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Abstract. We obtain some results concerning the solutions of certain types of three—point non—
linear boundary—value problems, subject to non—linear boundary conditions. We reduce the given
problem to a parametrized one with linear two—point boundary restrictions containing some ar-
tificially introduced parameters. By the study of the transformed two—point problem we justify
our method, which is based upon a special type of approximations constructed in analytic form.
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1. INTRODUCTION

The non—linear three—point boundary—value problems were studied earlier mostly
in the case of linear boundary restrictions. They were investigated in [2],[4], and [5]
by using parametrization and the so—called numerical analytic method based upon
successive approximations [7].

According to the basic idea of the above mentioned method, at first the original
boundary—value problem is transformed to a two—point one which is replaced by the
problem for the “perturbed” differential equation containing some new artificially
introduced parameters, whose numerical values should be determined. The solutions
of the parametrized problem are built in analytic form by successive iterations with
all iterations depending upon the artificially introduced parameters.

Here we give a possible approach to transform a three—point boundary—value prob-
lem with non-linear boundary restrictions into a two—point one with linear boundary
conditions using ideas from [1, 3, 5].

(© 2012 Miskolc University Press
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2. PROBLEM SETTING

We consider the three—point boundary—value problem subject to the nonlinear
boundary conditions

dzy) — f(t.,x(1),1€[0,T], x €R", @2.1)
g (x(0),x(t1),x(T)) =0,1, € (0,T). (2.2)

Here, we suppose that the functions
f:[0,T]x D — R"

and
g:DxDxD—R" (n>2)
are continuous, where D C R” is a closed and bounded domain.
The problem is the determination of a continuously differentiable solution of the

system of differential equations (2.1) satisfying non-linear three—point boundary re-
strictions (2.2).

3. CONSTRUCTION OF AN EQUIVALENT PROBLEM WITH LINEAR TWO—POINT
BOUNDARY CONDITIONS

To pass to the linear two—point boundary conditions from (2.2), we replace the
values of the components of the solution of (2.1), (2.2) at the points t = 0, t = ¢; and
t = T by the following parameters:

z:=x(0) = col (x1(0),x2(0),...,x,(0)) =col (21,22+---.2n)
n:=x(t1) = col (x1(t1),x2(t1), ..., xn(t1)) = col (N1, M2,..., M), (3.1
Ai=x(T)=col (x1(T),x2(T),...,xy(T)) =col (A1,A2,....An).

Let us rewrite the boundary conditions (2.2) in the form:
Ax(0)+Cx(T)+ g (x(0),x(t1),x(T)) = Ax(0) + Cx(T), (3.2)

where A is some given matrix and C = I,,, where [ is a unit n X n matrix.
Using parametrization (3.1), the non-linear three—point boundary restrictions (3.2)
can be written as a two—point ones:

Ax(0)+x(T) =Az+ A —g(z,n,A). (3.3)
Let us put
d(z,nA)=Az+A—-g(z,n.4). (3.4)

Taking into account (3.4), the parametrized boundary conditions (3.3) can be rewrit-
ten in the form:

Ax(0)+x(T) =d(z,n. ). 3.5)
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Let us consider the special case of (3.5) where we take the zero matrix instead of A4:

x(0) =z,
x(T)=d(z,n,A).
So, instead of the original three—point boundary—value problem with non-linear bound-

ary conditions (2.1), (2.2) we study an equivalent parametrized two—point one, con-
taining linear separated boundary restrictions (2.1), (3.6).

(3.6)

Remark 1. The set of the solutions of the non—linear three—point boundary—value
problem (2.1), (2.2) coincides with the set of the solutions of the two—point problem
(2.1), (3.6) satisfying additional conditions (3.1).

4. CONSTRUCTION OF THE SUCCESSIVE APPROXIMATIONS

Let us introduce the vector

SD(f):=1|: max ft,x)— min f(t,x):|. “.1n

2 | (¢,x)e[0,T]xD " (t,x)€[0,T]xD

The original boundary—value problem (2.1), (2.2) is such that the subset

z+%[d(z,n,/\)—z]

)c D,¥n,A eD}

Dg :={zeD:B(z, max
t€[0,T]

is non—empty

Dg # @. 4.2)
Assume that the function f(¢,x) satisfies Lipschitz condition of the form
|f(t.w)— f,0)] = K|u—v], (4.3)

forallt €[0,T], {u,v} C D with some non—negative constant matrix K = (ki 5 )lr.ljzl.

Moreover, we suppose that the spectral radius 7(K) of the matrix K satisfies the
following inequality

r(K) < g. (4.4)

Let us associate to the parametrized boundary—value problem (2.1), (3.6) the se-
quence of functions:

t
xXm(t,z,nA) =2 +/ f(s, xm—1(s,2,n,4))ds—
0

t (T t
—7/ f(s,xm—1(s,z,n,/\))ds+T[d(z,n,k)—z], (4.5)
0
where m=1,2,3,...,

t
xO(Z,z,n,k)=z+7[d(z,n,k)—z]e Dg, (4.6)
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n=col(n1,n2,....,Mn) € D, A =col(A1,A2,...,An) € D,
Xm (t.2,0,1) = col (Xm1 (1,2,0,4)  Xm2 (6. 2,0,4) ..., Xmn (t.2,0,1)) and 2, 7, A
are considered as parameters.

It is easy to check that the functions x,, (¢,z,n,A) satisfy linear parametrized
boundary conditions (3.6) forallm > 1,z € Dg,n€ D, A€ D.

The following statement establishes the convergence of the sequence (4.5).

Theorem 1. Assume that the function f :[0,T]x D — R" on the right side of
the system of differential equations (2.1) and the parametrized boundary restrictions
(3.6) satisfy conditions (4.2)—(4.4).

Then for all fixed z € Dg, n€ D, A € D:

(1) The functions of the sequence (4.5) are continuously differentiable and satisfy
the parametrized boundary conditions (3.6):

xm(O»Z, nsk) = Z?

(T2 ) = d o1 A, @7

m=1,2,3,...
(2) The sequence of functions (4.5) fort € [0, T| converges uniformly as m — oo
to the limit function

x*(t,z,nA) = lim xp(t,2,1,4). (4.8)
m—00
(3) The limit function x*(t,z,n,A) satisfies the parametrized linear two—point
boundary conditions:

x*0,z,n,1) =2z,
x*(T,z,n,A) =d(z,n,4).

(4) The limit function (4.8) for all t € [0,T] is a unique continuously differenti-
able solution of the integral equation

t t [T t
x0) =+ [ Foxeonds = 4 [0 fxo)ds + LA =21 @9
0 0
i. e. it is the solution of the Cauchy problem for the modified system of
differential equations:
dx

7 = f(t,x)+ A(z,n,A), (4.10)

x(0) =2z, @.11)

where

1 1 (T
Az, M) = T[d (z,n,/\)—z]—T/O f(s,x(s))ds. (4.12)
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(5) The following error estimate holds:

[z ) otz )| < (1 —;) 0" (1 —0)"5p(f).  (@13)

where matrix
0:= Tk (4.14)
=1k .

Proof. We will prove that the sequence of functions (4.5) is a Cauchy sequence
in the Banach space C([0,T],R"). First we show that x,,(¢,z,1n,1) € D, for all
(t,z,n,A) € [0,T] x Dg x D x D,me€ N.

Indeed, using the estimates of Lemma 2.3 from [7] (see also Lemma 3 [6] and
Lemma 2 [4]):

/0 t [f(r) - /O ' f(s)ds] dz

where

Séal(t)[ max f(6)~ er?()iflT]f(t)], 4.15)

t€[0.7]

t T
al(z)zzr(l—f), )] < 2. 0.7]. (4.16)
relation (4.5) for m = 0 implies that:

|X1 (faz,n,k)—XO(t,Zaﬂ,A” =

t 1 T
/(){f(t,z)—;/o f(s,z)ds}dt

<a1()8p(f) < gst. (.17)

Therefore, by virtue of (4.17), we conclude that x1(t,z,7,A) € D whenever
(t,z,n,A) € [0,T] x Dg x D x D.

By induction we can easily establish that all functions (4.5) are also contained in
the domain D Vm = 1,2,3,...,t €[0,T],z€ Dg,ne D,A € D.

Now, consider the difference of functions:

= =

xm—i—l(taz»Tl,k)_xm(t’zvn’k) =

t
- /0 L (52X (5,207, 2)) — £ (5. Xt (5.2 7. ))] dis—

T
t
—7/ [ f(s.xm(s,2.1,4) = f (5, Xm—1(5,2.7, 1)) |ds, (4.18)
0
m =1,2,3,... and introduce the notation:

P&, 2,0, 4) == |xm(t, 2,0, 1) —xm—1(t, 2,0, )|, m=1,2,3,....
By virtue of the estimation (4.15) and of the Lipschitz condition (4.3), we have:
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t t
Fm+1(,2,m,A) < K[(l — ?)/ Im(s,z2,n,A)ds+
0

T
+L/ rm(s,z,n,/\)dsi|, (4.19)
TJ:

Ym=0,12,....
According to (4.17)
ri(t,z,n,A) = |x1(t,2,n,A) —x0(t, 2,0, )| <1 (2)p (f). (4.20)
By virtue of the statement of Lemma 3 [4] of the form
10 /3 "
mr1()<— =T ) o1(t),m=0,1,2,... (4.21)
9 \ 10
obtained for sequence of functions
t\ [* t (T
Im+1)=(1—-= / am(s)ds + —/ am(s)ds,m=0,1,2,..., (4.22)
T 0 T t

t
ao(t) =1,a1(t) =2t (1 — F) ,
from (4.19) for m= 1 follows:

t T
Fa(t. 2.1 A) §K8D(f)|:(l—%)/o ocl(s)ds—i—%/; cxl(s)ds:| <

< Kaz (1) 8p (f).
By induction using (4.22), we can easily obtain that

rm+1(t,2,0A) < K™ om41(t)Sp (f), (4.23)

m=0,1,2,..., where oy +1(t), oty (¢) are calculated according to (4.22), and §p ()
is given by (4.1).
By virtue of the estimate (4.21) from (4.23) we have

i1z h) = e[ Q"N+ KO d @ —[] @2

Vm =1,2,3,..., where the matrix Q is given by (4.14).
Therefore, in view of (4.24)
|Xmaj (1. 2.0 8) = X (0. 2.0, M) | < |xmaj (1,20, 4) = Xy j—1(t. 2.0, 1) | +
+ |xm+j—1(t’Z, T},/\,) _xm+j—2(t’z’ 77,)‘)‘ +...+
o xmpr Gz A) —xm (2, )| =
= S stz ) < Loy () I, 0mHep(f) =

= R0, ()Q" {25 0'6p (/).
(4.25)
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Since, due to the condition (4.4), the maximum eigenvalue of the matrix Q of the
form (4.14) does not exceed the unity, we have

Jj—1
2) Q' <(In—Q)"'. lim Q™ = Oy,
o

where Oy, is a zero n X n matrix.

Therefore we conclude from (4.25) that, according to the Cauchy criterium, the se-
quence {x,(t,z,n,A)} of the form (4.5) uniformly converges in the domain
(t,z,m,A) € [0,T] x Dg x D x D to the limit function x*(t,z,n,A). Since all func-
tions x,, (¢, 2,1, A) of the sequence (4.5) satisfy the boundary conditions (3.6) for all
values of the artificially introduced parameters, the limit function x*(¢,z,n,1) also
satisfies these conditions. Passing to the limit as m — oo in equality (4.5) we show
that the limit function satisfies both the integral equation (4.9) and the Cauchy prob-
lem (4.10), (4.11), where A (z,n, 1) is given by (4.12). Il

Consider the Cauchy problem
dx

i S, x)+p,t €[0,T] (4.26)
x(0) =z, (4.27)
where u = col(it1,..., n) is a control parameter.

Theorem 2. Under the conditions of Theorem 1, the solution x = x (-,z,1n,A, L)
of the initial value problem (4.26), (4.27) satisfies the boundary conditions (3.6) if
and only if x = x(-,z,n, A, ;) coincides with the limit function x*(-,z,n, A, |t) of the
sequence (4.5). Moreover

1 1 (T .
p=ties = F UGN -7 [ e Ganands. @2

Proof. Sufficiency. Let us suppose that © on the right side of the system of differ-
ential equations (4.26) is given by (4.28). By virtue of Theorem 1, the limit function
(4.8) of the sequence (4.5) is the unique solution of the boundary—value problem
(4.26), (3.6) for fixed values of parameters z, n and A when = i, ;. Further-
more the limit function x*(¢,z,n, A, i) satisfies initial conditions (4.27), i.e. itis a
solution of the Cauchy problem (4.26), (4.27) when . = ;3.

Necessity. Let us fix an arbitrary i € R” and assume that the initial value problem

(4.29), (4.27):

dx

T ft.x)+p.tel0,T] (4.29)
has a solution X (#), that satisfies the two—point linear boundary conditions (3.6).
Then x(¢) satisfies an integral equation:

t
() =z+ / F(s,%(s))ds + it (4.30)
0
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forallt € [0,T].
When t = T from (4.30) we get:

T
Tﬂz)?(T)—z—/ f(s,x(s))ds. (4.31)
0
Under the assumption x(¢) satisfies boundary restrictions (3.6):
X(T) =d(z,n.2), (4.32)
and the initial condition
x(0) =z.

Substituting (4.32) in (4.31) we get:

= 1d A ! Lt X d 4.33
i=dGn, *7“7/0 (5. %(s))ds. 4.33)

On the other hand, it is proved that the limit function x*(-,z, A, i) is the solution of
the initial value problem (4.26), (4.27) for i = ;5 given by formula (4.28) and
satisfies boundary conditions (3.6).

By analogy
t
x*(t,z,n, A, @) zz+/ fls.x*(s,z,n A, w)ds + pg y it (4.34)
0
T
Thzpa =X*(T,z,n,k,u)—z—/ f(s,x*(s,2,m, A, w))ds, (4.35)
0

x*(T,z,n, A, pu) =d(z,n,A), (4.36)
x*(0,z,m.A, 1) = Z.
By virtue of (4.34)—(4.36) it is easy to get that

1 11T .
= ——z—= . 4.
Kzn.A Td(z,n,k) 73 T/o f(s,x*(s,z,m, A, 1))ds (4.37)

Substituting (4.33) in (4.30) and (4.37) in (4.34), we get that for all ¢ € [0,T]

t ¢ (T t
)E(t)zz-i-/o f(s,i(s))ds—T/O f(s,i(s))ds+7[d(z.,k)—z], (4.38)

t
x*(t,z,n,x,m=z+/ Flsox™ (5,227, 0 ) ds—
0

T
—i/ f(s,x*(s,z,n,)t,u))ds—i—L[d(z,n,)&)—z]. (4.39)
T/ T
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Using Theorem 1 x(¢) € D and x*(¢,z,n,A,u) € D. Taking into account (4.38),
(4.39) it follows that

t
Wz A ) — 5 () = /0 L (5™ (5220 1A 1)) — £ (5. 5(5)) s

P
—7[0 [f(s.x™ (5.2, A, ) — f(5,X(s))lds.  (4.40)

By the Lipschitz condition (4.3) from the relation (4.40), we get that the function
o(t) = |x*{t,z,n.A, ) —x()|,1 €[0,T] (4.41)

satisfies integral inequalities:

T
w(lt)<K |:/0ta)(s)ds + %/0 a)(s)ds:| <

< Kay(t) max w(s),t €[0,T], (4.42)
s€[0,T]

where o (¢) is given by (4.16).
Using (4.42) recursively, we come to an inequality:

w(t) < K™ay(t) max w(s).t €[0,T], (4.43)
s€[0,T]

where m € N and functions o, (¢) are given by formula (4.22).
Taking into account (4.21), from (4.43) for each m € N we get an estimation:

10 (37 \"!
o(t)<Kai(t)—| —K - max w(s),t €[0,T]. (4.44)
9 \ 10 s€[0,T]

By passing to the limit 1 — oo in the last inequality and by virtue of (4.4), we come

to the conclusion that

max o(s) < Q™ max w(s) — 0.

s€[0,T] s€[0,T]
It means that the function x(¢) coincides with x*(¢,z, 7, A, it). Starting with (4.33)
and (4.37), we come to the conclusion that it = f; p 3. O

Let’s find the relation of the limit function x = x* (¢, z, 7, A) of the sequence (4.5)
to the solution of the parametrized two—point linear boundary—value problem (2.1),
(3.6) or to the equivalent three—point non-linear problem (2.1), (2.2).

Theorem 3. Assume that the conditions (4.2)—(4.4) are satisfied for the original
boundary—value problem (2.1), (2.2).

Then the triplex (x*(-,z2*,n*,A%),n*, A*) is the solution of the parametrized boun-
dary-value problem (2.1), (3.6) if and only if z*=(z1.25.....2})
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N =705 mp), AT = (A1.A5, ..., Ay) satisfy a determining system of algeb-
raic or transcendental equations

T
M) = Zld@ni-2 - o /0 Flox*(s.zmA)ds = 0, (445)

x*(t1,z,nA) =n, (4.46)
x*(T,z,n, L) = A. (4.47)

Proof. It suffices to apply Theorem 2 and to notice that the differential equation in
(4.10) coincides with (2.1) if and only if triplex (z*,n*, A*) satisfies an equation

A" n*, A %) =0.
Taking into account (3.1) and the equivalence of (2.1), (2.2) and (2.1), (3.6), it is
clear that (x*(-,z*,n*,A*),n*,1*) coincides with the solution of the parametrized
boundary—value problem (2.1), (3.1), (3.6) if and only if (x*(-,z*,n*,A%),n*,1%)

satisfies equations
*

x*(t1.z, 0" A%) =n*,
x*(T.z.n* %) =A™,
It means that the triplex (x*(-,z*,n*,A*),n*, A1) is the solution of the parametrized
boundary—value problem (2.1), (3.6) if and only if (4.45), (4.46), (4.47) are hold. [

The next statement proves that the system of determining equations (4.45)— (4.47)
defines all possible solutions of the original three—point boundary—value problem
(2.1), (2.2).

Lemma 1. Let all conditions of Theorem 1 be satisfied. Furthemore there ex-
ist some vectors z € Dg, n € D and A € D that satisfy the system of determining
equations (4.45)—(4.47).

Then the non-linear three—point boundary—value problem (2.1), (2.2) has solution
x(+) such that:

x(0) =z,
x(t1) =1, (4.48)
x(T)=A7.
Moreover this solution is given by formula
x(t) = x*(t,z,n,A),t =[0,T], (4.49)

where x*(t,z,n, A) is the limit function of the sequence (4.5). And if the boundary—
value problem (2.1), (2.2) has a solution x(-), then this solution is given by (4.49),
and the system of determining equations (4.45)— (4.47) is satisfied when

z=x(0),

n=x(t),
2= x(T).
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Proof. We will apply Theorems 2 and 3. If there exist such z € Dg,n € D and A €
D that satisfy determining system (4.45), (4.46), (4.47), then according to Theorem 3
function (4.49) is a solution of the original boundary—value problem (2.1), (2.2). On
the other hand, if x(-) is the solution of the original boundary—value problem (2.1),
(2.2), then this function is the solution of the Cauchy problem (4.26), (4.27) for

pn=0,
z = x(0).
As x(+) satisfies boundary restrictions (2.2) and equivalent conditions (3.5), by virtue
of Theorem 2 an equality (4.49) is hold. Besides,

H=pzpr=0,
2 =x(0), (4.50)

where vectors 7, A are defined by (3.1).
But ;5 2 is given by formula (4.28), that’s why the first equation (4.45) of the
determining system is satisfied, if

z =x(0),
n=x(t),
A =x(T):
Az, 1) = 0. 4.51)

From (3.6) follows, that the next two equations (4.46), (4.47) of the determining
system are hold, too. So we specified such triplexes (z,7,4) = (x(0),x(t1),x(T)),
that satisfy system of determining equations (4.45)—(4.47), that proves Lemma. [

Remark 2. The main difficulty of the realization of this method is to find the limit
function x* (-,z,n,A) . But in most cases this problem can be solved using the prop-
erties of the approximate solution x, (-, 2,7, A) built in an analytic form.

For m > 1 let us define the function A, : Dg x D x D — R" by formula

T
Am(z,n,A) = %[d(z,)&) —7] —%/0 (s, xm(s,2,n,4))ds, (4.52)

where z, n and A are given by the relation (3.1). To investigate the solubility of
the parametrized boundary—value problem (2.1), (3.6) we observe an approximate
determining system of algebraic or transcendental equations of the form

T
Am(z,n,A) = %[d(z,n,k)—z]—%/o S, xm(s,2,n,41))ds =0, (4.53)

Xm (t1,2,m,A) =1, (4.54)
xm (T,z,m,4) = A, (4.55)

where x,, (-, 2,1, A) is a vector—function, that defines with the recursive relation (4.5).
Increasing m, the systems (4.45)— (4.47) and (4.53), (4.54) are close enough to
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provide the needed precision of the approximate solution of the original boundary—
value problem (2.1), (2.2).
5. EXAMPLE
Consider the system

& _

4X1 — ().05x, —0.005:2 + 0.1 = f1(7,x1.x2). 5.0
2 = —x240.5x1 +0.0114 +0.15t = f>(t,x1,x2), '

where ¢ € [0, 1], with non-linear two—point boundary conditions

{ g1 (x(0),x(3),x(1)) :==x1 (3 )+x§(0) x1(3)-0.025=0, (52)
£2(x(0),x(1),x (1)) := x1(0) + x2 (1) — x2(0) — 0.025 = 0. :

It is easy to check that an exact solution of the problem (5.1), (5.2) are the functions

xy =0.1t,
% x5 =0.172 (5-3)
Suppose that the boundary—value problem (5.1), (5.2) is considered in the domain
D ={(X1,XQ) : |X1| SO.42,|X2| 50.4}. (5.4)

Boundary conditions (5.2) can be rewritten in the form
1 1 1 1
C _ 0 , — — = C -1, 5.5
() e (G)e(5) -ex(z) o
C=1,

1 0
[2=(0 1)’

g(x(0).x(3)x(3)) = col (g1 (x (0),x(3) x(3)) .2 (x (0, x (3) ¥ (3)))-

Let us replace the values of the components of the solution of the boundary—value

problem (5.1), (5.2) at the points t =0, t = i and t = % by parameters z1, Z2, 11,

n2 and Aq, Ay :

where

= x(0) =col (X1(0) x2(0)) = col (z1,22),
= x(3) = col (x1 (3),x2(3)) = col (n1,m2), (5.6)
k =X (%) = col (x1 (;) X2 (%)) =col (A1,12).
Using (5.6), the boundary restrictions (5.5) can be rewritten as
x(0) =z,
x(3)=r-g@nA). ©7

Let us put
where z, 1 and A are given by (5.6).
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Using (5.8), the parametrized boundary conditions (5.7) can be written in the form:
x(0) =z,
x(3)=d@znh).
It is easy to check that the matrix K from the Lipschitz condition (4.3) is

0 0.05
K—(o.s 1 )

10
r(K)<1.03<—,
3T

5.9

and

when T = %
Vector 6p (f) can be chosen as

=)

Domain Dg is defined by inequalities:

10.045 + 23| < 0.42,
| —z142z2+0.025| <0.4.

One can verify that, for the parametrized boundary—value problem in this example,
all of the necessary conditions are fulfilled. So, we can proceed with the application
of the numerical-analytic scheme described above and thus construct the sequence
of approximate solutions.

The components of the iteration sequence (4.5) for the boundary—value problem
(5.1) under the linear parametrized two—point boundary conditions (5.9) have the
form

t
Xma(t,z,mA) =21 +/ S1(s.xm=1,105.2,1, 1), Xm—1,2(5, 2,1, 1)) ds—
0

1

3 (5.10)
—Zt/ S1(s:xXm=1,1(5.2,1,1), Xm—1,2(5,2,m, 1)) ds+
0
+21(z3 + 11 +0.025—2),
t
xm,z(t,z,n,k):=zZ+/ f2 (5. xXm=1,1(5.2, 1, 1), Xm—1,2(s, 2,17, 1)) ds—
0
: (5.11)

>
—2t/ fo (5. xXm=1,1(5.2. 1, 1), Xm—1,2(5, 2.7, 1)) )ds+
0

+21(0.025—2z1),
where m=1,2,3,...,

x0,1(6,2,1m,A) = 21 +2t(z5 + 11 +0.025—z1), (5.12)
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x0,2(t,2,1m,A) =22 +2t(0.025—-z1). (5.13)

The system of approximate determining equations (4.53)—(4.55) depending on the
number of iterations for the given example is
1

2
Am1(z,n.4) = —2/ (8. Xm=1,1(5.2,1, 1), Xm—1,2(5, 2,1, 1)) ds+
0

+2(z5+ 11 +0.025—21) =0,

(5.14)

1

2
Am,Z(Z’n»/\):_Z/ S (8:0m-1,1(5.2,1,4), Xm—1,2(5, 2,1, 4)) ds + (5.15)
| .
+2(0.025—z1) =0,

1 1

Xm,1 (Z,z,n,k) =01,Xm2 (Z,z,n,/\) =12, (5.16)
1 1

Xm,1 (E,z,n,k) =A1,Xm2 (E,z,n,k) = As. (5.17)

Using (5.10)—(5.13), as a result of the first iteration (m = 1), by Maple 13 we get:

x11 =21 —0.001666666667¢% 4 0.00125:% — 0.05:2z 1+
+0.049791666661 — 1.975¢z1 + 2tz3 + 2t 11,

X12 = 22 +0.002¢° —0.0008333333332¢3 + 0.06666666666¢ >z 1 —
—1.3333333331327 +0.5¢%23 + 0.5t%1; 4 0.875¢% — 0.51>z —
—0.0512z5 + 2122221 — 1.7666666671 21 —0.251 25+
+0.006333333333¢ + 0.3333333334123 — 0.251n, +
+0.02522t — 12521,

forallz € [0,3].
The system (5.14)—(5.17), after the first iteration, has the form

Aq,1(z,n,A) := —0.0500263021 — 1.975937500z 1 —
—0.002083333334Z% +2.001041667711 4 0.0041666666662271— (5.18)
—0.05010416666z2 + 2.0010416672% =0,

A12(z,m.4) :=0.1631250001z523 —0.04177083332z57 —
—0.1471874999z2z1 —0.002083333338z2 5, — 000.8333333351z3 25+
+0. — —6250000002z223 + 0.000520833333872 -+ 0.019895833347, 21 +
+0.0010416666687125 + 0.00416666667z3z1 —0.0417708333223 +
+0.002116402121z% —0.04257275137z3 4 0.0005208333338z 4+
+0.006258188451 + 0.00416666667071 2221 + 0.3158912369z% —
—0.96584486632221 —2.263765001z1 + 0.017752632072,—
—0.25033882077; +0.753833054323 = 0,
(5.19)
0.503125z1 +0.01249999999 + 0.5z3 4+ 0.571 = 71, (5.20)
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1.003125z5 +0.007041015625 — 0.4718750001z1 + 0.06250000002z% —
—0.0312522 —0.03125n; —0.1252221 = 7>.
(5.21)
The computation shows that the approximate solutions of the approximate determin-
ing system (5.18)—(5.21) are

z1:=2z11 = —1.732102940- 1078,
75 := 212 = —0.000005209304726,
N1 :=n11 = 0.02499998258,

N2 :=n12 = 0.006254548758,
A1:=A11 = 0.0499999826,

Az = A1z = 0.02499480802.

The first approximation for the first and second components of the solution is
x11 = —1.73210294- 1078 — 0.001666666667¢ >+
4 0.001250000866¢2 + 0.09979166608¢,

x12 = —0.000005209304726 + 0.002¢° — 0.0008333344879¢3 +
+0.1000002604¢2 -+ 0.00008323804922¢.

The graphs of first approximation and the exact solution of the original boundary—
value problem are shown on Figure 1. The error of the first approximation is

0,041 0,04

T T T T !
0 02 04 06 038 1 0 02 04 06 038 1
t t

FIGURE 1. The first components of the exact solution (solid line)
and its first approximation (drawn with dots)

max _|x{ (1) —x11()| <1.0041-1072,
tef0.3]

max !x;(t)—xlz(t)| <6,8-1075.
tef0,4]



106 MIKLOS RONTO AND K. MARYNETS

The error of the third approximation is

max ]xi"(t)—xm(t){ <1.51-107°,
refo.]

max _|x3 (1) —x32(t)] < —1.264-107°.
tefo,l
Continuing our iterations we will get more precise approximate solutions of the ori-
ginal boundary—value problem.
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