → x), [6].

Definition 2. A BL-algebra A is called:
(1) an MV-algebra, if for all x ∈ A, x−− = x, [9, Definition 3.2.2];
(2) a Gödel algebra, if for all x ∈ A, x2 = x, [9, Definition 4.2.12];
(3) a Boolean algebra, if for all x ∈ A, x2 = x and x−− = x, [9, Definition 1.5.9];
(4) a special BL-algebra, if for all 0 ̸= a,b ∈ A, (a → b)− = (b → a)−, [13,

Definition 3.1];
(5) an integral BL-algebra, if for any x,y ∈ A, x ∗ y = 0, implies x = 0 or y = 0,

[5, Definition 3.1];
(6) a semi-integral BL-algebra, if for any x,y ∈ A, x ∗ y = 0, implies x = 0 or

yn = 0, for some n ∈ N, [14, Definition 4].

From now, it is assumed that a BL-algebra A is non-trivial i.e. A has at least two
members. In order to simplify the notation, a BL-algebra (A,∧,∨,∗,→,0,1) will be
referred to its support set, A.

Recall that Ds(A) = {x ∈ A : x− = 0} is the set of the dense elements of a BL-
algebra A. Clearly Ds(A) is a proper filter of A.

Recall that if x−− = 1, for x ∈ A, then we say that x is an almost top element of A.
Also, N(A) = {x ∈ A : x is an almost top element of A}, [3, Definition 4.4].

Definition 3 ([9, Definition 2.3.13]). Let F be a non-empty subset of a BL-algebra
A and a,b ∈ A. Then the following conditions are equivalent:

(i) F is a proper filter of A.
(ii) a,b ∈ F imply a∗b ∈ F and if a ∈ F and a ≤ b then b ∈ F .

(iii) 1 ∈ F , and if a,a → b ∈ F imply b ∈ F .

Definition 4 ([19, Page 82]). Let A be a BL-algebra and X be a non-empty subset
of A. Then < X >= ∩{F ⊆ A : X ⊆ F, F is a filter of A}. Clearly, < X > is the
smallest filter of A, containing X .

Theorem 2 ([19, Proposition 3.15, Remark 3.16, Lemma 3.18]). Let x ∈ A, X ⊆ A
and F,G be filters of a BL-algebra A. Recall that

(1) ⟨x⟩= {a ∈ A : a ≥ xn, for some n ∈ N};
(2) ⟨X⟩= {a ∈ A : a ≥ x1 ∗ x2 ∗ · · · ∗ xn, for some x1,x2, . . . ,xn ∈ X};
(3) F ∨⟨x⟩= ⟨F ∪⟨x⟩⟩= {a ∈ A : a ≥ f ∗ xn, for some f ∈ F and n ∈ N};
(4) ⟨F ∪G⟩= {a ∈ A : a ≥ f ∗g, for some f ∈ F and g ∈ G};
(5) F ∨G := ⟨F ∪G⟩ and F ∧G := F ∩G;
(6) F → G = {a ∈ A : F ∩⟨a⟩ ⊆ G}.
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Definition 5. A non-empty subset F of a BL-algebra A is called:
(1) a prime filter of A, if F is a proper filter and for all x,y ∈ A, x∨y ∈ F implies

x ∈ F or y ∈ F , [9, Definition 2.3.13];
(2) a maximal filter of A, if F is a proper filter and for all x ∈ A, if x ̸∈ F , there

exists n ∈ N such that (xn)− ∈ F , [9, Theorem 3.43];
(3) a Boolean filter of A, if F is a filter and for all x ∈ A, x∨x− ∈ F , [9, Definition

2.9];
(4) a primary filter of A, if F is a proper filter and for all x,y ∈ A, if (x∗ y)− ∈ F

implies (xn)− ∈ F or (yn)− ∈ F , for some n ∈ N, [21, Definition 1];
(5) an implicative filter of A, if 1 ∈ F and for all x,y,z ∈ A, if x → (y → z) ∈ F ,

x → y ∈ F imply x → z ∈ F , [10, Definition 3.1];
(6) a positive implicative filter of A, if 1 ∈ F and for all x,y,z ∈ A, if x → ((y →

z)→ y) ∈ F , x ∈ F imply y ∈ F , [10, Definition 3.9];
(7) a fantastic filter of A, if 1 ∈ F and for all x,y,z ∈ A, if z → (y → x) ∈ F and

z ∈ F imply ((x → y)→ y)→ x ∈ F , [10, Definition 4.1];
(8) a normal filter of A, if F is a filter of A and if 1 ∈ F and for all x,y,z ∈ A, if

z → ((y → x)→ x) ∈ F and z ∈ F imply (x → y)→ y ∈ F , [2, Definition 9];
(9) an obstinate filter of A, if F is a proper filter of A and for all x,y,z ∈ A, if

x,y ̸∈ F imply x → y ∈ F and y → x ∈ F , [4, Definition 3.1];
(10) a semi maximal filter of A, if F is a filter of A and Rad(F)=F , [18, Definition

4.1];
(11) a special filter of A, if F is a proper filter and (x → y)− = (y → x)−, for all

x,y ∈ F , [13, Definition 4.1];
(12) an easy filter of A, if F is a filter and for all x,y,z ∈ A, if x−− → (y → z) ∈ F

and x−− → y ∈ F imply x−− → z ∈ F , [8, Definition 13];
(13) an integral filter of A, if F is a proper filter and for all x,y ∈ A, if (x∗y)− ∈ F

imply x− ∈ F or y− ∈ F , [5, Definition 4.1];
(14) a semi-integral filter of A, if F is a proper filter and for all x,y∈A, if (x∗y)− ∈

F then there exists n ∈ N such taht x− ∈ F or (yn)− ∈ F , [14, Definition 5].

Definition 6 ([18, Definition 3.1]). If F is a proper filter of a BL-algebra A, the
intersection of all maximal filters of L containing F is called the radical of F and it is
denoted by Rad(F) and Rad(F) = {a ∈ A : (an)− → a ∈ F, for all n ∈ N}.

Definition 7 ([3, Definition 3.1]). If F is a filter of a BL-algebra A, the set of
double complemented elements of F , is defined by D(F) = {x ∈ A : x−− ∈ F}.

Definition 8 ([9, Lemma 2.3.14]). Let F be a proper filter of a BL-algebra A. The
relation ∼F defined on a BL-algebra A, by (x,y) ∈∼F if and only if x → y ∈ F and
y → x ∈ F , is a congruence relation on A. The quotient algebra A/ ∼F denoted by
A/F becomes a BL-algebra in a natural way, with the operations induced from those
of A. So, the order relation on A/F is given by x/F ≤ y/F if and only if x → y ∈ F .
Hence x/F = 1/F if and only if x ∈ F and x/F = 0/F if and only if x− ∈ F .
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3. DC-PRIME FILTERS AND DCP-BL-ALGEBRAS

In this section, a new filter in BL-algebras and a new class of BL-algebras are
introduced and also characterized.

Definition 9. A proper filter F of a BL-algebra A is called a ”double complemen-
ted prime filter” or briefly ” DC-prime filter” of A, if for any x,y ∈ A, x∨ y ∈ F then
x−− ∈ F or y−− ∈ F .

A proper filter F of a BL-algebra A is a DC-prime filter if and only if for any
x,y ∈ A, x∨ y ∈ F implies x ∈ D(F) or y ∈ D(F).

Example 1. Let A = {0,a,b,c,d,1}, where 0 < b < c,d < 1 and 0 < a < c < 1.
Operations ∗ and → are defined as follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([16, Example 4.4]). Clearly F = {b,c,
d,1} is a DC-prime filter of A and G = {c,1} is not a DC-prime filter (since a∨b =
c ∈ G and b−−,a−− ̸∈ G).

The following theorem is an important property of DC-prime filters in BL-algeb-
ras.

Theorem 3. Let F be a proper filter of a BL-algebra A. Then F is a DC-prime
filter of A if and only if for all x,y ∈ A, x−− → y−− ∈ F or y−− → x−− ∈ F.

Proof. Let F be a DC-prime filter of A and x,y∈A. So according to (x→ y)∨(y→
x) = 1 ∈ F , then x−− → y−− ∈ F or y−− → x−− ∈ F . Now assume that for all
x,y ∈ A, x−− → y−− ∈ F or y−− → x−− ∈ F and for x,y ∈ A, x∨ y ∈ F . Then as
x∨y≤ (x→ y)→ y and x∨y≤ (y→ x)→ x, so (x→ y)→ y∈F and (y→ x)→ x∈F .
Hence (x−− → y−−) → y−− ∈ F and (y−− → x−−) → x−− ∈ F . So according to
hypothesis it follows that y−− ∈ F or x−− ∈ F . Therefore F is a DC-prime filter of
A. □

We can deduce the following theorem according to Theorem 3:

Theorem 4 (Extension property for DC-prime filters). Let F be a DC-prime filter
of a BL-algebra A and G be a proper filter of A containing F. Then G is a DC-prime
filter of A.

Remark 1. Let F be a filter of a BL-algebra A. It well known that D(F) is a proper
filter if and only if F is a proper filter if and only if Rad(F) is a proper filter.
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According to Theorem 4, we have the following corollary.

Corollary 1. Let F be a filter of a BL-algebra A. Then the following conclusions
hold:

(i) {1} is a DC-prime filter of A if and only if all proper filters of A are DC-prime.
(ii) F is a DC-prime filter of A if and only if D(F) is a DC-prime filter of A.

(iii) If F is a DC-prime filter, then Rad(F) is a DC-prime filter of A.

Definition 10. A BL-algebra A is called a DCP-BL-algebra if for any x,y ∈ A,
x∨ y = 1 implies x−− = 1 or y−− = 1.

Example 2.

(i) Let A = {0,a,b,1}, where 0 < a < b < 1. Operations ∗ and → are defined as
follows:

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([17, Example 3.4]) which is a
DCP-BL-algebra.

(ii) Let A = Z∪{−∞}∪{0,a,b,1}, where Z is the set of negative integer numbers
and −∞ < · · · < −2 < −1 < 0 < a,b < 1. Operations ∗ and → are defined as
follows:

∗ −∞ . . . −3 −2 −1 0 a b 1
−∞ −∞ . . . −∞ −∞ −∞ −∞ −∞ −∞ −∞

...
... . . .

...
...

...
...

...
...

...
−3 −∞ . . . −6 −5 −4 −3 −3 −3 −3
−2 −∞ . . . −5 −4 −3 −2 −2 −2 −2
−1 −∞ . . . −4 −3 −2 −1 −1 −1 −1
0 −∞ . . . −3 −2 −1 0 0 0 0
a −∞ . . . −3 −2 −1 0 a 0 a
b −∞ . . . −3 −2 −1 0 0 b b
1 −∞ . . . −3 −2 −1 0 a b 1
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→ −∞ . . . −3 −2 −1 0 a b 1
−∞ 1 . . . 1 1 1 1 1 1 1

...
... . . .

...
...

...
...

...
...

...
−3 −∞ . . . 1 1 1 1 1 1 1
−2 −∞ . . . −1 1 1 1 1 1 1
−1 −∞ . . . −1 1 1 1 1 1 1
0 −∞ . . . −3 −2 −1 1 1 1 1
a −∞ . . . −3 −2 −1 b 1 b 1
b −∞ . . . −3 −2 −1 a a 1 1
1 −∞ . . . −3 −2 −1 0 a b 1

Then (A,∧,∨,∗,→,−∞,1) is a BL-algebra ([11, Page 185]). All filters of A
are F1 = {1}, F2 = {a,1}, F3 = {b,1}, F4 = {0,a,b,1} and F5 = {. . . ,−3,−2,
−1,0,a,b,1}−{−∞}. It is clear that F1, F2, F3, F4 and F5 are DC-prime filters
of A. So A is an infinite DCP-BL-algebra.

(iii) BL-algebra A in Example 1 is not a DCP-BL-algebra, since a∨ d = 1 while
a−− ̸= 1 and d−− ̸= 1.

Remark 2. It can be easily proved that a BL-algebra A is a DCP-BL-algebra, if
and only if for any x,y ∈ A, x∨ y = 1 implies x ∈ D({1}) or y ∈ D({1}).

Theorem 5. The following conditions are equivalent:
(i) A is a DCP-BL-algebra.

(ii) {1} is a DC-prime filter of a BL-algebra A.
(iii) Every proper filter of a BL-algebra A is a DC-prime filter.

Proof.
(i)⇔ (ii): According to Definition 10, the proof is clear.
(ii)⇔ (iii): According to Theorem 4, the proof is easy.

□

Remark 3. Let F and G be proper filters of a BL-algebra A such that F ⊆ G. Then
G is a DC-prime filter of A if and only if G/F is a DC-prime filter of a BL-algebra
A/F .

Corollary 2. Let F be a proper filter of a BL-algebra A. Then the following
conditions are equivalent:

(i) A/F is a DCP-BL-algebra.
(ii) F is a DC-prime filter of A.

(iii) Any proper filter of A/F is a DC-prime filter.

Proof.
(i)⇔ (iii): According to Theorem 5, the proof is clear.
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(ii)⇒ (iii): Let F be a DC-prime filter of A. We need to show that {1/F} is
a DC-prime filter of A/F . Assume that x/F ∨ y/F ∈ {1/F}, for x/F,y/F ∈
A/F . Hence x∨ y ∈ F so based on hypothesis, x−− ∈ F or y−− ∈ F . Thus
x−−/F ∈ {1/F} or y−−/F ∈ {1/F} and so {1/F} is a DC-prime filter of
A/F . Therefore according to Theorem 5, any proper filter of A/F is a DC-
prime filter.

(iii)⇒ (ii): Let any proper filter of A/F be a DC-prime filter so {1/F} is a DC-
prime filter. Also let x∨y ∈ F , for x,y ∈ A. Hence x/F ∨y/F ∈ {1/F}. Thus
x−−/F ∈ {1/F} or y−−/F ∈ {1/F} and so x−− ∈ F or y−− ∈ F . Therefore
F is a DC-prime filter of A.

□

For a BL-algebra A, take A−− = {x−− : x ∈ A}.

Proposition 1. The following conditions are equivalent:
(i) A is a DCP-BL-algebra.

(ii) A−− is linearly ordered.
(iii) a ≤ b−− or b ≤ a−−, for all a,b ∈ A.

Proof.
(i)⇔ (ii): According to Theorem 5:

A is a DCP-BL-algebra ⇔{1} is a DC-prime filter of A,

⇔ a−− → b−− = 1 or b−− → a−− = 1, for all a,b ∈ A,

⇔ a−− ≤ b−− or b−− ≤ a−−, for all a,b ∈ A,

⇔ A−− is linearly oredered.

(ii)⇒ (iii): Let A−− be linearly ordered. So for all a,b ∈ A, a−− ≤ b−− or
b−− ≤ a−−. Hence for all a,b ∈ A, a ≤ a−− ≤ b−− or b ≤ b−− ≤ a−−.

(iii)⇒ (ii): Let a ≤ b−− or b ≤ a−−, for all a,b ∈ A. Hence a−− ≤ (b−−)−− =
b−− or b−− ≤ (a−−)−− = a−−, for all a,b ∈ A.

□

A node of a poset A is an element of A which is comparable with every element
of A. The set of all node elements of A is denoted by nod(A). A filter F of a BL-
algebra A is called a nodal filter if it is a node of F(A), [1, Definition 3.8]. We denote
DF(A) := {D(F) : F ∈ F(A)}.

Lemma 1. For any BL-algebra A, DF(A) is a poset.

Theorem 6. A is a DCP-BL-algebra if and only if nod(DF(A)) = DF(A).

Proof. Let A be a DCP-BL-algebra and DF(A) ̸⊆ nod(DF(A)). Hence there exists
H ∈ DF(A) such that H ̸∈ nod(DF(A)). So there exists G ∈ DF(A) such that H ̸⊆ G
and G ̸⊆ H. As G,H ∈ DF(A), there exist G′,H ′ ∈ F(A) such that H = D(H ′) and
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G = D(G′). Also there exists g ∈ G−H and h ∈ H −G. According to Proposition
1, A−− is linearly ordered and so g−− < h−− or h−− < g−−, (if g−− = h−−, then
h−− ∈ G and so h ∈ D(G) = D(D(G′)) = D(G′) = G, which is a contradiction). So
h ∈ D(H ′), hence h−− ∈ H ′. Also g ∈ D(G′), hence g−− ∈ G′. On the other hand
since g ̸∈ H = D(H ′) and h ̸∈ G = D(G′), thus h−− ̸∈ G′ and g−− ̸∈ H ′, which is
a contradiction with g−− < h−− or h−− < g−−. Therefore DF(A) ⊆ nod(DF(A)),
i.e. nod(DF(A)) = DF(A). Now assume that nod(DF(A)) = DF(A) and a∨ b = 1,
for a,b ∈ A. Then D(⟨a⟩) ⊆ D(⟨b⟩) or D(⟨b⟩) ⊆ D(⟨a⟩). As a ∈ ⟨a⟩ ⊆ D(⟨a⟩) and
b ∈ ⟨b⟩ ⊆ D(⟨b⟩), so a ∈ D(⟨b⟩) or b ∈ D(⟨a⟩). Thus a−− ∈ ⟨b⟩ or b−− ∈ ⟨a⟩. Hence
a−− ≥ bn or b−− ≥ am, for some n,m ∈ N. So a−−∨bn = a−− or b−−∨am = b−−,
for some n,m ∈N. Since a∨b = 1, then an∨bn = 1 and am∨bm = 1 for all m,n ∈N.
On the other hand

a−− = a−−∨bn ≥ a∨bn ≥ an ∨bn = 1 and

b−− = b−−∨am ≥ am ∨b ≥ am ∨bm = 1.
Therefore a−− = 1 or b−− = 1 and so {1} is a DC-prime filter. Hence based on
Theorem 5, A is a DCP-BL-algebra. □

Corollary 3. Let A be a BL-algebra and nod(F(A)) = F(A). Then A is a DCP-
BL-algebra.

Proposition 2. Let A be a BL-algebra and for any 0 ̸= a ∈ A, a− = 0. Then
(i) A is a DCP-BL-algebra.

(ii) for any proper filter F of A, A/F is a DCP-BL-algebra.

Proof.
(i): Let for any 0 ̸= a ∈ A, a− = 0 and x∨ y = 1, for x,y ∈ A. Then

- If x = 0 then y = 1, so y−− = 1.
- If x ̸= 0 then x− = 0. So x−− = 1.
Therefore A is a DCP-BL-algebra.

(ii): Let 0/F ̸= a/F ∈ A/F . Then a ̸= 0 and so according to hypothesis a− = 0.
Hence a−/F = 0/F . Therefore according to Part (i), A/F is a DCP-BL-
algebra.

□

Remark 4. BL-algebra A in Example 2(i) is a DCP-BL-algebra while a− ̸= 0.
Also F = {b,1} is a DC-prime filter hence A/F is a DCP-BL-algebra, while a− ̸= 0.
Therefore the converse of Parts (i) and (ii) of Proposition 2 are not true in general.

The following corollary is a straightforward consequence of Proposition 2(i).

Corollary 4. Let A be a BL-algebra. Then the following conclusions hold:
(i) If for any 0 ̸= a,b ∈ A, (a → b)− = (b → a)−, then A is a DCP-BL-algebra.

(ii) If for any 0 ̸= a,b ∈ A, a → b−− = b → a−−, then A is a DCP-BL-algebra.
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(iii) If A is a special BL-algebra, then A is a DCP-BL-algebra.
(iv) If A = Ds(A)∪{0} then A is a DCP-BL-algebra.

In the following example it is shown that the converse of the parts of Corollary 4
is not true in general.

Example 3. Let A = {0,a,b,c,d,1} where 0 < d < c < a,b < 1. Operations ∗ and
→ are defined as follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a c c d a
b 0 c b c d b
c 0 c c c d c
d 0 d d d 0 d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b b d 1
b 0 a 1 a d 1
c 0 1 1 1 d 1
d d 1 1 1 1 1
1 0 a b c d 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([14, Example 1]), and F1 = {1},F2 =
{a,1},F3 = {b,1},F4 = {a,b,c,1} are all filters of A. Clearly A is a DCP-BL-algebra,
while (b → d)− ̸= (d → b)−, b → d−− ̸= d → b−− and d− ̸= 0. Also, A is not a
special BL-algebra and A ̸= Ds(A)∪{0}.

Lemma 2. Let A be a Boolean algebra and DCP-BL-algebra. Then A = Ds(A)∪
{0}.

Proof. Let A be a DCP-BL-algebra and 0 ̸= x ∈ A. Then all filters of A are DC-
prime. As A is a Boolean algebra, x∨ x− = 1, so x−− = 1 or x− = 1. As x ̸= 0 so
x− ̸= 1, hence x−− = 1, i.e. x ∈ Ds(A). □

Lemma 3. Let A be a Boolean algebra. Then A is a DCP-BL-algebra if and only
if A = {0,1}.

Proof. Let A be a Boolean algebra and DCP-BL-algebra. Then according to hy-
pothesis x∨ x− = 1, for any x ∈ A. Hence x−− = 1 or x− = 1, since A is a DCP-BL-
algebra. So x = 1 or x− = 1, i.e. x = 1 or x = 0. Therefore A = {0,1}. The converse
is clear.

□

4. THE RELATIONSHIPS BETWEEN DC-PRIME FILTERS AND OTHER TYPES OF
FILTERS IN BL-ALGEBRAS

What follows is a discussion of the relations between DC-prime filters and some
other filters in BL-algebras.

Theorem 7. Every prime filter in BL-algebras, is a DC-prime filter.

Proof. Let F be a prime filter of a BL-algebra A and a,b ∈ A. So a → b ∈ F or
b → a ∈ F . As a → b ≤ (a → b)−− and b → a ≤ (b → a)−−, then (a → b)−− ∈ F or
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(b → a)−− ∈ F , for all a,b ∈ A. Therefore according to Theorem 3 F is a DC-prime
filter of A. □

The following example is shown that the converse of Theorem 7 does not correct
in general.

Example 4. Consider BL-algebra A in Example 3. Clearly F = {1} is a DC-prime
filter while is not a prime filter, since a → b ̸∈ F and b → a ̸∈ F .

For a BL-algebra A, MV (A) = {x ∈ A : x−− = x}.
According to Theorems 7 and 5:

Corollary 5.
(i) If A is a linearly ordered BL-algebra, then A is a DCP-BL-algebra.

(ii) If A is a DCP-BL-algebra and MV (A) = A then A is a linearly ordered BL-
algebra.

Proof.
(i): Let A be a linearly ordered BL-algebra. Then all proper filters of A are

prime filter. Hence according to Theorem 7, all proper filters of A are DC-
prime. Therefore based on Theorem 5, A is a DCP-BL-algebra.

(ii): Let A be a DCP-BL-algebra and MV (A) = A. Then all proper filters of A
are DC-prime filter and x−− = x, for x ∈ A. Therefore based on the definition
of DC-prime filters, all proper filters of A are prime filter and so A is a linearly
ordered BL-algebra.

□

Remark 5. The condition ”MV (A) = A” is necessary in Corollary 5(ii) and the
converse of Corollary 5(i) is not true in general. Consider Example 3. It is easy to
check that A is a DCP-BL-algebra and a−− ̸= a, while A is not a linearly ordered.

Corollary 6.
(i) Every maximal filter in BL-algebras, is a DC-prime filter.

(ii) Every obstinate filter in BL-algebras, is a DC-prime filter.

In the following example it is shown that the converse of Corollary 6 is not correct
in general.

Example 5. Let A = {0,a,b,1}, where 0 < a < b < 1. Operations ∗ and → are
defined as follows:

∗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1
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Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([17, Example 5.2]). Clearly, F = {b,1}
is a DC-prime filter while is not a maximal filter nor an obstinate filter of A.

Theorem 8. Let F be a proper filter of a BL-algebra A. Then the following con-
ditions are equivalent:

(i) F is a DC-prime filter and Boolean filter of A.
(ii) F is a maximal filter of A.

(iii) F is an obstinate filter of A.

Proof.
(i)⇒ (ii): Let F be a DC-prime filter and Boolean filter of A and x ̸∈ F . As

F is a Boolean filter, x∨ x− ∈ F . Hence x−− ∈ F or x− ∈ F , since F is a
DC-prime filter. If x−− ∈ F , since F is a Boolean filter, then x ∈ F , which is
a contradiction. Therefore x− ∈ F , i.e. F is a maximal filter of A.

(ii)⇒ (i): It is known that every maximal filter, in BL-algebras, is a Boolean
filter. Hence according to Corollary 6(i), the proof is completed.

(i)⇒ (iii): Let F be a DC-prime filter and Boolean filter of A. Then according
to ((i)⇔ (ii)), F is a maximal filter of A. Hence based on [4, Theorem 4.4],
the proof is completed.

(iii)⇒ (i): Let F be an obstinate filter. Then based on [4, Theorem 4.1], F is a
maximal filter. Then according to ((ii)⇔ (i)), the proof is completed.

□

Remark 6. The condition ”Boolean filter” in Theorem 8(i) is necessary. Consider
Example 5, clearly F = {b,1} is a DC-prime filter while it is not a Boolean filter and
nor a maximal filter.

A BL-algebra A is called degenerate if 0 = 1 in A, otherwise A is non-degenerate.
The following lemma is a straightforward consequence of [20, Theorems 1,2,3]

and Theorem 7.

Lemma 4. Let A be a BL-algebra. Then the following conclusions hold:
(i) A non-degenerate BL-algebra contains a DC-prime filter.

(ii) Any proper filter F of a non-degenerate BL-algebra A can be extended to a
DC-prime filter.

(iii) In a non-degenerate BL-algebra A, any proper filter can be extended to a max-
imal and DC-prime filter.

Theorem 9. Let F be a filter of a BL-algebra A. The the following conditions are
equivalent.

(i) F is a DC-prime filter of A.
(ii) D(F) is a prime filter of A.

(iii) D(F) is a DC-prime filter of A.
(iv) A/D(F) is a linearly ordered BL-algebra.
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(v) A/D(F) is a DCP-BL-algebra.

Proof.
(i)⇒ (ii): Let F be a DC-prime filter of A. Then x−− → y−− ∈ F or y−− →

x−− ∈ F , for any x,y ∈ A. Hence x → y ∈ D(F) or y → x ∈ D(F), for any
x,y ∈ A. Therefore D(F) is a prime filter of A.

(ii)⇒ (iii): It is proved in Theorem 7.
(iii)⇒ (i): Let D(F) be a DC-prime filter of A. Then x−− → y−− ∈ D(F) or

y−− → x−− ∈D(F), for any x,y∈A. Hence x−− → y−− ∈F or y−− → x−− ∈
F , for any x,y ∈ A. Therefore F is a DC-prime filter of A.

(ii)⇔ (iv),(iii)⇔ (v): The proofs are obvious.
□

Corollary 7. Let F be a proper filter of a BL-algebra A. F is a DC-prime filter of
A if and only if nod(F(A/D(F))) = F(A/D(F)).

Proof. Let F be a DC-prime filter. Then based on Theorem 9, D(F) is a prime fil-
ter and so A/D(F) is a linearly ordered BL-algebra. Hence according to [15, Lemma
3.8], nod(F(A/D(F))) = F(A/D(F)). Now let nod(F(A/D(F))) = F(A/D(F)) and
a ∨ b ∈ F , for a,b ∈ A. So a ∨ b ∈ D(F), hence a/D(F)∨ b/D(F) = 1/D(F) ∈
{1/D(F)}. Based on [15, Proposition 3.10], {1/D(F)} is a prime filter of A/D(F)
and so based on Theorem 7, {1/D(F)} is a DC-prime filter of A/D(F). Hence
a−−/D(F)∈ {1/D(F)} or b−−/D(F)∈ {1/D(F)}. So a−− ∈ D(F) or b−− ∈ D(F).
Then a−− ∈ F or b−− ∈ F . Therefore F is a DC-prime filter of A. □

Corollary 8. (i) If D(F) is a maximal filter of a BL-algebra A, then F is a DC-
prime filter of A.

(ii) If F is a DC-prime filter of a BL-algebra A, then D(F) is a primary filter of A.
(iii) If F is a DC-prime filter of a BL-algebra A, then Rad(D(F)) is a maximal filter

of A.

Proof. According to Theorem 9 and [16, Theorem 3.3], the proofs are obvious.
□

Theorem 10. Every DC-prime filter in BL-algebras is a primary filter.

Proof. Let F be a DC-prime filter of a BL-algebra A and (x∗y)− ∈ F , for x,y ∈ A.
Then according to hypothesis and Theorem 3, x−− → y−− ∈ F or y−− → x−− ∈ F .
Assume that x−− → y−− ∈ F so

(x−− → y−−)∗ (x∗ y)− = (x−− → y−−)∗ (y−− → x−)

≤ x−− → x− = (x∗ x)−

= (x2)− ∈ F.

Similarly, if y−− → x−− ∈ F and (x ∗ y)− ∈ F then (y2)− ∈ F . Therefore F is a
primary filter of A. □



468 Z. PARVIZI, S. MOTAMED, AND F. K. HAGHANI

Open Problem 1. Is every primary filter in BL-algebras, a DC-prime filter?

Corollary 9. Let F be a DC-prime filter of a BL-algebra A. Then the following
hold:

(i) Rad(F) is a primary filter of A.
(ii) Rad(F) is a maximal filter of A.

(iii) Rad(F) is a prime filter of A.

Proof.
(i): Let F be a DC-prime filter of A. Then based on Theorem 10, F is a primary

filter of A. As F ⊆ Rad(F) so Rad(F) is a primary filter of A.
(ii): Let F be a DC-prime filter of A. According to Theorem 10, F is a primary

filter of A. Hence based on [16, Theorem 3.3], Rad(F) is a maximal filter.
(iii): Based on Part (ii), the proof is obvious.

□

Corollary 10. Let F be a DC-prime filter of a BL-algebra A such that it satisfies
in at least one of the following conditions. Then F is a prime filter of A.

(i) F is a normal filter of A.
(ii) F is a fantastic filter of A.

(iii) F is a Boolean filter of A.
(iv) F is a positive implicative filter of A.
(v) D(F)⊆ B(A).

(vi) Rad(F)⊆ B(A).
(vii) Any almost top element of A/F is trivial.

Proof.
(i),(ii),(iii),(iv),(v): Let F be a DC-prime filter of A such that satisfies in at

least one of conditions (i), (ii), (iii), (iv) and (v). Hence according to [3,
Theorems 3.25, 3.33] and [3, Corollary 3.28], D(F) = F . Based on Theorem
9, D(F) is a prime filter, therefore F is a prime filter of A.

(vi): Let F be a DC-prime filter of A such that it satisfies in condition (vi).
Hence according to [18, Theorem 4.6] F is a semi-maximal filter of A, i.e.
Rad(F) = F . Based on Corollary 9, Rad(F) is a prime filter. Therefore F is
a prime filter of A.

(vii): Let F be a DC-prime filter of A. Then according to Theorem 9, D(F)
is a prime filter. Hence to close the proof, we need to show that F = D(F).
Assume that x ∈ D(F). Then x−− ∈ F and so x−−/F = 1/F , i.e. x/F is an
almost top element of A/F . Hence based on hypothesis x/F = 1/F , so x ∈ F .
Then F = D(F). Therefore F is a prime filter of A.

□

The following examples show that the conditions in Corollary 10 are necessary.
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Example 6.
(i) Let A = {0,a,b,c,1}, where 0 < c < a,b < 1. Operations ∗ and → are defined

as follows:
∗ 0 a b c 1
0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([16, Example 3.2]). F = {1} is a
DC-prime filter while is not a fantastic filter, nor a normal filter and nor a prime
filter.

(ii) Consider Example 3. It is easy to check that F = {1} is a DC-prime filter while
is not a prime filter (since a → b ̸∈ F and b → a ̸∈ F) and is not a Boolean filter
(since a∨a− = a) so is not a positive implicative filter. Also D(F) = Rad(F) =
{a,b,c,1} and B(A) = {0,1} so Rad(F)⊈ B(A) and D(F)⊈ B(A). Also clearly
N(A/F) ̸= {1/F}.

Proposition 3. Let F be a proper filter of a BL-algebra A and for any x ∈ A,
x−− ∈ F or x− ∈ F. Then F is a DC-prime filter of A.

Proof. Let a∨ b ∈ F , for a,b ∈ A. According to hypothesis, a−− ∈ F or a− ∈ F
and b−− ∈ F or b− ∈ F . Hence there are several possibilities:

(i): a−− ∈ F and b−− ∈ F .
(ii): a−− ∈ F and b− ∈ F .
(iii): a− ∈ F and b−− ∈ F .
(iv): a− ∈ F and b− ∈ F . Then a−∧b− = (a∨b)− ∈ F . So a∨b ̸∈ F , since F

is a proper filter. That is a contradiction.
Therefore F is a DC-prime filter of A.

□

Remark 7. The converse of Proposition 3 is not true in general. Consider F =
{b,1} in Example 2. Clearly F is a DC-prime filter of A while a−− ̸∈ F and a− ̸∈ F .

Lemma 5. Let F be a DC-prime and easy filter of a BL-algebra A. Then for all
x ∈ A, x− ∈ F or x−− ∈ F.

Proof. Let F be a DC-prime and easy filter and x ∈ A. It is known that (x−− →
x−)∨ (x− → x−−) = 1 ∈ F , hence (x−− → x−)−− ∈ F or (x− → x−−)−− ∈ F . So
x−− → x− ∈ F or x− → x−− ∈ F . If x−− → x− ∈ F , then x−− → x− = x−− →
x−−− = x−− → (x−− → 0) = (x−−)2 → 0 ∈ F . Thus ((x−−)2)− ∈ F , so according to
hypothesis and [8, Proposition 51], x− ∈ F . If x− → x−− ∈ F , then x−−− → (x− →
0) ∈ F . So (x−)−− → (x− → 0) ∈ F . As F is an easy filter and (x−)−− → x− =
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x− → x− = 1 ∈ F , it is concluded that (x−)−− → 0 = x−− ∈ F . Therefore the proof
is completed. □

Theorem 11. Let F be a filter of a BL-algebra A. Then the following statements
are equivalent:

(i) F is a primary filter of A.
(ii) Rad(F) is a DC-prime of A.

(iii) Rad(F) is a primary filter of A.

Proof.
(i)⇒ (ii): Let F be a primary filter of A. Then based on [16, Theorem 3.3],

Rad(F) is a maximal filter of A and according to Corollary 6(i), Rad(F) is a
DC-prime filter of A.

(ii)⇒ (i): Let Rad(F) be a DC-prime filter of A. Then based on Corollary
9, Rad(Rad(F)) = Rad(F) is a maximal filter of A. Then based on [16,
Theorem 3.3], F is a primary filter of A.

(ii)⇒ (iii): Let Rad(F) be a DC-prime filter of A. Based on ((ii)⇔ (i)), F is
a primary filter of A. As F ⊆ Rad(F), Rad(F) is a primary filter of A.

(iii)⇒ (ii): Let Rad(F) be a primary filter of A. Then based on [16, Theorem
3.3], Rad(Rad(F)) = Rad(F) is a maximal filter of A and according to Co-
rollary 6(i), Rad(F) is a DC-prime filter.

□

If F is a filter of a BL-algebra A, then F ⊆ (F : x) = {r ∈ A : r∨x ∈ F}. It is known
that (F : x) is a proper filter of A, where x ̸∈ F , [16, Proposition 4.2].

Lemma 6. Let F be a DC-prime filter of a BL-algebra A. Then for any x ∈ A−F,
the following hold:

(i) Rad(F) = Rad(F : x).
(ii) (F : x)⊆ Rad(F).

Proof.
(i): Let F be a DC-prime filter of A. Then based on Theorem 10, F is a primary

filter and so according to [16, Theorem 4.5], Rad(F) = Rad((F : x)), where
x ∈ A−F .

(ii): As (F : x)⊆ Rad(F : x), the proof gets by (i).
□

Remark 8. The inclusion of Lemma 6(ii) is not equal in general. Consider F =
{a,1} in Example 6(i). Clearly (F : b) = {a,1} and Rad(F) = {a,b,c,1}.

Theorem 12. Let F be a proper filter of a BL-algebra A. Then the following
conditions are equivalent:

(i) F is a DC-prime filter of A.
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(ii) D(F) = (D(F) : x), where x ∈ A−D(F).
(iii) D(F) = D((F : x)), where x ∈ A−D(F).
(iv) (F : x)⊆ D(F), where x ∈ A−D(F).

Proof.
(i)⇒ (ii): Let F be a DC-prime filter of A and y ∈ (D(F) : x), where x ∈ A−

D(F). Then x∨y∈D(F), hence x−−∨y−− ∈F . Since x ̸∈D(F), so x−− ̸∈F .
Thus y−− ∈ F , i.e. y ∈ D(F). Hence (D(F) : x)⊆ D(F). Therefore D(F) =
(D(F) : x).

(ii)⇒ (i): Let for x∈A−D(F), D(F)= (D(F) : x) and also assume that a∨b∈
F and a−− ̸∈ F . So a ̸∈ D(F). Using Part (ii), D(F) = (D(F) : a). As
a∨ b ∈ F ⊆ D(F) so b ∈ (D(F) : a) = D(F). Therefore b ∈ D(F), hence
b−− ∈ F , i.e. F is a DC-prime filter of A.

(i)⇒ (iii): Let F be a DC-prime filter of A. Since F ⊆ (F : x), then D(F) ⊆
D((F : x)). On the other hand if y ∈ D((F : x)) then x−− ∨ y−− ∈ F . So
x∨ y ∈ D(F), i.e. y ∈ (D(F) : x). Thus D((F : x)) ⊆ (D(F) : x) = D(F),
using ((i)⇔ (ii)).

(iii)⇒ (i): Let D(F) = D((F : x)), for any x ∈ A−D(F) and a∨ b ∈ F , for
a,b ∈ A. If a−− ̸∈ F (a ̸∈ D(F)), then D(F) = D((F : a)). As a∨b ∈ F , so
b ∈ (F : a)⊆ D((F : a)) = D(F). Therefore b ∈ D(F), i.e. F is a DC-prime
filter of A.

(i)⇒ (iv): Let F be a DC-prime filter of A. It is known that (F : x)⊆ (D(F) : x).
So (F : x)⊆ D(F), using ((i)⇔ (ii)).

(iv)⇒ (i): Let (F : x) ⊆ D(F), where x ∈ A−D(F) and a∨ b ∈ F such that
a−− ̸∈ F (a ̸∈ D(F)). So (F : a) ⊆ D(F). Then b ∈ (F : a) ⊆ D(F), hence
b ∈ D(F). Therefore b−− ∈ F , i.e. F is a DC-prime filter of A.

□

According to Corollary 9(i) and [14, Proposition 8]:

Lemma 7. If F is a DC-prime filter then there exists an unique maximal filter M
of a BL-algebra A containing F.

Remark 9. It can be easily proved that if BL-algebra A is an MV-algebra then
F is a DC-prime filter of A if and only if F is a prime filter of A. So according to
[18, Proposition 3.22]:

Corollary 11.
(i) Let F and G be proper filters of a BL-algebra A such that Ds(A)⊆ F ⊆ G. Then

G/F is a prime filter of A/F if and only if G/F is a DC-prime filter of A/F.
(ii) Let F be a proper filter of a BL-algebra A and Ds(A) = {1}. Then F is a prime

filter of A if and only if F is a DC-prime filter of A.
(iii) All DC-prime filters of a BL-algebra A/Ds(A) are prime filters.
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Lemma 8. Let F be a proper filter of a BL-algebra A. If F is a semi-integral and
positive implicative filter then F is a DC-prime filter.

Proof. Based on Corollary 6 and [14, Theorem 4], the proof is clear. □

Example 7. Let A = {0,a,b,c,d,e, f ,g,1}, where 0 < a < b,d,e,g < 1, 0 < b <
e < 1, 0 < c < d,e,g, f < 1, 0 < d < e,g < 1, 0 < f < g < 1. Operations ∗ and →
are defined as follows:

∗ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 a a 0 a a 0 a a
b 0 a b 0 a b 0 a b
c 0 0 0 c c c c c c
d 0 a a c d d c d d
e 0 a b c d e c d e
f 0 0 0 c c c f f f
g 0 a a c d d f g g
1 0 a b c d e f g 1

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a f 1 1 f 1 1 f 1 1
b f g 1 f g 1 f g 1
c b b b 1 1 1 1 1 1
d 0 b b f 1 1 f 1 1
e 0 a b f g 1 f g 1
f b b b e e e 1 1 1
g 0 b b c e e f 1 1
1 0 a b c d e f g 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([16, Example 4.3]). Clearly F1 = {1},
F2 = {e,1}, F3 = {g,1}, F4 = {b,e,1}, F5 = { f ,g,1}, F6 = {d,e,g,1}, F7 = {d,e,g,
a,b,1} and F8 = {d,e,g, f ,c,1} are all filters of A. It is clear that F4, F5, F7 and
F8 are DC-prime filters of A. Clearly, F6 is a positive implicative filter while is not
a DC-prime filter (since a−− → c−− ̸∈ F6 and c−− → a−− ̸∈ F6) also F6 is not a
semi-integral filter (since (a∗ c)− ∈ F6 and (an)−,(bn)− ̸∈ F6, for all n ∈ N).

Corollary 12. Let F be a proper filter of a BL-algebra A. Then the following
conclusions hold:

(i) If F is an integral and positive implicative filter of A then F is a DC-prime filter
of A.

(ii) If A is a Gödel algebra, F is a primary and positive implicative filter of A then
F is a DC-prime filter of A.
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(iii) If D(F) = F, F is an implicative and semi-integral filter then F is a DC-prime
filter of A.

(iv) If A is a finite BL-algebra, F is a positive implicative and perfect filter then F
is a DC-prime filter of A.

(v) If F = A−{0}, then F is a DC-prime filter of A.

Proof.

(i): This part is a straightforward consequence of Lemma 8 and [14, Corollary
1].

(ii): According to[14, Proposition 7] and Lemma 8, the proof is clear.
(iii): Based on [3, Corollary 3.28] and Lemma 8, the proof is obvious.
(iv): This part is a straightforward consequence of Lemma 8 and [14, Theorem

5].
(v): Based on the definition of a DC-prime filter, the proof is obvious.

□

In the following, we show the necessity of the conditions in the Corollary 12.

Example 8.

(i) Let A = {0,a,b,1}, where 0 < a,b < 1. Operations ∗ and → are defined as
follows:

∗ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([11, Page163]). It is clear that
F = {1} is a positive implicative filter while is not an integral filter (since (a∗
b)− ∈ F and a−,b− ̸∈ F), nor a DC-prime filter (since a−− → b−− ̸∈ F and
b−− → a−− ̸∈ F).

(ii) Consider Gödel algebra A in Example 1. Clearly F = {c,1} is a positive im-
plicative filter while is not a DC-prime filter and nor a primary filter.

(iii) Consider Example 7. F6 is an implicative filter, D(F6) = F6 while is not a semi-
integral and nor a DC-prime filter (since a−− → c−− ̸∈F6 and c−− → a−− ̸∈F6).

(iv) Consider Example 7. F6 is a positive implicative filter while is not a perfect
filter (since it is not a semi-integrl filter) and nor a DC-prime filter (since a−− →
c−− ̸∈ F6 and c−− → a−− ̸∈ F6).

(v) Consider Example 2(i). F = {b,1} ̸= A−{0} is a DC-prime filter of A.

Proposition 4. Let F be a proper filter of a BL-algebra A. If A/D(F) is a special
BL-algebra then F is a DC-prime filter of A.
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Proof. Let A/D(F) be a special BL-algebra. Then based on Corollary 4(iii),
A/D(F) is a DCP-BL-algebra so {1/D(F)} is a DC-prime filter of A/D(F). As-
sume that x∨y ∈ F , for x,y ∈ A. So x∨y ∈ D(F), hence x∨y/D(F) = 1/D(F). Thus
(x∨ y)−−/D(F) = 1/D(F). Hence x−−/D(F) = 1/D(F) or y−−/D(F) = 1/D(F).
So x−− ∈ D(F) or y−− ∈ D(F) since {1/D(F)} is a DC-prime filter of A/D(F).
Therefore x−− ∈ F or y−− ∈ F , i.e. F is a DC-prime filter of A. □

Recall that if F is a filter of a BL-algebra A, F− = {a ∈ A : a− ∈ F}.

Corollary 13. Let F be a DC-prime and Boolean filter of a BL-algebra A. Then

(i) F ∪F− = A.
(ii) A/F has no zero divisor element.

Proof.

(i): Let F be a DC-prime and Boolean filter of A and x ∈ A. Based on Lemma
5, x−− ∈ F or x− ∈ F . If x− ∈ F , hence x ∈ F−, and so x ∈ F ∪F−. If
x−− ∈ F , since F is Boolean filter, then x ∈ F . Hence x ∈ F ∪F−. Therefore
F ∪F− = A.

(ii): Let [x], [y] ∈ A/F and [x]∗ [y] = [0]. Then (x∗ y)− ∈ F . As (x∗ y)− = x →
y− ≤ (x → y−)−− = x−− → y− hence x−− → y− ∈ F . Based on Lemma 5,
x−− ∈ F or x− ∈ F . If x−− ∈ F , then y− ∈ F , so [y] = [0]. If x− ∈ F , then
[x] = [0]. Therefore A/F has no zero divisor element.

□

Example 9. Consider Example 6. F = {a,1} is a DC-prime filter while is not a
Boolean filter (since b∨b− ̸∈ F) and F ∪F− ̸= A (since F− = {0}).

The following examples show that there are no relationships between DC-prime
filters and some other types of filters in BL-algebras.

Example 10.

(i) Consider Example 7. Clearly, F6 is a special filter, positive implicative filter (so
is a Boolean filter, implicative filter, easy filter, fantastic filter and normal filter)
while is not a DC-prime filter (since a−− → c−− ̸∈F6 and c−− → a−− ̸∈F6), nor
a semi-integral filter (since (a ∗ c)− ∈ F6 and (an)−,(bn)− ̸∈ F6, for all n ∈ N.
G= {b,e,1} is a DC-prime filter while is not a special filter, nor a Boolean filter
(since Ds(G) = {e,1} ̸= G and a∨a− ̸∈ G).

(ii) Consider Example 6. F = {1} is a DC-prime filter while F is not a fantastic
filter, nor a normal filter and nor a positive implicative filter.

(iii) Consider Example 1. Clearly F = {c,1} is a positive implicative filter while is
not a DC-prime filter.

(iv) Consider Example 5. F = {b,1} is a DC-prime filter while is not a semi-
maximal filter, since Rad(F) = {a,b,1}.
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(v) Let A = {0,a,b,c,d,1}, where 0 < a,b < c < 1 and 0 < b < d < 1. Operations
∗ and → are defined as follows:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra ([16, Example 4.3]). F1 = {1},
F2 = {d,1} and F3 = {a,c,1} are all filters of A. Clearly F1 is a nodal filter
while is not a DC-prime filter, since a−− → b−− ̸∈ F1 and b−− → a−− ̸∈ F1.

In the following, we see that the intersection of two DC-prime filters is not a DC-
prime filter in general.

Example 11. Let A = {0,a,b,c,d,1}, where 0 < b < a < 1 and 0 < d < a,c < 1.
Define ∗ and → by the following

∗ 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

→ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (A,∧,∨,∗,→,0,1) is a BL-algebra, [11, Example 4.3]. Clearly, F1 = {a,b,
1}, F2 = {c,1} are DC-prime filters while F1 ∩F2 = {1} is not DC-prime. Since
a∨ c ∈ {1} but a−−,c−− ̸∈ {1}.

Lemma 9. Let F1 and F2 be DC-prime filters and F2 be a maximal filter of an
integral BL-algebra A. Then F1 ∧F2 is a DC-prime filter of A.

Proof. Let a∨b ∈ F1 ∧F2. As F1 ∧F2 ≤ F1,F2 so a∨b ∈ F1 and a∨b ∈ F2. Hence
a−− ∈ F1 or b−− ∈ F1 and a−− ∈ F2 or b−− ∈ F2. The following cases are considered:

Case (1): If a−− ∈ F1 and a−− ∈ F2, then a−− ∈ F1 ∧F2.
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Case (2): If a−− ∈ F1 and a−− ̸∈ F2. As F2 is a maximal filter, F2 ∨⟨a−−⟩= A. So
0 ∈ F2 ∨⟨a−−⟩ hence there exists f2 ∈ F2 and n ∈ N such that 0 = f2 ∗ (a−−)n. As A
is an integral BL-algebra, (a−−)n = 0 or f2 = 0. If f2 = 0, then 0 ∈ F2, which is a
contradiction. If (a−−)n = 0 then 0 ∈ F1, since (a−−)n ∈ F1 which is a contradiction.
So a−− ∈ F1 and a−− ∈ F2. Therefore a−− ∈ F1 ∧F2.

Case (3): If a−− ∈ F2 and a−− ̸∈ F1. It only needs to be proven that b−− ∈ F1∧F2.
Let b−− ̸∈ F1 ∧F2. As b−− ∈ F1 so b−− ̸∈ F2. Hence F2 ∨⟨b−−⟩= A. So there exists
n ∈ N and f3 ∈ F2 such that 0 = (b−−)n ∗ f3. As A is an integral BL-algebra, f3 = 0
or (b−−)n = 0. If f3 = 0, then 0 ∈ F2. That is a contradiction. If (b−−)n = 0 then
0 ∈ F1, since b−− ∈ F1. That is a contradiction. Therefore b−− ∈ F1 ∧F2.

Case (4): If b−− ∈ F1, b−− ∈ F2, a−− ̸∈ F1 and a−− ̸∈ F2, then b−− ∈ F1 ∧F2.
Therefore F1 ∧F2 is a DC-prime filter of A. □

Lemma 10. Let F and G be proper filters of a BL-algebra A such that D(F) =
D(G). Then F and G are DC-prime filters if and only if F ∧G is a DC-prime filter.

Proof. Let x∨y ∈ F ∧G, for x,y ∈ A and x−− ̸∈ F ∧G. Suppose that x−− ̸∈ F . As
F is a DC-prime so y−− ∈ F . Then y ∈ D(F) = D(G) = D(F)∧D(G) = D(F ∧G).
Hence y ∈ D(F ∧G). Therefore y−− ∈ F ∧G, i.e. F ∧G is a DC-prime filter of A.
Now let F ∧G be a DC-prime filter and D(F) = D(G). Then D(F ∧G) = D(F)∧
D(G) = D(F) = D(G) is a DC-prime filter. Hence based on Theorem 9, F and G are
DC-prime filters of A. □

Lemma 11. Let {Fi : i ∈ I} be a non-empty totally ordered subset of DC-prime
filters in a BL-algebra A. Then ∩i∈IFi and ∪i∈IFi are DC-prime filters of A.

Proof. Suppose that x∨ y ∈ ∩i∈IFi, for x,y ∈ A and x−− ̸∈ ∩i∈IFi. So there exists
j ∈ I such that x−− ̸∈ Fj. As Fj is a DC-prime, y−− ∈ Fj. Now take t ∈ I. If Ft ⊆ Fj,
then x−− ̸∈ Ft and so y−− ∈ Ft . If Fj ⊆ Ft , then y−− ∈ Ft . So for all t ∈ I, y−− ∈ Ft and
therefore y−− ∈ ∩i∈IFi i.e. ∩i∈IFi is a DC-prime filter. Clearly ∪i∈IFi is a DC-prime
filter. □

5. CHARACTERIZATIONS OF DC-PRIME FILTERS IN BL-ALGEBRAS

In this section, the properties of a DC-prime filter in BL-algebras are studied,
exactly. Also, some equivalent conditions are presented for it.

Theorem 13. Let E1 and E2 be filters of a BL-algebra A and F be a proper filter
of A. Then the following statements are equivalent:

(i) If F = E1 ∩E2, then D(F) = D(E1) or D(F) = D(E2).
(ii) F is a DC-prime filter.

Proof.
(i)⇒ (ii): Let a,b ∈ A and a∨ b ∈ F . Hence based on [19, Proposition 1.40],

(F ∨ ⟨a⟩)∧ (F ∨ ⟨b⟩) = F . So according to Part (i), D(F ∨ ⟨a⟩) = D(F) or
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D(F ∨⟨b⟩) = D(F). As a ∈ F ∨⟨a⟩ ⊆ D(F ∨⟨a⟩) and b ∈ F ∨⟨b⟩ ⊆ D(F ∨
⟨b⟩), so a ∈ D(F) or b ∈ D(F). Therefore a−− ∈ F or b−− ∈ F , i.e. F is a
DC-prime filter of A.

(ii)⇒ (i): Let F be a DC-prime filter and E1 ∩E2 = F . Assume that D(F) ̸=
D(E1) and D(F) ̸= D(E2). Then there exists a ∈ D(E1) such that a ̸∈ D(F)
and there exists b ∈ D(E2) such that b ̸∈ D(F). So a−−∨b−− ∈ E1∩E2 = F .
Then a−− ∈ F or b−− ∈ F , since F is a DC-prime filter. Hence a ∈ D(F) or
b ∈ D(F), which is a contradiction. Therefore the proof is completed.

□

According to Theorem 13:

Corollary 14. Let Ei be filters of a BL-algebra A such that i ∈ I and I be a finite
set, and F be a proper filter of A. Then the following statements are equivalent:

(i) If F =
⋂

i∈I Ei, then there exists i ∈ I such that D(F) = D(Ei).
(ii) F is a DC-prime filter.

Theorem 14. Let E1 and E2 be filters of a BL-algebra A and F be a DC-prime
filter of A. If E1 ∩E2 ⊆ F, then D(E1)⊆ D(F) or D(E2)⊆ D(F).

Proof. Let F be a DC-prime filter and E1 ∩E2 ⊆ F . Also assume that D(E1) ⊈
D(F) and D(E2)⊈D(F). Hence there exist a∈D(E1)−D(F) and b∈D(E2)−D(F).
So a−− ∈ E1 and b−− ∈ E2 then a−−∨b−− ∈ E1∩E2 ⊆ F . As F is a DC-prime filter,
a−− ∈ F or b−− ∈ F . Hence a ∈ D(F) or b ∈ D(F). Which is a contradiction. So the
proof is completed. □

Example 12. Consider Example 6. Clearly, F = {a,1} is a DC-prime filter and
E1 = {b,1} and E2 = {a,b,c,1} are filters of A. So the converse of above theorem,
is not true in general.

Corollary 15. Let F1 and F2 be filters of a BL-algebra A and F be a DC-prime
filter of A. Then D(F1)∩D(F2)⊆ F implies D(F1)⊆ D(F) or D(F2)⊆ D(F).

Lemma 12. Let A be a DCP-BL-algebra. Then for any proper filters F and G of
A, D(F)⊆ D(G) or D(G)⊆ D(F).

Proof. Let A be a DCP-BL-algebra. Then D(F ∩G) is a DC-prime filter of A. As
D(F ∩G) = D(F)∩D(G), according to Theorem 13, D(D(F ∩G)) = D(D(F)) or
D(D(F ∩G)) = D(D(G)). Hence D(F ∩G) = D(F) or D(F ∩G) = D(G). Therefore
as D(F ∩G) = D(F)∩D(G), D(F) ⊆ D(G) or D(G) ⊆ D(F), for any proper filters
F and G of A. □

Example 13. Consider Example 1. F1 = {1}, F2 = {c,1} and F3 = {b,c,d,1} are
all filters of A. Also D(F1) =D(F2) = F2 and D(F3) = F3. So D(F1) =D(F2)⊆D(F3)
while F1 is not a DC-prime filter (since a−− → b−− ̸∈ F1 and b−− → a−− ̸∈ F1). So
A is not a DCP-BL-algebra.
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Proposition 5. Let F be a DC-prime filter of a BL-algebra A. Then the set {D(E) :
F ⊆ E,E is a proper filter of A} is linearly ordered with respect to set theoretical
inclusion.

Proof. Let D(E),D(G) ∈ T = {D(E) : F ⊆ E,E is a proper filter of A}. Assume
D(E) ̸⊆ D(G) and D(G) ̸⊆ D(E). Hence there exist a,b ∈ A such that a ∈ D(E)−
D(G) and b ∈ D(G)−D(E). As F is a DC-prime filter, a−− → b−− ∈ F or b−− →
a−− ∈ F . If a−− → b−− ∈ F then a−− → b−− ∈ E ⊆ D(E). Then b−− ∈ D(E), since
a ∈ D(E). Hence b ∈ D(D(E)) = D(E) which is a contradiction since b ̸∈ D(E). If
b−− → a−− ∈ F then b−− → a−− ∈ G ⊆ D(G). So a−− ∈ D(G), since b ∈ D(G).
Hence a ∈ D(D(G)) = D(G) which is a contradiction since a ̸∈ D(G). Therefore the
proof is complete. □

Proposition 6.
(i) Let A be a DCP-BL-algebra and F be a proper fantastic filter of A. Then for all

x,y ∈ A−F, there exists z ∈ A−F such that x−− ≤ z and y−− ≤ z.
(ii) Let F be a proper filter of a BL-algebra A. If for all x,y ∈ A − F there is

z ∈ A−F such that x−− ≤ z and y−− ≤ z, then F is a DC-prime filter.

Proof.

(i): Let F be a fantastic filter of a DCP-BL-algebra A. According to Theorem
5, F is a DC-prime filter of A. Also, assume that there is x,y ∈ A−F such
that for all z ∈ A− F , z < x−− or z < y−−. Since x−− ≤ x−− ∨ y−− and
y−− ≤ x−−∨y−−, so x−−∨y−− ∈ F . As F is a DC-prime filter then x−− ∈ F
or y−− ∈ F . Hence x ∈ F or y ∈ F , since F is a fantastic filter. That is a
contradiction. Therefore the proof is completed.

(ii): Let for all x,y ∈ A−F there is z ∈ A−F such that x−− ≤ z and y−− ≤ z.
Since x ≤ x−− ≤ z and y ≤ y−− ≤ z, then x ≤ z and y ≤ z. So according to
[19, Proposition 1.45], F is a prime filter of A, hence based on Theorem 7, F
is a DC-prime filter.

□

Proposition 7. Let A be a DCP-BL-algebra and F be a proper filter of A. Then
for any x,y ∈ A−D(F), there exists z ∈ A−D(F) such that x ≤ z and y ≤ z.

Proof. Let F be a proper filter of a DCP-BL-algebra A. According to Theorem 5,
F is a DC-prime filter of A. Also, assume that there are x,y ∈ A−D(F) such that for
all z ∈ A−D(F), z < x or z < y. Since x ≤ x∨y and y ≤ x∨y, so x∨y ∈ D(F). Then
x−−∨y−− ∈ F , so x−− ∈ F or y−− ∈ F , since F is a DC-prime filter. Hence x ∈ D(F)
or y ∈ D(F), which is a contradiction. □

Proposition 8. Let F be a filter of a BL-algebra A and for any x,y ∈ A−D(F),
there exists z ∈ A−D(F) such that x ≤ z and y ≤ z. Then F is a DC-prime filter of A.
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Proof. According to Theorem 13, it only needs to be proven that if F = E1 ∩E2,
then D(F) = D(E1) or D(F) = D(E2), for filters E1 and E2 of A. Now let F = E1∩E2
and D(F) ̸= D(E1) and D(F) ̸= D(E2). So there exists x ∈ D(E1) such that x ̸∈ D(F)
and there exists y ∈ D(E2) such that y ̸∈ D(F). So according to hypothesis there
exists z ∈ A−D(F) such that x ≤ z and y ≤ z. Since x ∈ D(E1) and y ∈ D(E2) so z ∈
D(E1)∩D(E2) = D(E1 ∩E2) = D(F). Therefore z ∈ D(F) which is a contradiction.
Thus the proof is completed. □

Corollary 16. Let A be a DCP-BL-algebra and F be a proper filter of A. Then
for any x,y ∈ A/D(F) such that x,y ̸= 1/D(F), there exists w ∈ A/D(F) such that
w ̸= 1/D(F), x ≤ w and y ≤ w.

Proof. Let F be a proper filter of a DCP-BL-algebra A. According to Theorem 5,
F is a DC-prime filter of A. Also, assume that x,y ∈ A/D(F) such that x,y ̸= 1/D(F).
Hence x = a/D(F) and y = b/D(F) for some a,b ∈ A, such that a/D(F) ̸= 1/D(F)
and b/D(F) ̸= 1/D(F), and so a,b ̸∈ D(F). So according to Proposition 7, there
exists z ∈ A−D(F) such that a ≤ z and b ≤ z. Hence a → z = 1 and b → z = 1. So
a/D(F)≤ z/D(F) and b/D(F)≤ z/D(F). Therefore x ≤ w and y ≤ w. □

Corollary 17. Let F be a filter of a BL-algebra A and for any x,y ∈ A/D(F) such
that x,y ̸= 1/D(F), there exists w ∈ A/D(F) such that w ̸= 1/D(F), x ≤ w and y ≤ w.
Then F is a DC-prime filter of A.

Proof. According to Theorem 13, it only needs to be proven that if F = E1 ∩E2,
then D(F) = D(E1) or D(F) = D(E2), for filters E1 and E2 of A. Now let F =
E1 ∩ E2 and D(F) ̸= D(E1) and D(F) ̸= D(E2). So there exists a ∈ D(E1) such
that a ̸∈ D(F) and there exists b ∈ D(E2) such that b ̸∈ D(F). Thus x = a/D(F) ̸=
1/D(F) and y = b/D(F) ̸= 1/D(F). So according to hypothesis there exists w =
c/D(F)∈ A/D(F) such that w ̸= 1/D(F), x ≤ w and y ≤ w. Then a/D(F)≤ c/D(F)
and b/D(F) ≤ c/D(F). Hence c/D(F) ∈ (D(E1)∩D(E2))/D(F). As F = E1 ∩E2,
D(F) = D(E1)∩D(E2). Therefore w = c/D(F) = 1/D(F), which is a contradiction.
Thus the proof is completed. □

Proposition 9. Let A be a DCP-BL-algebra and F be a proper filter of A. Then
⟨x−−⟩∩ ⟨y−−⟩ ⊆ F implies x−− ∈ F or y−− ∈ F, for all x,y ∈ A.

Proof. According to Theorem 5, F is a DC-prime filter of A. Also, assume that
⟨x−−⟩∩⟨y−−⟩ ⊆ F , for x,y ∈ A. Suppose that x−− ̸∈ F and y−− ̸∈ F so x ̸∈ D(F) and
y ̸∈ D(F). Then based on Proposition 7, there is z ∈ A−D(F) such that x ≤ z and
y ≤ z. Then x−− ≤ z−− and y−− ≤ z−−. Hence ⟨z−−⟩ ⊆ ⟨x−−⟩ and ⟨z−−⟩ ⊆ ⟨y−−⟩.
So z−− ∈ ⟨x−−⟩∩ ⟨y−−⟩ ⊆ F thus z ∈ D(F), which is a contradiction. □

Proposition 10. Let F be a filter of a BL-algebra A and for all x,y ∈ A, ⟨x−−⟩∩
⟨y−−⟩ ⊆ F implies x−− ∈ F or y−− ∈ F. Then F is a DC-prime filter of A.
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Proof. Assume that for any x,y ∈ A, ⟨x−−⟩∩⟨y−−⟩ ⊆ F implies x−− ∈ F or y−− ∈
F . Also assume that x∨y∈F . Hence ⟨x∨y⟩⊆F so ⟨x⟩∩⟨y⟩⊆F . As ⟨x−−⟩⊆ ⟨x⟩ and
⟨y−−⟩ ⊆ ⟨y⟩ thus ⟨x−−⟩∩ ⟨y−−⟩ ⊆ ⟨x⟩∩ ⟨y⟩ ⊆ F . According to hypothesis x−− ∈ F
or y−− ∈ F . Therefore F is a DC-prime filter of A. □

Proposition 11. Let A be a DCP-BL-algebra and F be a proper filter of A. Then
⟨x⟩∩ ⟨y⟩ ⊆ F implies x ∈ D(F) or y ∈ D(F), for all x,y ∈ A.

Proof. According to Theorem 5, F is a DC-prime filter of A. Also, assume that
for any x,y ∈ A, ⟨x⟩∩ ⟨y⟩ ⊆ F . So ⟨x−−⟩∩ ⟨y−−⟩ ⊆ F . According to Proposition 9,
x ∈ D(F) or y ∈ D(F). □

Proposition 12. Let F be a filter of a BL-algebra A and for all x,y ∈ A, ⟨x⟩∩⟨y⟩ ⊆
F implies x ∈ D(F) or y ∈ D(F). Then F is a DC-prime filter of A.

Proof. Let for any x,y ∈ A, if ⟨x⟩∩⟨y⟩ ⊆ F then x ∈ D(F) or y ∈ D(F) and assume
that x∨ y ∈ F . So ⟨x∨ y⟩ ⊆ F . Then ⟨x⟩∩ ⟨y⟩ ⊆ F , since ⟨x⟩∩ ⟨y⟩ = ⟨x∨ y⟩. Hence
according to hypothesis x ∈ D(F) or y ∈ D(F). Therefore x−− ∈ F or y−− ∈ F , i.e.
F is a DC-prime filter of A. □

Recall that the set of all filters in a BL-algebra A is denoted by F(A).

Corollary 18. If F(A) is a chain, then all proper filters of a BL-algebra A are
DC-prime filters, i.e. A is a DCP-BL-algebra.

Proof. Let F(A) be a chain and F be a proper filter of A. Also assume that for
any x,y ∈ A, ⟨x⟩ ∩ ⟨y⟩ ⊆ F . Based on the condition of this corollary, there are two
possibilities:

(i): If ⟨x⟩ ⊆ ⟨y⟩. Hence x ∈ ⟨x⟩= ⟨x⟩∩ ⟨y⟩ ⊆ F ⊆ D(F).
(ii): If ⟨y⟩ ⊆ ⟨x⟩. Hence y ∈ ⟨y⟩= ⟨x⟩∩ ⟨y⟩ ⊆ F ⊆ D(F).

Therefore according to Proposition 12, F is a DC-prime filter of A. □

Remark 10. In Example 2(ii), the converse of Corollary 18 is not true.

Recall that ⊥X = {a ∈ A : a∨ x = 1, for all x ∈ X} is a filter of a BL-algebra A,
where X is a non-empty subset of A, [20, Definition 11]. Also recall that a filter F of
A is called a linearly ordered filter if for any x,y ∈ F , either x ≤ y or y ≤ x.

Lemma 13. Let F ̸= {1} be a linearly ordered filter of A. Then ⊥F is a DC-prime
filter of A.

Proof. According to the hypothesis F ̸= {1}, hence ⊥F ̸= A, i.e. ⊥F is a proper
filter. Now let a∨ b ∈⊥ F , for a,b ∈ A, such that a−− ̸∈⊥ F and b−− ̸∈⊥ F . So
a ̸∈⊥ F , b ̸∈⊥ F . Then there exist x,y ∈ F such that a∨ x ̸= 1 and b∨ y ̸= 1. Denote
z = x∧ y. Hence z ∈ F , a∨ z ∈ F and b∨ z ∈ F , moreover a∨ z ̸= 1 and b∨ z ̸= 1
(if a∨ z = 1 then a∨ x = 1 and if b∨ z = 1 then b∨ y = 1, which are contradictions).
As F is a linearly ordered filter, assume that b∨ z ≤ a∨ z. Therefore as z ∈ F and
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a∨b ∈⊥ F , 1 = (a∨b)∨ z = a∨ (b∨ z)≤ a∨ (a∨ z) = a∨ z, hence a∨ z = 1, which
is contradiction. Thus the proof is completed. □

A BL-algebra A is called a RS-BL-algebra, if for all non-empty subset X of A,
Xr = {a ∈ A: x → a = a, for all x ∈ X} is a filter of A [17, Definition 3.1].

According to Lemma 13:

Corollary 19. Let A be a RS-BL-algebra, X ̸= {1} be a non-empty linearly ordered
upper subset of A. Then Xr is a DC-prime filter of A.

Lemma 14. Let x be an idempotent element of a BL-algebra A and a,b ∈ A. If
a∨b = x implies a = x or b = x (∨-irreducible), then Fx = {y ∈ A : x ≤ y} is a DC-
prime filter of A.

Proof. Claerly Fx is a proper filter of A. Let y1 ∨ y2 ∈ Fx, for y1,y2 ∈ A. So x ≤
y1 ∨ y2. Then

x = x∗ x ≤ x∗ (y1 ∨ y2)≤ x∗ (y1 ∨ y2)
−−

= x∗ (y−−
1 ∨ y−−

2 )

= (x∗ y−−
1 )∨ (x∗ y−−

2 )

≤ x∨ x = x.

Then x = (x ∗ y−−
1 )∨ (x ∗ y−−

2 ). Since x is an ∨-irreducible so x ∗ y−−
1 = x or

x ∗ y−−
2 = x. It is known that x ∗ y−−

1 ≤ y−−
1 and x ∗ y−−

2 ≤ y−−
2 , thus x ≤ y−−

1 or
x ≤ y−−

2 . Therefore y−−
1 ∈ Fx or y−−

2 ∈ Fx and so the proof is completed. □

Lemma 15. Let F be a DC-prime filter of a BL-algebra A and G be a filter of
A such that G ⊆ F. The set of all DC-prime filters F ′ of A such that G ⊆ F ′ ⊆ F
contains a minimal element.

Proof. Take the set ∑ := {F ′: F ′ is DC-prime filter such that G⊆ F ′ ⊆ F}. Clear-
ly F ∈ ∑. The relation ≤, on ∑, is defined F ′ ≤ G′ if and only if G′ ⊆ F ′, for all
F ′,G′ ∈ ∑. Clearly the relation ≤ is a partially ordered on ∑. Now let T be a chain
of ∑. Take d =

⋂
F ′∈T F ′. It is clear that d is a filter and for all F ′ ∈ T , d ⊆ F ′.

Then for all F ′ ∈ T , F ′ ≤ d. We need to prove that d is a DC-prime filter. Now let
for x,y ∈ A, x∨ y ∈ d and x−− ̸∈ d and y−− ̸∈ d. So there exist F ′,G′ ∈ T such that
x−− ̸∈ F ′ and y−− ̸∈ G′. Since T is a chain, so G′ ⊆ F ′ or F ′ ⊆ G′. If F ′ ⊆ G′, then
y−− ̸∈ F ′. Hence based on x∨y ∈ d ⊆ F ′ and since F ′ is a DC-prime filter, x−− ∈ F ′.
That is a contradiction. Therefore d is a DC-prime filter. Also if G′ ⊆ F ′, the process
is similarly. So d is an upper bound for T . Then by Zorn,s lemma, ∑ contains a
maximal element, hence it contains a minimal element. □

Proposition 13. Let F be a proper filter of a BL-algebra A. Then for any a ∈
A−D(F), there exists a DC-prime filter P such that F ⊆ D(P) and a ̸∈ D(P).



482 Z. PARVIZI, S. MOTAMED, AND F. K. HAGHANI

Proof. Consider the set T := {G : G is a filter of A,F ⊆ D(G),a ̸∈ D(G)}. Clearly
F ∈ T . Now we define the relation ≤ on T as follows: for all G,G′ ∈ T , G ≤ G′

if and only if G ⊆ G′. It is easy to check that the relation ≤ is a partially ordered
on T . Let L be a chain of T so H =

⋃
G∈L G is a proper filter and for all G ∈ L,

G ⊆ H i.e. G ≤ H and F ⊆ D(G). So F ⊆
⋃

G∈L D(G)⊆ D(
⋃

G∈L G) = D(H). Also
for G ∈ L, a ̸∈ D(G). Hence for all G ∈ L, a−− ̸∈ G, then a−− ̸∈ H =

⋃
G∈L G thus

a ̸∈ D(H), so H ∈ T . Therefore H is an upper bound for L. Then by Zorn,s lemma
the set T contains a maximal element like P, (clearly P is a proper filter of A). Now
suppose that P is not a DC-prime filter. Thus there exist x,y ∈ A such that x∨ y ∈ P
and x−− ̸∈ P and y−− ̸∈ P. As P ⊊ P∨⟨x−−⟩ and P ⊊ P∨⟨y−−⟩ so P∨⟨x−−⟩ ̸∈ T and
P∨⟨y−−⟩ ̸∈ T , since P is maximal element of T . Hence as F ⊆ D(P)⊆ D(P∨⟨x−−⟩)
and F ⊆ D(P)⊆ D(P∨⟨y−−⟩), then a ∈ D(P∨⟨x−−⟩) and a ∈ D(P∨⟨y−−⟩). Thus
a−− ∈ P∨⟨x−−⟩ and a−− ∈ P∨⟨y−−⟩. So a−− ≥ α∗ (x−−)n and a−− ≥ β∗ (y−−)m,
for some α,β ∈ P and for some n,m ∈ N. According to rules on BL-algebras,

a−− ≥ (α∗ (x−−)n)∨ (β∗ (y−−)m)

≥ (α∨ (β∗ (y−−)m))∗ ((x−−)n ∨ (β∗ (y−−)m))

≥ (α∨β)∗ (α∨ (y−−)m)∗ ((x−−)n ∨β)∗ ((x−−)n ∨ (y−−)m)

≥ (α∨β)∗ (α∨ (y−−)m)∗ ((x−−)n ∨β)∗ (x−−∨ y−−)mn

≥ (α∨β)∗α∗β∗ (x∨ y)mn.

It is obtained that a−− ∈ P. So a ∈ D(P), which is a contradiction. Therefore P is
a DC-prime filter of A. Hence the proof is completed. □

Corollary 20. Let F be a proper filter of a BL-algebra A. Then

D(F) =
⋂

F⊆D(G)

D(G),

where G is a DC-prime filter of A.

Proof. Let G be a DC-prime filter of A such that F ⊆D(G). So D(F)⊆D(D(G))=
D(G). Hence D(F)⊆

⋂
F⊆D(G) D(G), where G is a DC-prime filter of A. Now assume

that x ∈
⋂

F⊆D(G) D(G) and x ̸∈ D(F), where G is a DC-prime filter of A. Accord-
ing to Proposition 13, there exists a DC-prime filter P of A such that F ⊆ D(P) and
x ̸∈ D(P). That is a contradiction, therefore the proof is completed.

□

Lemma 16. Let F be a DC-prime filter of a BL-algebra A. Then for all G ∈ F(A),
D(G → D(F)) = D(F) or D(G)⊆ D(F).

Proof. Based on [19, Corollary 1.37], F(A) is a Heyting algebra. Hence based on
the definition of Heyting algebra, (G → D(F))∩ ((G → D(F)) → D(F)) = (G →
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D(F))∩D(F). As D(F)∩G ⊆ D(F), so according to [19, Lemma 1.35], D(F) ⊆
G → D(F). Then D(F)∩ (G → D(F)) = D(F), and so

(G → D(F))∩ ((G → D(F))→ D(F)) = D(F).

As F is a DC-prime filter, so D(F) is a DC-prime filter, thus based on Theorem
13, D(G → D(F)) = D(D(F)) = D(F) or D((G → D(F)) → D(F)) = D(D(F)) =
D(F). On other hand by [19, Lemma 1.35], D(F) = D((G → D(F)) → D(F)) =
D(sup{H : (G → D(F))∩H ⊆ D(F)}. First prove that G ∈ {H : (G → D(F))∩
H ⊆ D(F)}. Assume that a ∈ (G → D(F))∩G. As a ∈ G, so ⟨a⟩ ⊆ G and since
a ∈ (G → D(F)), so G∩⟨a⟩ ⊆ D(F). Thus ⟨a⟩ ⊆ D(F) hence a ∈ D(F). Therefore
G∈ {H : (G→D(F))∩H ⊆D(F)}. Then G⊆ sup{H : (G→D(F))∩H ⊆D(F)}=
D(F). Therefore G ⊆ D(F) and so D(G)⊆ D(F). Thus the proof is completed. □

Lemma 17. Let F be a DC-prime filter of a BL-algebra A. Then for all G ∈ F(A),
D(G → F) = D(F) or D(G)⊆ D(F).

Proof. Based on [19, Corollary 1.37], F(A) is a Heyting algebra. Hence (G →
F)∩ ((G → F)→ F) = F ∩ (G → F). Since F ∩G ⊆ F so according to [19, Lemma
1.35], F ⊆G→F , then F∩(G→F)=F . So (G→F)∩((G→F)→F)=F . Based
on Theorem 13, D(G → F) = D(F) or D((G → F)→ F) = D(F). On other hand by
[19, Lemma 1.35], (G → F)→ F = sup{H : (G → F)∩H ⊆ F}. So D((G → F)→
F) = D(sup{H : (G → F)∩H ⊆ F} = D(F). First prove that G ∈ {H : (G → F)∩
H ⊆F}. Assume that a∈ (G→F)∩G. As a∈G, so ⟨a⟩ ⊆G and since a∈ (G→F).
Then G∩⟨a⟩ ⊆ F , so ⟨a⟩ ⊆ F . Therefore a ∈ F , hence G ∈ {H : (G → F)∩H ⊆ F}.
Then G ⊆ sup{H : (G → F)∩H ⊆ F)}. So D(G) ⊆ D(sup{H : (G → F)∩H ⊆
F)}= D(F). So D(G)⊆ D(F). Thus the proof is completed. □
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