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Abstract. We deal with strictly monotone continuous functions h : I → I, where I is an interval
of real numbers. The monounary algebra (I,h) contains at most 4 non-isomorphic components.
We derive that there are 10 possibilities only how these components can be combined in (I,h).
Two more options are cancelled in case that I = ⟨a,b⟩ for some real numbers a,b,a < b.
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1. INTRODUCTION

The notion of a function belongs to the fundamental notions in mathematics. If
range of a function is a subset of its domain, then this function determines an algeb-
raic structure which is called a monounary algebra, cf. e.g. [10]. Therefore these
algebras naturally occur in many areas of mathematics and their properties are ap-
plied in many ways. A lot of results outside universal algebra can be formulated
in notions of monounary algebras. For example, Sharkovski Theorem from the the-
ory of dynamical systems is about monounary algebras which contain cycles of all
natural lengths, cf. [12, 13]. The famous Łojasiewicz Theorem describes compon-
ent partitions of all monounary algebras with a bijective operation such that relevant
functional equations of iterative roots have a solution, cf. [1, 9].

Monounary algebras can be visualised in a natural way, as directed graphs with
exactly one out-edge at each vertex. Many tasks in universal algebra can be simplified
to monounary algebras. To investigate congruences means to go to unary operations,
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cf. [6]. To find a homomorphism is possible via a monounary algebras on enlarged
sets, cf. [11].

Monounary algebras are elaborated from the point of view of universal algebra in
great details, for overview see [2, 7]. This offers a tool for solving many questions
e.g. in numerical analysis and functional equations, cf. [2, 3, 8]. Notice that methods
to get the solution are constructive and they provide the ability to obtain algorithms
which can be used by computer algebra systems.

Functions of R into R are called real functions. A function of I into I, where I is
an interval of real numbers, is said to be an interval function. Sharkovski Theorem
mentioned above is on continuous interval functions.

We deal with strictly monotone continuous interval functions. Strictly increasing
(strictly decreasing) functions or sequences will be called increasing (decreasing) in
short.

Monounary algebras with continuous increasing real functions were studied by
O. Kopeček in [8]. We develop methods from this paper for monounary algebras
with continuous increasing interval functions. We obtain a classification of all such
functions according to types of components which occur in corresponding algebras.
Then we apply this classification to classify continuous decreasing interval functions
according to types of components which occur in corresponding algebras.

2. PRELIMINARIES

The set of all positive integers is denoted by N. If A is a set, then ∥A∥ is the
cardinality of this set.

Let A be a non-empty set and h be a function from A into A. We define by induction
hn(x) = h(hn−1(x)) for every x ∈ A and n ∈ N\{1}.

The pair (A,h) is called a monounary algebra. To (A,h) there corresponds an
oriented graph with the vertex set A and the edge set {(a,h(a))| a ∈ A}. We use the
symbol ∼= for isomorphism between algebras. For monounary terminology see, e.g.,
[4, 5, 7, 10].

An algebra (A,h) is said to be connected if for every x,y ∈ A there exist m,n ∈ N
such that hm(x) = hn(y).

Let (A,h) be a monounary algebra. An element a ∈ A is called cyclic if there
exists k ∈ N such that hk(a) = a. If hk(a) = a for some k ∈ N and hl(a) ̸= a for each
l < k, l ∈ N, then we say that a belongs to a k-element cycle. The algebra (A,h) is a
cycle if it is connected and every element of A is cyclic. Then ∥A∥= i for some i ∈N
and (A,h) is said to be an i-element cycle.

Let B ⊆ A. We denote h(B) = {h(b),b ∈ B} and h|B the function that is the re-
striction of h onto B. If h(B)⊆ B and (B,h|B) is a maximal connected subalgebra of
(A,h), then we say that (B,h|B) is a component of (A,h).

Suppose that h is injective and x is an element of range of h. Then we denote by
h−1(x) the unique element y of A such that h(y) = x. Next, by induction, if h−n(x)
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is an element of range of h, then h−(n+1)(x) is the unique element z ∈ A such that
hn+1(z) = x.

The next lemma is trivial.

Lemma 1. Let h : A → A and c ∈ A. The following assertions are equivalent:
(1) h2(c) = c,
(2) c belongs to a 1-element cycle in the algebra (A,h) or c belongs to a 2-

element cycle in (A,h).

We denote by N the monounary algebra that is defined on the set of all natural
numbers with the successor function; analogously, Z is defined on the set of all in-
tegers. Further, let C1, C2 be fixed 1- or 2-element cycles, respectively.

Lemma 2. Let h : A → A and n ∈ N. Then
(1) An element a ∈ A is cyclic in the algebra (A,h) if and only if it is cyclic in the

algebra (A,hn).
(2) h is injective if and only if hn is injective.
(3) h is surjective if and only if hn is surjective.
(4) (A,h) ∼= Z if and only if the algebra (A,hn) consists of n components and

each of them is isomorphic to Z.
(5) (A,h) ∼= N if and only if the algebra (A,hn) consists of n components and

each of them is isomorphic to N.

Proof. Let hm(a) = a. That means that the element a is cyclic in algebras (A,h)
and (A,hn).

Statements (2), (3) are obvious.
If (A,h)∼= Z, then it is easy to see that the algebra (A,hn) consists of n components

and each of them is isomorphic to Z.
Let (A,hn) consist of n components and each of them is isomorphic to Z. In view

of (2), (3) the operation h is bijective on A. Let B be a component of (A,h). Then B
is a cycle or B ∼= Z since h is bijective. Further, B does not contain a cycle according
to (1). Therefore B ∼= Z. If (A,h) is not connected then (A,hn) consists of more than
n components.

If (A,h) ∼= N, then the algebra (A,hn) obviously consists of n components iso-
morphic to N.

Let (A,hn) consist of n components and each of them is isomorphic to N. In view
of (2) the operation h is injective on A and it is not surjective on A according to (3).
That means that there exists a component B of the algebra (A,h) such that (B,h)∼= N.
The algebra (B,hn) consists of n components and thus B = A. □

If a ∈ A \ h(A) then the element a is called a source of (A,h). If (A,h) ∼= N, then
there exists exactly one source of (A,h).

Let T be a set of connected monounary algebras. The algebra (A,h) will be called
the T -algebra, if the following two conditions are satisfied:
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(1) every component of (A,h) is isomorphic to some algebra from the set T ;
(2) if B ∈ T , then there exists a component B′ of (A,h) such that B′ ∼= B.

Lemma 3. Let A ⊆ R, h : A → A be increasing and a ∈ A.
(1) If a < h(a), then hk(a)< hk+1(a) for every k ∈ N.
(2) If h(a)< a, then hk+1(a)< hk(a) for every k ∈ N.

Proof. Let h(a)< a. Then h2(a) = h(h(a))< h(a) since h is increasing. Suppose
that hk+1(a)< hk(a) for k ∈ N. We use that h is increasing to obtain

hk+2(a) = h(hk+1(a))< h(hk(a)) = hk+1(a).

□

Lemma 4. If A⊆R and h : A→A is decreasing, then the function h2 is increasing.

Proof. It follows from definitions. □

Lemma 5. Let h be decreasing and a ∈ A be such that h(a) = a. If b ∈ A \ {a},
then h(b) ̸= b.

Proof. If a < b, then the assumption that h is decreasing yields that

h(b)< h(a) = a < b.

If b < a, then b < h(b). □

Theorem 1. Let A ⊆ R and h : A → A.
(1) If h is an increasing function, then there exists T ⊆{C1,N,Z} such that (A,h)

is a T -algebra.
(2) If h is an decreasing function, then there exists T ⊆ {C1,C2,N,Z} such that

(A,h) is a T -algebra and (A,h) contains at most one 1-element cycle.

Proof. Suppose h is increasing. Let a ∈ A and h(a) ̸= a. The sequence {hn(a)}n∈N
consists of infinitely many elements according to Lemma 3. It means the component
of (A,h) which contains the element a is isomorphic to N or Z since h is injective.

Now let h be decreasing. Then the function h2 is increasing by Lemma 4 and
components of (A,h2) are algebras isomorphic to C1, N or Z. That means components
of (A,h) are algebras isomorphic to C1,C2,N or Z according to Lemmas 2 and 1. In
view of Lemma 5 the function h has at most one fixed point. □

We denote
Fixh = {a ∈ A : h(a) = a}.

Let us remark that if Fixh ̸= ∅, then the algebra (Fixh,h|Fixh) is the greatest {C1}-
subalgebra of (A,h).

Let a ∈ R. The interval ⟨a,a⟩= {a} will be called trivial.
In the next two lemmas we suppose that I ⊆ R is an interval and h : I → I.
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Lemma 6. Let h be continuous and a,b ∈ Fixh,a < b. If c ∈ (a,b) \ Fixh, then
there exist a′,b′ ∈ Fixh such that

a ≤ a′ < c < b′ ≤ b and (a′,b′)∩Fixh =∅.

Proof. Let (a,b)∩ Fixh ̸= ∅. Consider A = ⟨a,c)∩ Fixh and B = (c,b⟩ ∩ Fixh.
The set A has a supremum a′ ∈ ⟨a,c⟩. To see that a′ ∈ A suppose that a′ /∈ A. Then
there is a sequence {ai}∞

i=1 such that ai ∈ A and limi→∞ ai = a′. Since h is continuous
we obtain ai = h(ai) → h(a′). Therefore a′ = h(a′). Conclude a′ ∈ A according to
c /∈ Fixh, a contradiction.

Analogously the set B has a minimum b′,b′ > c. □

Lemma 7. Let h be increasing, m ∈ N and a ∈ I.
If a < h(a), then a < hm(a) and ⟨a,hm(a)⟩∩Fixh =∅.
If a > h(a), then a > hm(a) and ⟨hm(a),a⟩∩Fixh =∅.

Proof. Assume that h(a) > a. Then hm(a) > a according to Lemma 3. Consider
d ∈ (a,h(a)). Then h(a) < h(d) since h is increasing. Therefore d < h(d), so d /∈
Fixh. We obtained ⟨a,h(a)⟩∩Fixh =∅. That means the statement ⟨a,hm(a)⟩∩Fixh =
∅ is valid because the function hm is increasing and Fixh = Fixhm .

The second implication can be proved analogously. □

3. CONTINUOUS INCREASING INTERVAL FUNCTIONS

In this section we give a classification of algebras (I,h), where I ⊆R is an interval
and h is a continuous increasing function in the common sense. The algebras under
consideration are T -algebras for some T ⊆{C1,N,Z} (see Theorem 1). We will show
that T = {N,Z} is not possible. Moreover, C1 ∈ T in the case that I = ⟨a,b⟩ for some
a,b ∈ R.

Let I ⊆ R be an interval. The closure of the interval I will be denoted by I.
We suppose that h is a function from I into I and it is a continuous increasing

function in this section.

Lemma 8. Let function h be defined on I by

h(x) =


h(x) if x ∈ I,
lima→x+ h(a) if x /∈ I and x ≤ a for a ∈ I,
lima→x− h(a) if x /∈ I and x ≥ a for a ∈ I.

Then h : I → I and it is continuous increasing. If J ⊂ I is an interval such that
h(J)⊆ J, then h|J = h|J.

Proof. Suppose x ∈ I \ I. Then x ≤ a for each a ∈ I or x ≥ a for each a ∈ I. If
x ≤ a for a ∈ I, then x ≤ h(a) since h(I)⊆ I. Therefore lima→x+ h(a) exists because
h is continuous. Analogously if x ≥ a for each a ∈ I, then lima→x− h(a) exists. So,
the function h is correctly defined. Obviously, it is continuous and increasing. The
equality h|J = h|J is valid according to the definition. □



704 E. HALUŠKOVÁ

3.1. On the set of fixed points

Lemma 9. Let x ∈ I and x < h(x). Then
(1) the sequence {hn(x)}n∈N is increasing and

(a) ⟨x, limn→∞hn(x))∩Fixh =∅,
(b) limn→∞hn(x) ∈ Fixh ∪{∞};

(2) if M = {n ∈ N : h−n(x) is de f ined} ≠ ∅, then the sequence {h−n(x)}n∈M is
decreasing and if M = N, then
(a) (limn→∞h−n(x),x⟩∩Fixh =∅,
(b) limn→∞h−n(x) ∈ Fixh ∪{−∞}.

Proof. The sequence {hn(x)}n∈N is increasing according to Lemma 3. Therefore it
is convergent and its limit is ∞ or it is from I since hn(x) ∈ I for each n ∈N. Suppose
that limn→∞ hn(x) = a,a ∈ I. In view of h is continuous we obtain

h(a) = h( lim
n→∞

hn(x)) = lim
n→∞

h(hn(x)) = lim
n→∞

h(hn(x)) = a.

Put yn = h−n(x) for each n ∈ M. Let m ∈ N be such that ym+1 ≥ ym. Then ym+1 >
ym. The assumption that h is increasing implies

x = hm+1(ym+1)> hm+1(ym) = h(x),

a contradiction. Thus yn+1 < yn for each n∈M. If M =N, then {yn}n∈N is convergent
and its limit is −∞ or it is from I since yn ∈ I for each n∈N. Suppose that limn→∞ yn =
b,b ∈ I. In view of h is continuous we obtain

h(b) = h( lim
n→∞

yn) = lim
n→∞

h(yn) = lim
n→∞

h(yn) = lim
n→∞

yn−1 = b.

Statements (a) for hn(x) and h−n(x) follow from Lemma 7. □

Analogously we can prove

Lemma 10. Let x ∈ I and x > h(x). Then
(1) the sequence {hn(x)}n∈N is decreasing and

(a) (limn→∞hn(x),x⟩∩Fixh =∅,
(b) limn→∞hn(x) ∈ Fixh ∪{−∞};

(2) if M = {n ∈ N : h−n(x) is de f ined} ≠ ∅, then the sequence {h−n(x)}n∈M is
increasing and if M = N, then
(a) ⟨x, limn→∞h−n(x))∩Fixh =∅,
(b) limn→∞h−n(x) ∈ Fixh ∪{∞}.

Lemma 11. If I = ⟨a,b⟩, a,b ∈ R, then Fixh ̸=∅.

Proof. Consider the function g : I → I defined by g(x) = h(x)− x. Then g is con-
tinuous and g(a) ≥ 0,g(b) ≤ 0. Thus Intermediate Value Theorem gives that there
exists c ∈ ⟨a,b⟩ such that g(c) = 0. We have c ∈ Fixh. □

Lemma 12. Let a ∈ I,(a− ε,a+ ε)⊆ I and ε ∈ R,ε > 0.
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(1) If (a− ε,a)∩Fixh =∅ and (a,a+ ε)⊆ Fixh, then a ∈ Fixh.
(2) If (a,a+ ε)∩Fixh =∅ and (a− ε,a)⊆ Fixh, then a ∈ Fixh.

Proof. Let assumptions of (1) be satisfied. Then continuity of h implies

h(a) = lim
x→a+

h(x) = lim
x→a+

x = a.

□

Corollary 1. Let Fixh ̸=∅. Then the following conditions are equivalent:
(1) Fixh is an interval,
(2) Fixh ∈ {(−∞,a⟩,⟨a,b⟩,⟨b,∞),R} for some a,b ∈ R,a ≤ b.
(3) ⟨c,d⟩∩Fixh ̸= {c,d} for each c,d ∈ I such that c < d.

Proof. The equivalence of (1) and (2) follows from the definition of h and Lem-
ma 12. It is trivial that (2) implies (3).

Assume Fixh is not an interval. Then there exist a,b∈ Fixh,a< b such that ⟨a,b⟩⊈
Fixh. Let c ∈ ⟨a,b⟩ \Fixh. Consider elements a′,b′ ∈ I such that a′ is a supremum of
{u ∈ Fixh : a ≤ u < c} and b′ is an infimum of {v ∈ Fixh : c < v ≤ b}. If {an}n∈N is
a sequence of elements of Fixh such that a ≤ an < c and an → a′, then

h(a′) = h( lim
n→∞

an) = lim
n→∞

h(an) = lim
n→∞

an = a′.

Therefore a′ ∈ Fixh. Analogously b′ ∈ Fixh. We obtained

⟨a′,b′⟩∩Fixh = {a′,b′}.
□

3.2. {N}-algebras

Lemma 13. Let h be not surjective and Fixh =∅. Then (I,h) is an {N}-algebra.

Proof. In view of the Lemma 11 we have I =R, I = ⟨a,∞) or I = (−∞,a⟩ for some
a ∈ R. Further, limn→∞ hn(x) ∈ {−∞,∞} for each x ∈ I in view of Lemmas 9 and 10.

Let x ∈ I and limn→∞ hn(x) = ∞. Then the sequence {hn(x)}∞
n=1 is increasing. If

h−k(x) is defined for every k ∈ N then the sequence {h−k(x)}∞
k=1 is decreasing. In

view of Lemma 9 limn→∞ hn(x) =−∞. Therefore I = R and h is surjective, a contra-
diction. We conclude that h−k(x) is not defined for some k ∈ N and the component
of x is isomorphic to N. □

Lemma 14. Let I = ⟨a,b⟩, a,b ∈ R. If Fixh =∅ and ∥Fixh∥= 1, then (I,h) is an
{N}-algebra.

Proof. We have Fixh ⊂ {a,b} by Lemma 11. Let Fixh = {a}. Take x ∈ I. Then
h(x)< x since Fixh =∅. The sequence {hn(x)}∞

n=1 is decreasing and its limit is equal
to a according to Lemma 10. If h−k(x) is defined for every k ∈ N, then in view of
Lemma 10 the sequence {h−k(x)}∞

k=1 is increasing and it has a limit from the set
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{a,∞}, what is not possible. Therefore h−k(x) is not defined for some k ∈ N and the
component of x in (I,h) is isomorphic to N.

Analogously if Fixh = {b}. □

Lemma 15. Let I = (a,∞) or I = (−∞,a), a ∈ R and h be not surjective. If
Fixh =∅ and ∥Fixh∥= 1, then (I,h) is an {N}-algebra.

Proof. We have Fixh = {a}. Let I = (a,∞). Then h is bounded from above since h
is not surjective. Take x∈ I. Then h(x)< x and the sequence {hn(x)}∞

n=0 is decreasing
with the limit equal to a according to Lemma 10. If h−k(x) is defined for every k ∈N,
then the sequence {h−k(x)}∞

k=1 is increasing. In view of Lemma 10 it has a limit
equal to ∞, what is not possible since h is bounded. Therefore h−k(x) is not defined
for some k ∈ N and the component of x in (I,h) is isomorphic to N.

For I =(−∞,a) the function h is bounded from below and the sequence {hn(x)}∞
n=0

is increasing. □

3.3. Main result

Lemma 16. Let a ∈ Fixh.
(1) If Fixh ∩ (−∞,a) =∅, then I ∩ (−∞,a) is a subalgebra of (I,h).
(2) If Fixh ∩ (a,∞) =∅, then I ∩ (a,∞) is a subalgebra of (I,h).

Proof. Let x ∈ I and x < a. If h(x) < x, then h(x) < a. If h(x) > x, then h(x) < a
in view of Lemma 9(1a).

Analogously we can see the second part of the assertion. □

Lemma 17. Let h be not surjective, sets Fixh,Fixh be intervals and h is bounded
on the set I \Fixh. Then (I,h) is {N,C1}-algebra.

Proof. We have Fixh ̸= ∅. The set I \ Fixh is an interval or there exist intervals
I1, I2 such that I \Fixh = I1 ∪ I2.

Let I \ Fixh be an interval. Denote A = I \ Fixh. Then h|A = h|A according to
Lemma 8. We have that A is a subalgebra of (I,h) according to Lemma 16. Further,

Fixh|A =∅,∥Fixh|A∥= 1

and h is not surjective on A. Therefore the algebra (A,h|A) satisfies assumptions of
Lemmas 14 or 15 and so it is an {N}-algebra.

Let I \Fixh be not an interval. Then Fixh = Fixh = ⟨a,b⟩ for some a,b ∈ R,a ≤
b. Denote J1 = I1 ∩ I,J2 = I2 ∩ I. Intervals J1,J2 are non-empty and they create
subalgebras of (I,h) according to Lemma 16. Further,

J1 ∪Fixh ∪ J2 = I, Fixh|J1 = Fixh|J2 =∅ and ∥Fixh|J1
∥= ∥Fixh|J2

∥= 1.

Moreover, h(J1) ̸= J1,h(J2) ̸= J2 since h is bounded. Thus algebras (J1,h|J1),
(J2,h|J2) satisfy assumptions of Lemmas 14 or 15 and therefore they are {N}-algeb-
ras. □
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Lemma 18. Let a,b ∈ I be such that a < b. If ⟨a,b⟩ ∩Fixh = {a,b}, then (a,b)
forms a subalgebra of (I,h) with all components isomorphic to Z.

Proof. Let x be such that a < x < b. Then x ∈ I and

a = h(a)< h(x) = h(x)< h(b) = b

according to h is increasing. Therefore (a,b) forms a subalgebra of (I,h). The
function h is bijective on (a,b) since it is continuous. Thus every component of
((a,b),h|(a,b)) is isomorphic to Z or to C1 according to h is increasing. Further,

(a,b)∩Fixh = (a,b)∩Fixh =∅

according to the assumption. □

Theorem 2. Let I be an interval and h : I → I be continuous increasing function.
(1) Let h be surjective. Then the algebra (I,h) is one of the following 3 types:

(a) {C1}-algebra, if Fixh = I.
(b) {Z}-algebra, if Fixh =∅.
(c) {C1,Z}-algebra, if Fixh /∈ {I,∅}.

(2) Let h be not surjective. Then the algebra (I,h) is one of the following 3 types:
(a) {N}-algebra, if Fixh =∅.
(b) {C1,N}-algebra, if Fixh is an interval and h is bounded (above and be-

low) on I \Fixh.
(c) {C1,N,Z}-algebra, otherwise.

Proof. The statement (1) is obvious.
Let h be not surjective. Suppose that Fixh = ∅. If Fixh = ∅, then (I,h) is {N}-

algebra according to Lemma 13. Suppose that Fixh ̸= ∅. We have I = ⟨a,b⟩ or I ∈
{(a,∞),(−∞,a)} for some a,b ∈ R,a < b. If I ∈ {(a,∞),(−∞,a)}, then Fixh = {a}
and (I,h) is {N}-algebra according to Lemma 15. If I = ⟨a,b⟩, then Fixh = {a} or
Fixh = {b} since h is continuous and not surjective. Therefore (I,h) is {N}-algebra
according to Lemma 14.

The assertion (b) is proved in Lemma 17.
Let suppositions of (a),(b) be not valid. Then Fixh ̸= ∅. Therefore the algebra

(I,h) contains an 1-element cycle. Further, h(I) ̸= I since h is not surjective. Thus
every u ∈ I such that u /∈ h(I) is a source of (I,h). That means (I,h) contains com-
ponents isomorphic to N according to Theorem 1.

Non-surjectivity of h means that h is bounded from above or h is bounded from
below. Assume that Fixh is not an interval. Then there are a,b ∈ Fixh such that there
exists c ∈ (a,b)\Fixh. In view of Lemma 6 there are a′,b′ ∈ Fixh such that

a ≤ a′ < c < b′ ≤ b and (a′,b′)∩Fixh =∅.

Thus by Lemma 18 the interval (a′,b′) determines a subalgebra of (I,h) and every
component of ((a′,b′),h|(a′,b′)) is isomorphic to Z.
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Now let Fixh be an interval. Then Fixh ̸=∅ by (a). That means Fixh is an interval.
Therefore h is not bounded from above on I \Fixh or h is not bounded from below
on I \Fixh according to (b). Suppose that h is not bounded from above on I \Fixh.
Then I ∈ {R,⟨a′,∞)} for some a′ ∈ R. Further, Fixh ∈ {(−∞,b⟩,⟨a,b⟩} for some
a,b ∈ I according to Corollary 1. Thus (b,∞)∩Fixh = ∅. We obtained the interval
(b,∞) is a subalgebra of (I,h) and every component of the algebra ((b,∞),h|(b,∞)) is
isomorphic to Z according to Lemma 18. Analogously we proceed if h is not bounded
from below on I \Fixh. □

The following tables illustrate Theorem 2. They show all types of components that
occur in the corresponding algebras.

(1) h surjective

Fixh =∅ Fixh = I otherwise

(2) h not surjective
h bounded on I \Fixh,

Fixh =∅ Fixh interval otherwise

Corollary 2. Let I be an interval and h : I → I be continuous increasing function.
Then the following assertions are equivalent:

(i) (I,h) is an {C1,N,Z}-algebra.
(ii) h(I) ̸= I, Fixh ̸=∅ and at least one of the following conditions is satisfied

(a) Fixh is not an interval,
(b) h is not bounded on I \Fixh.

Corollary 3. Let I be an interval and h : I → I be continuous increasing function.
Then the algebra (I,h) is not an {N,Z}-algebra.

If I = ⟨a,b⟩, a,b ∈ R, then (A,h) is an T -algebra such that

T ∈ {{C1},{C1,Z},{C1,N},{C1,N,Z}}.

Proof. It follows from Theorem 2 and Lemma 11. □

Example 1. Let h(x) = 2x for x ∈ R. The algebra (R,h) is {C1,Z}-algebra. It
contains exactly one 1-element cycle.

Example 2. Let h(x) = ex for x ∈ R. The algebra (R,h) is {N}-algebra.
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Example 3. Let h(x) = ex −1 for x ∈ R. The algebra (R,h) is {C1,N,Z}-algebra
with exactly one 1-element cycle. The interval (−∞,0) forms the maximal {N}-
subalgebra of (R,h). If a ≤−1, then intervals ⟨a,0),(a,0) form {N}-subalgebras of
(R,h). The interval (0,∞) forms the maximal {Z}-subalgebra of (R,h) and there is
no interval I′ ⊂ (0,∞) such that I′ forms a subalgebra of (R,h).

Example 4. Let

h(x) =

{
ex −1 if x ∈ ⟨−1,0⟩,
x if x ∈ (0,1⟩.

The algebra (⟨−1,1⟩,h) is {C1,N}-algebra. The interval ⟨−1,0) forms the maximal
{N}-subalgebra of (⟨−1,1⟩,h). The interval ⟨0,1⟩ the a maximal {C1}-subalgebra of
(⟨−1,1⟩,h).

4. CONTINUOUS DECREASING INTERVAL FUNCTIONS

Let I ⊆ R be an interval. In this section we will suppose that h is a function from
I into I and it is continuous and decreasing.

The algebra (I,h) is T -algebra with at most one 1-element cycle for some T ⊆
{C1,C2,N,Z} by Theorem 1. We will show in this section that there are six possibil-
ities for T only and that T is determined by the set Fixh2 .

Lemma 19. There exists o ∈ I such that Fixh = {o}.

Proof. In view of Lemma 5 we have ∥Fixh∥ ≤ 1. Let a /∈ Fixh. Without loss of
generality let h(a)< a. Then h2(a)> h(a). Put g(x) = h(x)−x. We have g(a)< 0 <
g(h(a)). The function g is continuous and thus there is

o ∈ (h(a),a) such that g(o) = 0

according to Intermediate Value Theorem. We obtained Fixh = {o}. □

Corollary 4. The algebra (I,h) contains exactly one component isomorphic to C1.

Lemma 20. Let a ∈ I \Fixh. Then the following properties are equivalent:
(1) {a,h(a)} creates 2-element cycle of (I,h).
(2) there exists c ∈ R such that the line y = −x + c contains points [a,h(a)],

[h(a),h2(a)].
(3) the point [a,h(a)] is symmetric with the point [h(a),h2(a)] according to the

line x = y.

Proof. Let (1) be satisfied. Then h2(a) = a. The property (3) is valid since points
[a,a], [h(a),a], [h(a),h(a)], [a,h(a)] are vertices of a square.

Let (3) be fulfilled. Therefore h2(a) = a. The statement (2) follows from the fact
that the line determined by points [a,h(a)], [h(a),h2(a)] is perpendicular to x = y.

If (2) is valid, then
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h(a) =−a+ c and h2(a) =−h(a)+ c =−(−a+ c)+ c = a.

□

Lemma 21. Let h be not surjective and a ∈ R.
(1) If h(I) = (−∞,a⟩, then

(a) h(I) = (−∞,a),
(b) I = R or there exists b ∈ R, b > a such that I = (−∞,b),
(c) h2(I) = (h(a),a).

(2) If h(I) = ⟨a,∞), then
(a) h(I) = (a,∞),
(b) I = R or there exists b ∈ R,b < a such that I = (b,∞),
(c) h2(I) = (a,h(a)).

Proof. Let h(I) = (−∞,a⟩. We have (−∞,a)⊂ I and a∈ I since h is not surjective.
The equality h(I) = (−∞,a⟩ is not possible since if c < a, then c ∈ I and h(c) >
h(a). Thus h(I) = (−∞,a). Assume that I = (−∞,b⟩ for some b > a,b ∈ R. Then
the number h(b) is the minimum of the the function h on I since h is decreasing.
Therefore the interval h(I) is closed on the left side, a contradiction. We obtained
I = R or I = (−∞,b). Further, limx→−∞ h(x) = a. Therefore

h2(I) = h((−∞,a)) = (h(a), lim
x→−∞

h(x)) = (h(a),a).

Similarly we argue if h(I) = (a,∞). □

Lemma 22. Let h be not surjective, a,b ∈R are such that a < b and h(I) = ⟨a,b⟩.
Then a ∈ I or b ∈ I and

(1) if a,b ∈ I, then h2(I)⊆ ⟨h(b),h(a)⟩.
(2) if b /∈ I, then h2(I)⊆ (a,h(a)⟩.
(3) if a /∈ I, then h2(I)⊆ ⟨h(b),b).

Proof. There are a ∈ I or b ∈ I since h is not surjective. Assume that a,b ∈ I. Then

h2(I)⊆ h(h(I)) = h(⟨a,b⟩) = ⟨h(b),h(a)⟩.
Let b /∈ I. Then b∈ I since h is continuous and h(I)⊂ I. Consider a sequence {bn}n∈N
such that bn ∈ I and limn→∞ bn = b. We obtain bn < b and limn→∞ h(bn) = a since h
is decreasing. Therefore

h2(I)⊆ h(h(I)\{b}) = h(⟨a,b)) = ( lim
n→∞

h(bn),h(a)⟩= (a,h(a)⟩.

If a /∈ I, then h2(I)⊆ ⟨h(b),b) by a similar way. □

Lemma 23. Let h be not surjective. Then h2 is bounded (above and below).

Proof. The interval I is not trivial since h is not surjective. Suppose that a,b ∈ R,
a < b.
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If h(I) = ⟨a,b⟩, then h2 is bounded according to Lemma 22. If h(I) = (−∞,a⟩ or
h(I) = ⟨a,∞), then h2 is bounded in view of Lemma 21. □

The function h2 is increasing according to Lemma 4. Thus the function h2 is
defined by Lemma 8.

Lemma 24. Let h be not surjective. Then Fixh2 = Fixh2 .

Proof. Suppose that a,b ∈ R, a < b. To see that Fixh2 ⊂ I let h(I) = (−∞,a⟩.
Then h(I) = (−∞,a). We have a ∈ I and h2(I) = (h(a),a) according to Lemma 21.
Therefore Fixh2 ⊆ ⟨h(a),a⟩ ⊂ I. Analogously we can proceed if h(I) = ⟨a,∞). If
h(I) = ⟨a,b⟩, then use Lemma 22.

Let x ∈ Fixh2 . Then x ∈ I and h2(x) = h2(x) = x. That means x ∈ Fixh2 . This yields
that Fixh2 = Fixh2 .

□

Theorem 3. Let I be an interval and h : I → I be continuous decreasing function.

(1) Let h be surjective. Then the algebra (I,h) is one of the following 3 types:
(a) {C1,C2}-algebra, if Fixh2 = I,
(b) {C1,C2,Z}-algebra, if Fixh2 ̸= I and ∥Fixh2∥> 1,
(c) {C1,Z}-algebra, if ∥Fixh2∥= 1.

(2) Let h be not surjective. Then the algebra (I,h) is one of the following 3 types:
(a) {C1,N}-algebra, if ∥Fixh2∥= 1,
(b) {C1,C2,N}-algebra, if Fixh2 is a non-trivial interval,
(c) {C1,C2,N,Z}-algebra, if Fixh2 is not an interval.

Proof. Suppose h is surjective. Then there is T ⊆ {C1,C2,Z} such that (I,h) is
an T -algebra according to Theorem 1. We have C1 ∈ T according to Lemma 19. If
Fixh2 ̸= I, then Z ∈ T according to Lemma 1. If ∥Fixh2∥> 1, then C2 ∈ T according
to Lemmas 1 and 19.

Suppose h is not surjective. The function h2 is increasing according to Lemma 4
and it is not surjective according to Lemma 2(3). Moreover, it is bounded on both
sides by Lemma 23. We will apply Theorem 2 to the algebra (I,h2). The equality
Fixh2 = Fixh2 is valid according to Lemma 24.

Let ∥Fixh2∥= 1. Then Fixh2 is a trivial interval. The algebra (I,h2) is an {C1,N}-
algebra according to Theorem 2(2b). Therefore the algebra (I,h) is an {C1,N}-
algebra according to Lemma 2(4).

Let Fixh2 be a non-trivial interval. Then the algebra (I,h2) is an {C1,N}-algebra
according to Theorem 2(2b). That means the algebra (I,h) is an {C1,C2,N}-algebra
according to Lemma 2, Lemma 1 and Lemma 19.

Now suppose Fixh2 is not an interval. Then the set Fixh2 contains at least 3 points
according to Lemma 1 and Lemma 19. The algebra (I,h2) is an {C1,N,Z}-algebra



712 E. HALUŠKOVÁ

according to Theorem 2(2c). In view of Lemma 2, Lemma 1 and Lemma 19 we
obtain that (I,h) is an {C1,C2,N,Z}-algebra. □

The following tables illustrate Theorem 3. They show all types of components that
occur in the corresponding algebras.

(1) h : I → I surjective
∥Fixh2∥= 1 Fixh2 = I otherwise

(2) h : I → I not surjective
∥Fixh2∥= 1 Fixh2 not interval otherwise

Corollary 5. The algebra (I,h) is not an {C1,N,Z}-algebra.

Example 5. Let

h(x) =

{
x2 if x ∈ ⟨−1,0⟩,
−x2 if x ∈ (0,1⟩.

Then

h2(x) =

{
−x4 if x ∈ ⟨−1,0⟩,
x4 if x ∈ (0,1⟩.

The algebra (⟨−1,1⟩,h) is {C1,C2,Z}-algebra. Algebras (⟨−1,1⟩,h2), ((−1,1),h)
are {C1,Z}-algebras.
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