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Abstract. In this paper, we prove the boundedness of the Riesz potential Iα in local variable
Morrey-Lorentz spaces. Also we apply our results to particular operators such as fractional
maximal operator, fractional Marcinkiewicz operator and fractional powers of some analytic
semigroups in these spaces.
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1. INTRODUCTION

The Lorentz-Morrey space Lp,q;λ(Rn) was first defined in [22] and also considered
in [15,24,31]. Later, the local Morrey-Lorentz spaces M loc

p,q;λ(R
n) are introduced and

the basic properties of these spaces are given in [1]. These spaces are a very natural
generalization of the Lorentz spaces such that M loc

p,q;0(Rn) = Lp,q(Rn). Recently, in
[2, 13] and [14] the authors have studied the boundedness of the Hilbert transform,
the Hardy-Littlewood maximal operator M and the Calderón-Zygmund operators T ,
and the Riesz potential Iα on the local Morrey-Lorentz spaces M loc

p,q;λ by using related
rearrangement inequalities, respectively.

The study of function spaces with variable exponent has been stimulated by prob-
lems of elasticity, fluid dynamics, calculus of variations and differential equations
with non-standard growth conditions (see [6, 8, 25, 26, 33]). Various results on non-
weighted and weighted boundedness in variable exponent Lebesgue spaces have been
proved for maximal, singular and fractional type operators, we refer to surveying pa-
pers [9] and [27]. In [18], authors define the variable local Morrey-Lorentz spaces and
proved the boundedness of maximal operator M and Calderon-Zygmund operators T
in these spaces, also they apply their results to some operators of harmonic analysis
such as Bochner-Riesz operator, Marcinkiewicz operator and fractional powers of
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some analytic semigroups. In [32], the authors give the definition of central Lorentz-
Morrey space of variable exponent by the symmetric decreasing rearrangement. They
prove the boundedness of maximal operator in these spaces and establish Sobolev’s
inequality for Riesz potentials.

Local variable Morrey-Lorentz spaces generalize variable exponent Lorentz spaces
such that M loc

p(·),q(·);0 = Lp(·),q(·), when λ= 0. In [11] variable exponent Lorentz spaces
Lp(·),q(·) are introduced and the boundedness of the singular integral and fractional
type operators and corresponding ergodic operators are proved in these spaces. The
inclusion theorems for variable Lorentz spaces were proved in [19]. We should point
out that, due to their own fine structures, Lorentz spaces appear frequently in the
study on various critical or endpoint analysis problems from many different research
fields and there exist enormous literatures on this subject.

In this paper, we prove the boundedness of Riesz potential Iα from the local vari-
able Morrey-Lorentz spaces M loc

p(·),r(·),λ(R
n) to local variable Morrey-Lorentz spaces

M loc
q(·),s(·),λ(R

n). We also give some applications of our main result.
The organization of this article is as follows. In Section 2, we give some nota-

tion and definitions. In Section 3, we prove the boundedness of the Riesz poten-
tial Iα from the local variable Morrey-Lorentz spaces M loc

p(·),r(·),λ(R
n) to local vari-

able Morrey-Lorentz spaces M loc
q(·),s(·),λ(R

n). In Section 4, as applications we get the
boundedness of fractional maximal operator Mα, fractional Marcinkiewicz operator
µΩ,α and fractional powers of some analytic semi groups L−α/2 from M loc

p(·),r(·),λ(R
n)

to M loc
q(·),s(·),λ(R

n).
Throughout the paper we use the letter C for a positive constant, independent of

appropriate parameters and not necessary the same at each occurrence.

2. PRELIMINARIES

The present paper deals with the boundedness of the Riesz potential Iα defined by

Iα f (x) =
∫
Rn

f (y)
|x− y|n−α

dy, 0 < α < n, f ∈ Lloc
1 (Rn),

in the local Morrey–Lorentz spaces Mloc
p,q;λ(R

n).
Further we apply this result to particular operators such as a fractional maximal

operator, fractional Marcinkiewicz operator and fractional powers of some analytic
semigroups.

For each measurable function f on (0,∞) and each t > 0, the following operator

(Sα f )(t) = t
α

n −1
∫ t

0
f (s)ds+

∫
∞

t
s

α

n −1 f (s)ds

was defined by A. P. Calderón [5]. The importance of Sα is based on the fact that it
dominates the Riesz potential Iα.
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Theorem 1 ([23, 28]). If the condition(
Sα f ∗

)
(1) =

∫ 1

0
f ∗(s)ds+

∫
∞

1
s

α

n −1 f ∗(s)ds < ∞ (2.1)

holds for f ∈ Lloc
1 (Rn), then the Riesz potential

(
Iα f

)
(x), x ∈Rn, exists almost every-

where. Furthermore, the inequality(
Iα f

)∗
(t)≤CSα

(
f ∗
)
(t), 0 < t < ∞, (2.2)

is valid, where f ∗ denotes the non-increasing rearrangement of f defined by

f ∗(t) = inf{λ > 0 : |{y ∈ Rn : | f (y)|> λ}| ≤ t} for all t ∈ (0,∞)

and C is a constant independent of f and t.

Let p(t) be a measurable function on (0,∞). We mainly suppose that

1 < p− ≤ p(t)≤ p+ < ∞, (2.3)

where
p− := inf

0<t≤∞
p(t), p+ := sup

0<t≤∞

p(t).

We denote by p′(·) = p(t)
p(t)−1 . We will use the following decay conditions:

|p(t)− p(0)| ≤ A0

|lnt|
, 0 < t ≤ 1

2
(2.4)

|p(t)− p(∞)| ≤ A∞

lnt
, t ≥ 2, (2.5)

where A0,A∞ > 0 do not depend on t.
By p ∈ P0,∞(0,∞) we denote the set of bounded measurable functions (not ne-

cessarily with values in [1,∞)), which satisfy the decay conditions (2.4) and (2.5).
Also, by Lp(·)(0,∞) we denote the variable exponent Lebesgue space of measurable
functions ϕ on (0,∞) such that

Jp(·)(ϕ) =
∫

∞

0
|ϕ(s)|p(s)ds < ∞.

This is a Banach function space with respect to the norm (see e.g. [10])

∥ϕ∥Lp(·) = inf
{

λ > 0 : Jp(·)

(
ϕ

λ

)
≤ 1

}
.

Definition 1 ([21]). Let q satisfy the condition (2.3). We denote by LMq(·),λ ≡
LMq(·),λ(0,∞) the variable exponent local Morrey space with finite norm

∥ϕ∥LMq(·),λ = sup
t>0

t−
λ

q∗(t) ∥ϕ∥Lq(·)(0,t)

= sup
t>0

inf

η > 0 :
∫ t

0

∣∣∣∣∣ ϕ(s)

ηt
λ

q∗(t)

∣∣∣∣∣
q(s)

ds ≤ 1

 ,
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where q∗(t) = q(0),0 < t < 1 and q∗(t) = q(∞), t ≥ 1.

Definition 2 ([11]). Let p,q satisfy the condition (2.3). We denote by Lp(·),q(·)(Rn)
variable exponent Lorentz space, the space of functions f on Rn such that
t

1
p(t)−

1
q(t) f ∗(t) ∈ Lq(·)(0,∞), i.e.

Jp(·),q(·)( f ) =
∫

∞

0
t

q(t)
p(t)−1

( f ∗(t))q(t)dt < ∞

and we denote

∥ f∥Lp(·),q(·)(Rn) = inf
{

σ > 0 : Jp(·),q(·)

(
f
σ

)
≤ 1

}
=
∥∥∥t

1
p(t)−

1
q(t) f ∗(t)

∥∥∥
Lq(·)(0,∞)

,

where f ∗ denotes the non-increasing rearrangement of f such that

f ∗(t) = inf{λ > 0 : |{y ∈ Rn : | f (y)|> λ}| ≤ t} , ∀t ∈ (0,∞)

and

f ∗∗(t) =
1
t

∫ t

0
f ∗(s)ds

(see [3]). More information about variable exponent Lorentz spaces can be found in
[11, 16].

Now we give the definition of local variable Morrey-Lorentz spaces, which is
defined in [18].

Definition 3. Let p,q satisfy the condition (2.3) and 0 ≤ λ < 1. We denote by
M loc

p(·),q(·),λ ≡ M loc
p(·),q(·),λ(R

n) the local variable Morrey-Lorentz space, the space of
all measurable functions with finite quasinorm

∥ f∥M loc
p(·),q(·),λ

:= sup
t>0

t−
λ

q∗(t) ∥τ
1

p(τ)−
1

q(τ) f ∗(τ)∥Lq(·)(0,t).

These spaces generalize variable exponent Lorentz spaces such that M loc
p(·),q(·);0 =

Lp(·),q(·), when λ = 0 (see [11]). Also, if λ = 0 and q(·) = p(·) then M loc
p(·),p(·);0 = Lp(·)

are variable exponent Lebesgue spaces (see [17]).

3. THE BOUNDEDNESS OF RIESZ POTENTIAL Iα IN THE LOCAL VARIABLE
MORREY-LORENTZ SPACES

In this section, we prove the boundedness of Riesz potential Iα in the local variable
Morrey-Lorentz spaces. We need the following two definitions about Hardy operators
which are used in the proof of our main theorems. These operators are very important
in analysis and have been widely studied.
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Definition 4 ([11]). Let β(t) and γ(t) are measurable functions on (0,∞). The
weighted Hardy operators Hβ(·)

γ(·) and H β(·)
γ(·) with power weight acting on ϕ are defined

by

Hβ(·)
γ(·) ϕ(t) = tβ(t)+γ(t)−1

∫ t

0

ϕ(y)
yγ(y)

dy

and

H β(·)
γ(·) ϕ(t) = tβ(t)+γ(t)

∫
∞

t

ϕ(y)
yγ(y)+1 dy.

The following lemma provides some minimal assumptions on the function τ
λ

q∗(τ)

under which the so-defined spaces contain ”nice” functions.

Lemma 1 ([21]). Let r satisfy the condition (2.3), r ∈ P0(0,∞) and 0 ≤ λ < 1.
Then the assumption

sup
τ>0

[min{1,τ}]
1

r(0)

τ
λ

r∗(τ)
< ∞ (3.1)

is sufficient for bounded functions f with compact support to belong to the local
variable Morrey-Lorentz spaces M loc

p(·),r(·),λ(R
n).

Lemma 2 ([21]). Let r satisfy the condition (2.3), r ∈ P0(0,∞), 0 ≤ λ < 1,
limt→0 tγ(t) exists and finite and the condition (3.1) is satisfied. Suppose that the
following conditions hold.

(i) tγ(t)−a and t
λ

r∗(t)−γ(t)−a are almost decreasing for some a ∈ R, in the case of
operator Hβ(·)

γ(·) .

(ii) t−γ(t)+b and t
λ

r∗(t)−γ(t)+b are almost increasing for some b ∈ R, in the case of
operator H β(·)

γ(·) .

Then the conditions

γ(t)<
λ

r∗(t)
+

1
r′(0)

, γ(t)>
λ

r∗(t)
− 1

r(∞)

are sufficient for the Hardy operators Hβ(·)
γ(·) and H β(·)

γ(·) , respectively, to be defined on
the space LMr(·),λ(Rn).

Lemma 3 ([21]). Let r satisfy the condition (2.3), r ∈P0(0,∞), 0≤ λ< 1. Suppose
also that the conditions (3.1) and of Lemma 2 are satisfied. Then the operators Hβ(·)

γ(·)

and H β(·)
γ(·) are bounded from the space LMr(·),λ(0,∞) to the space LMs(·),λ(0,∞) if

γ(t)< λ

r∗(t)
+ 1

r′(t) , γ(t)> λ

r∗(t)
− 1

r(t) , respectively.

The following theorem is the main result of our paper in which we give the bounded-
ness of Riesz potential in the local variable Morrey-Lorentz spaces.
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Theorem 2. Let p,q,r,s satisfy the condition (2.3), p,q,r,s∈P0,∞(0,∞), 0≤ λ< 1
and f ∈ M loc

p(·),r(·),λ(R
n). Suppose that the conditions (3.1) and of Lemma 2 are satis-

fied. If r(t)
r(t)+λ

< p(t) <
(

λ

r(t) +
α

n

)−1
, 1

p(t) −
1

q(t) = λ

(
1

r(t) −
1

s(t)

)
+ α

n , then the Riesz

potential Iα is bounded from the local variable Morrey-Lorentz spaces M loc
p(·),r(·),λ(R

n)

to M loc
q(·),s(·),λ(R

n).

Proof. From the definition of local variable Morrey-Lorentz spaces and the in-
equality (2.2) we get

∥Iα f∥Mloc
q(·),s(·),λ

= sup
t>0

t−
λ

s∗(t) ∥τ
1

q(τ)−
1

s(τ) (Iα f )∗(τ)∥Ls(·)(0,t)

≤C sup
t>0

t−
λ

s∗(t)

∥∥∥∥τ
1

q(τ)−
1

s(τ)

(
τ

α

n −1
∫

τ

0
f ∗(y)dy+

∫
∞

τ

y
α

n −1 f ∗(y)dy
)∥∥∥∥

Ls(·)(0,t)

≤C sup
t>0

t−
λ

s∗(t)

∥∥∥∥τ
1

q(τ)−
1

s(τ)+
α

n −1
∫

τ

0
f ∗(y)dy

∥∥∥∥
Ls(·)(0,t)

+C sup
t>0

t−
λ

s∗(t) ∥τ
1

q(τ)−
1

s(τ)

∫
∞

τ

y
α

n −1 f ∗(y)dy
∥∥∥∥

Ls(·)(0,t)

= I1 + I2.

Let us estimate I1:

I1 =C sup
t>0

t−
λ

s∗(t)

∥∥∥∥τ
1

q(τ)−
1

s(τ)+
α

n −1
∫

τ

0
f ∗(y)dy

∥∥∥∥
Ls(·)(0,t)

=C∥Hβ(·)
γ(·) g∥Ls(·),λ(0,∞).

We take γ(t) = 1
p(t) −

1
r(t) and consider the Hardy operator Hβ(·)

γ(·) and g(t) =

t
1

p(t)−
1

r(t) f ∗(t). Therefore we get β(t) = 1
q(t) −

1
s(t) +

1
r(t) −

1
p(t) +

α

n . By Lemma 3,

we have β(t) = (1−λ)
(

1
r(t) −

1
s(t)

)
, then we obtain 1

p(t) −
1

q(t) = λ

(
1

r(t) −
1

s(t)

)
+ α

n .

Hence the operator Hβ(·)
γ(·) is bounded from the Morrey space Lr(·),λ(0,∞) to

Ls(·),λ(0,∞) under the condition γ(t) = 1
p(t) −

1
r(t) <

1
r′(t) +

λ

r∗(t)
. Then we get

I1 ≤C∥Hβ(·)
γ(·) g∥Ls(·),λ(0,∞) ≤C∥g∥Lr(·),λ(0,∞)

=C sup
t>0

t−
λ

r∗(·) ∥τ
1

p(τ)−
1

r(τ) f ∗(τ)∥Lr(·)(0,t)

=C∥ f∥Mloc
p(·),r(·);λ

. (3.2)

Now we consider I2:

I2 =C sup
t>0

t−
λ

s∗(t)

∥∥∥∥τ
1

q(τ)−
1

s(τ)

∫
∞

τ

y
α

n −1 f ∗(y)dy
∥∥∥∥

Ls(·)(0,t)
=C∥H β(·)

γ(·) g∥Ls(·),λ(0,∞).
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We take γ(t) = 1
p(t) −

1
r(t) −

α

n in the Hardy operator H β(·)
γ(·) and g(t) = t

1
p−

1
r f ∗(t).

Therefore we get β(t) = 1
q(t) −

1
s(t) +

1
r(t) −

1
p(t) +

α

n . By Lemma 3, we have β(t) =

(1−λ)
(

1
r(t) −

1
s(t)

)
, then we obtain 1

p(t) −
1

q(t) = λ

(
1

r(t) −
1

s(t)

)
+ α

n .

Hence the operator H β(·)
γ(·) is bounded from the Morrey space Lr,λ(0,∞) to Ls,λ(0,∞)

under the condition λ

r∗(t)
− 1

r(t) < γ(t) = 1
p(t) −

1
r(t) −

α

n . Then we get

sup
t>0

t−
λ

s∗(t) ∥H β(·)
γ(·) ∥Ls(·)(0,t) ≤C∥g∥Lr(·),λ(0,∞) =C sup

t>0
t−

λ

r∗(t) ∥τ
1

p(τ)−
1

r(τ) f ∗(τ)∥Lr(·)(0,t)

=C∥ f∥Mloc
p(·),r(·);λ

. (3.3)

From inequalities (3.2) and (3.3) we obtain the boundedness of the operator Iα from
Mloc

p(·),r(·);λ to Mloc
q(·),s(·);λ.

□

Remark 1. In the case λ = 0, from Theorem 2 we get the boundedness of the
operator Iα in the variable exponent Lorentz spaces Lp(·),q(·)(Rn) which is proved in
[11].

4. SOME APPLICATIONS

Theorem 2 can be applied to various operators which are estimated from above
by the Riesz potentials. In this section, we apply the theorem to the fractional max-
imal operator, fractional Marcinkiewicz operator and the fractional powers of some
analytic semigroups.

4.1. Fractional maximal operator

For 0 ≤ α < n, we define the fractional maximal operator

Mα f (x) = sup
t>0

|B(x, t)|
α

n −1
∫

B(x,t)
| f (y)|dy,

where B(x, t) is the open ball centered at x of radius t for x ∈ Rn and |B(x, t)| is
a Lebesgue measure of B(x, t) such that |B(x, t)| = ωntn in which ωn denotes the
volume of the unit ball in Rn. The fractional maximal operator Mα is closely related
to a Riesz potential operator such that

Mα f (x)≤ ω
α

n −1
n (Iα| f |)(x). (4.1)

Corollary 1. Let p,q,r,s satisfy the condition (2.3), p,q,r,s ∈ P0,∞(0,∞),
0 ≤ λ < 1, and f ∈ M loc

p(·),r(·),λ(R
n). Suppose that the conditions (3.1) and of Lemma 2

are satisfied. If r(t)
r(t)+λ

< p(t)<
(

λ

r(t) +
α

n

)−1
, 1

p(t)−
1

q(t) = λ

(
1

r(t) −
1

s(t)

)
+ α

n , then the
fractional maximal operator Mα is bounded from the local variable Morrey-Lorentz
spaces M loc

p(·),r(·),λ(R
n) to M loc

q(·),s(·),λ(R
n).
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Remark 2. In the case λ = 0, from Theorem 2 we get the boundedness of the
operator Mα in the variable exponent Lorentz spaces Lp(·),q(·)(Rn) which is proved in
[11].

4.2. Fractional Marcinkiewicz operator

Let Sn−1 = {x ∈Rn : |x|= 1} be the unit sphere in Rn equipped with the Lebesgue
measure dσ. Suppose that Ω satisfies the following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \{0}, i.e.,

Ω(tx) = Ω(x) for any t > 0, x ∈ Rn \{0}.
(b) Ω has mean zero on Sn−1, i.e.,∫

Sn−1
Ω(x′)dσ(x′) = 0.

(c) Ω ∈ Lipγ(S
n−1), 0 < γ ≤ 1, that is, there exists a constant C > 0 such that

|Ω(x′)−Ω(y′)| ≤C|x′− y′|γ for any x′,y′ ∈ Sn−1.

In 1958, Stein [29] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ,α( f )(x) =
(∫

∞

0
|FΩ,α,t( f )(x)|2 dt

t3

)1/2

,

where

FΩ,α,t( f )(x) =
∫
|x−y|≤t

Ω(x− y)
|x− y|n−1−α

f (y)dy.

The continuity of the Marcinkiewicz operator µΩ was extensively studied in
[7, 12, 20, 30]. Let H be the space H = {h : ∥h∥= (

∫
∞

0 |h(t)|2dt/t3)1/2 < ∞}. Then it
is clear that µΩ( f )(x) = ∥FΩ,t( f )(x)∥.

By Minkowski inequality and the conditions on Ω, we get

µΩ,α( f )(x)≤
∫
Rn

|Ω(x− y)|
|x− y|n−1−α

| f (y)|
(∫

∞

|x−y|

dt
t3

)1/2

dy

≤C
∫
Rn

| f (y)|
|x− y|n−α

dy = Iα(| f |)(x).

Then we have the following corollary.

Corollary 2. Let p,q,r,s satisfy the condition (2.3), p,q,r,s ∈ P0,∞(0,∞) and
f ∈ M loc

p(·),r(·),λ(R
n). Suppose that the conditions (3.1) and of Lemma 2 are sat-

isfied. If r(t)
r(t)+λ

< p(t) <
(

λ

r(t) +
α

n

)−1
, 1

p(t) −
1

q(t) = λ

(
1

r(t) −
1

s(t)

)
+ α

n , then the
fractional Marcinkiewicz operator µΩ,α is bounded from the local variable Morrey-
Lorentz spaces M loc

p(·),r(·),λ(R
n) to M loc

q(·),s(·),λ(R
n).

Remark 3. In the case λ = 0, from Theorem 2 we get the boundedness of the
operator µΩ,α in the variable exponent Lorentz spaces Lp(·),q(·)(Rn).
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4.3. Fractional powers of some analytic semigroups

Suppose that L is a linear operator on L2 which generates an analytic semigoup
e−tL with the kernel pt(x,y) satisfying a Gaussian upper bound, i.e.,

|pt(x,y)| ≤
c1

tn/2 e−c2
|x−y|2

t (4.2)

for x,y ∈ Rn and all t > 0, where c1,c2 > 0 are independent of x,y and t.
For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2 f (x) =
1

Γ(α/2

∫
∞

0
e−tL f (x)

dt
t−α/2+1 .

Note that if L = −∆ is the Laplacian on Rn, then L−α/2 is the Riesz potential
Iα. Property (4.2) is satisfied for large classes of differential operators. In [4], other
examples of operators which are estimates from above by the Riesz potentials are
given. Since the semigroup e−tL has the kernel pt(x,y) which satisfies condition
(4.2), it follows that

|L−α/2 f (x)| ≤CIα(| f |)(x).
Hence we get the following corollary.

Corollary 3. Let p,q,r,s satisfy the condition (2.3), p,q,r,s ∈ P0,∞(0,∞),
0 ≤ λ < 1 and f ∈ M loc

p(·),r(·),λ(R
n). Suppose that the conditions (3.1) and of Lemma

2 are satisfied. If r(t)
r(t)+λ

< p(t) <
(

λ

r(t) +
α

n

)−1
, 1

p(t) −
1

q(t) = λ

(
1

r(t) −
1

s(t)

)
+ α

n ,

then the operator L−α/2 is bounded from the local variable Morrey-Lorentz spaces
M loc

p(·),r(·),λ(R
n) to M loc

q(·),s(·),λ(R
n).

Remark 4. In the case λ = 0, from Theorem 2 we get the boundedness of the
operator L−α/2 in the variable exponent Lorentz spaces Lp(·),q(·)(Rn).
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in the local Morrey-Lorentz spaces,” Integral Transforms Spec. Funct., vol. 4, pp. 318–330, 2016,
doi: 10.1080/10652469.2015.1121483.

[3] C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, Boston, 1988.
[4] V. I. Burenkov and V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of

the Riesz potential in local Morrey-type spaces,” Potential Anal., vol. 30, pp. 211–249, 2009, doi:
10.1007/s11118-008-9113-5.

[5] A. P. Calderón, “Spaces between L1 and L∞ and the theorem of Marcinkiewicz,” Studia Math.,
vol. 26, pp. 273–299, 1966.

[6] D. Chen, X. Chen, and L. Sun, “Well-posedness of the Euler equation in Triebel-Lizorkin-Morrey
spaces,” Applicable Analysis, vol. 99, pp. 772–795, 2020, doi: 10.1080/00036811.2018.1510491.

http://dx.doi.org/10.1186/1029-242X-2013-346
http://dx.doi.org/10.1186/1029-242X-2013-346
http://dx.doi.org/10.1080/10652469.2015.1121483
http://dx.doi.org/10.1007/s11118-008-9113-5
http://dx.doi.org/10.1080/00036811.2018.1510491


150 C. AYKOL AND J. J. HASANOV

[7] F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function,” Rend. Mat.
Appl., vol. 7, pp. 273–279, 1987.
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Lorentz spaces and some applications,” Georgian Math. J., vol. 27, pp. 557–567, 2020, doi:
10.1515/gmj-2018-0065.

[15] N. Hatano, “Fractional operators on Morrey-Lorentz spaces and the Olsen inequality,” Math.
Notes, vol. 107, pp. 63–79, 2020, doi: 10.1134/S0001434620010071.

[16] H. Kempka and J. Vybiral, “Lorentz spaces with variable exponents,” Mathematische Nachrichten,
vol. 287, pp. 938–954, 2014, doi: 10.1002/mana.201200278.

[17] V. Kokilashvili and S. G. Samko, “Singular integrals and potentials in some Banach spaces with
variable exponent,” J. Func. Spaces, vol. 1, pp. 45–59, 2003, doi: 10.1155/2003/932158.

[18] A. Küçükaslan, V. S. Guliyev, C. Aykol, and A. Şerbetçi, “Maximal and calderón-zygmund oper-
ators on the local variable Morrey-Lorentz spaces and some applications,” Appl. Anal., vol. 102,
p. 406–415, 2023, doi: 10.1080/00036811.2021.1952995.

[19] O. Kulak, “The inclusion theorems for variable exponent Lorentz spaces,” Turkish J. Math.,
vol. 40, pp. 605–619, 2016, doi: 10.3906/mat-1502-23.

[20] S. Lu, Y. Ding, and D. Yan, Singular integrals and related topics. World Scientific Publishing,
Hackensack, NJ, USA, 2007.

[21] D. Lukkassen, L. E. Persson, S. Samko, and P. Wall, “Weighted Hardy-type inequalities in variable
exponent Morrey-type spaces,” J. Funct. Spaces, p. 11, 2013, 716029, doi: 10.1155/2013/716029.

[22] G. Mingione, “Gradient estimates below the duality exponent,” Math. Ann., vol. 346, pp. 571–627,
2010, doi: 10.1007/s00208-009-0411-z.

[23] R. O’Neil, “Convolution operators and L(p,q) spaces,” Duke Math. J., vol. 30, pp. 129–142, 1963,
doi: 10.1215/S0012-7094-63-03015-1.

[24] M. A. Ragusa, “Embeddings for Morrey-Lorentz spaces,” J. Optim. Theory Appl., vol. 154, pp.
491–499, 2021, doi: 10.1007/s10957-012-0012-y.

[25] M. A. Ragusa and A. Tachikawa, “On interior regularity of minimizers of p(x)-energy function-
als,” Nonlinear Analysis, Theory, Methods and Applications, vol. 93, pp. 162–167, 2013, doi:
10.1016/j.na.2013.07.023.
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