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Abstract. In this paper, we considered quadratic OK-modules over the number fields and we
defined the new concepts ”cofinitely quadratic OK-module” and ”cofinitely flat quadratic OK-
module” for the integral ring OK of the quadratic number fields. We described tensor product
for these modules, and we extended them to the cofinitely quadratic OK-modules. Finally we
provided a main theorem by using these definitions.
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1. INTRODUCTION

Quadratic modules play a ubiquitous role in real algebra (see [4,6–8] and the refer-
ences therein). Many algebraic structures in real algebra and algebraic geometry are
associated with quadratic modules. For instance, a quadratic module in a commutat-
ive ring A (with unit element) is a subset Q of A containing the unit element 1, which
is closed under addition and under multiplication with squares and the ring A contains
a smallest quadratic module, namely, the set ∑A2 consisting of all sums of squares
of elements of A. Quadratic modules of groups are algebraic models for homotopy
connected 3-types introduced by Baues [3]. Baues in [3] constructed a functor from
the category of simplicial groups to the category of quadratic modules. In [9], Lie
algebra versions of quadratic modules was also defined, and the connections between
2-crossed modules, quadratic modules and simplicial Lie algebras were explored by
using simplicial properties in [1].

In recent studies, quadratic modules defined on algebraic number fields has also
gained importance in real algebra. For this purpose, in this work, the quadratic mod-
ules defined on such fields will be examined. Namely, quadratic modules belonging
to integral rings of algebraic number fields which are finite extensions of Q will be
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discussed and new definitions and algebraic structions related to these modules will
be given.

Let K be a number field over Q such that [K : Q] = n. We shall use denotation OK
for the ring of integers of K where OK is a finitely generated Z-module.

In the theory of finite OK-modules, these modules are identified in equipped with
a quadratic form q : OK → K/σ−1 where σ−1 = {x ∈ K | TrK/Q(xy) ∈ Z, ∀x,y ∈ OK}
is called different of K and σ−1 is also a fractional ideal of OK .

We notice that we have a function

Tr : K/σ
−1 →Q/Z, Tr(a+σ

−1) = tr(a)+Z.

Let b ∈ a+σ−1. If we take b = a+ t for some t ∈ σ−1 then Tr(t) ∈ Z holds.

2. FINITE QUADRATIC OK -MODULES

Definition 1. Let M be a finite OK-module, then a quadratic form on M is a func-
tion q : M → K/σ−1 which satisfies the following:

(i) q(ax) = a2q(x); ∀a ∈ OK , x ∈ M, q is a non-degenerate quadratic form.
(ii) The form βq = M×M → K/σ−1 defined by

βq(x,y) = βq(x+ y)−βq(x)−βq(y)

is OK-bilinear and symmetric.

βq is non-degenerate which means

βq(x,y) = 0 if and only if x = 0 for all y ∈ M,

βq(x,y) = 0 if and only if y = 0 for all x ∈ M,

where a finite quadratic OK-module can be briefly shown as M = (M,q) with a pair
(M,q).

It is clear that βq is also an OK-balanced form on M. Therefore, we can give the
following definition for M and N.

Definition 2. Let M = (M,q) and N = (N,q′) be finite quadratic OK-modules with
associated bilinear forms βq and γq′ respectively. The form βq ⊗ γq′ defined by

βq ⊗ γq′ : (M⊗N)× (M⊗N)→ K/σ
−1 ×K/σ

−1

(x⊗x′,y⊗y′) 7→ βq(x,y)γq′(x′,y′) is bilinear and symmetric. Since the form M⊗N =
(M ⊗N,q⊗ q′) is finite quadratic OK-module associated with OK-bilinear symmet-
ric form βq ⊗ γq′ then M ⊗N is called ”tensor product” of the finite quadratic OK-
modules M = (M,q) and N = (N,q′).

From the definitions which are given in [10] and [5, p. 44] for the modules over
the commutative rings (with unit) we can give the following definition for the finite
OK-modules.



ON COFINITELY FLAT QUADRATIC OK -MODULES 431

Definition 3. Let M be an OK-module and U be a finite OK-submodule of M. If
M/U is finitely generated, then U is called cofinite OK-submodule of M.

Definition 4. Let M = (M,q) be a finite quadratic OK-module, U be a finite OK-

submodule of M and 0 → U# f−→ M be an exact sequence of finite OK-modules such

that M/ f (U#) is finitely generated. If the sequence 0 → U ⊗U# IU⊗ f−−−→ U ⊗M is
exact, then U is called cofinitely flat quadratic OK-module, where U# is a dual group
of U and it is defined by U# = {y ∈ M | Bq(U,y) = 0}. We notice that U# is also an
OK-submodule of M.

Proposition 1 ([2]). M = (M,q) be a finite quadratic OK-module associated with
the bilinear form βq and U be an OK-submodule of M. The application x 7→ βq(x, ·)
defines an exact sequence of OK-modules:

0 →U# → M → Hom(U,K/σ
−1)→ 0.

Here Hom(U,K/σ−1) denotes the group of OK-module homomorphism of U into
K/σ−1. In particular, one has |U | · |U#|= |M| and (U#)# =U.

3. MAIN THEOREM

Theorem 1. Let M be a finite quadratic OK-module and U be an OK- submodule
of M. Let i : T → M be an inclusion homomorphism where T is any cofinite OK-
submodule of M. U is a cofinitely flat OK-module if and only if IU ⊗ i :U⊗T →U⊗M
is injective.

Proof. :⇒ Since U is a cofinitely flat OK-module from the hypothesis of our the-
orem then it is clear that U# is also a cofinitely flat OK-module from Definition 4.

Hence if we take U# instead of T then the sequence 0 → U ⊗U# IU⊗ f−−−→ U ⊗M is
exact which gives the injectivity of IU ⊗ i.
⇐: Let U be a cofinitely flat OK-module and i : U# → M be inclusion map for T =U#

and let IU ⊗ i : U ⊗U# →U ⊗M be injective. If we take the sequence 0 →U
f−→ M of

the finite OK- modules such that M/ f (U) is finitely generated then M/U# is finitely
generated for f (U) =U#. If we get h : U →U#, y 7→ h(y) = f (y) (∀y ∈U) then it is
clear that h is a homomorphism of finite OK-modules.

Since f = i ◦ h then we can write IU ⊗ f = (IU ◦ IU)⊗ (i ◦ h) = (IU ⊗ i)◦ (IU ⊗h)
where IU ⊗ h is isomorphism of finite OK-modules from properties (3) and (4) in
[10, p. 92].

Since (IU ⊗ i) and (IU ⊗h) are injective then IU ⊗ f is injective and so the sequence

0 →U ⊗U# IU⊗ f−−−→U ⊗M is exact. Therefore, U is a cofinitely flat OK-module. □
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[1] İ. Akça and Z. Arvasi, “Simplicial and crossed Lie algebras,” Homology Homotopy Appl., vol. 4,
no. 1, pp. 43–57, 2002, doi: 10.4310/HHA.2002.v4.n1.a4.

http://dx.doi.org/10.4310/HHA.2002.v4.n1.a4


432 A. PEKIN AND C. NEBIYEV

[2] R. Alizade, G. Bilhan, and P. F. Smith, “Modules whose maximal submodules have supplements,”
Commun. Algebra, vol. 29, no. 6, pp. 2389–2405, 2001, doi: 10.1081/AGB-100002396.

[3] H.-J. Baues, Combinatorial homotopy and 4-dimensional complexes. Walter de Gruyter, 2011,
vol. 2.

[4] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry. Transl. from the French., rev. and
updated ed., ser. Ergeb. Math. Grenzgeb., 3. Folge. Berlin: Springer, 1998, vol. 36.
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