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Abstract. This paper introduces new generalizations of modified F-contractions through α-
admissible mappings. It expands the fixed-point results of modified F-contractions within the
framework of modular metric spaces. Several theorems are presented regarding the existence of
solutions, along with a condition that ensures the uniqueness of a solution. These theorems are
applied to specific mappings to verify the results. Additionally, the paper presents significant
outcomes, demonstrating the existence of solutions to a general form of an integral equation.
Finally, a particular example of an integral equation is discussed.
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1. INTRODUCTION

Wardowski [20] acquainted the prominent idea of F-contraction.

Definition 1. Let Ω be a nonempty set, and d be a usual metric on Ω. Any mapping
H : Ω → Ω is called an F-contraction provided that for a given κ > 0

d(Hτ0,Hτ1)> 0 =⇒ κ+F(d(Hτ0,Hτ1))≤ F(d(τ0,τ1)) (1.1)

is satisfied for all τ0,τ1 ∈ Ω and the function F : R+ → R yields the followings:

(1F ) For all a,b ∈ R+, a < b implies F(a) < F(b), that is, F is an increasing
function.

(2F ) lim
n→∞

an = 0 if and only if lim
n→∞

F(an) = −∞ where {an}∞
n=1 is a sequence in

R+.
(3F ) For some r ∈ (0,1), lim

n→∞
arF(a) = 0 holds.
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The set of all functions satisfying (1F)− (3F) is specified by F. It is easy to figure
out that A(ξ)= ln(ξ), B(ξ)= ξ+ ln(ξ), and C(ξ)=− 1√

ξ
are satisfying the conditions

(1F)− (3F), i.e, A(ξ), B(ξ), C(ξ) ∈ F.
By defining F-contraction, Wardowski [20] generalized the Banach contraction

principle [3] and demonstrated the subsequent theorem.

Theorem 1. Assume that (Ω,d) is a complete metric space. If H : Ω → Ω is an
F-contraction, then H admits a fixed point.

There are many studies related to F-contraction; see [9, 12, 15–19, 21].

Definition 2. Let ψ be defined and continuous on [0,∞). If ψ yields
(1) ψ is non-decreasing,

(2) For all ξ > 0,
∞

∑
i=1

ψi(ξ)< ∞,

then it is named as c-comparison function.

It is clear that ψ(ξ) < ξ and also ψ(0) = 0. Ψ represents the set of functions
providing the conditions (1)− (2). For further properties and examples of compar-
ison functions, see [4, 5, 13].

Since the notion of α-admissible mappings were defined, they have been used in
many metric fixed point studies and generalized in various directions.

Definition 3 ([14]). Let Ω ̸= Ø and α : Ω×Ω → [0,∞) be a mapping. If for all
a,b ∈ Ω,

α(a,b)≥ 1 =⇒ α(Ha,Hb)≥ 1, (1.2)
then H : Ω → Ω is said to be α-admissible.

F-contraction has been reconstructed via α-admissible structure as in the follow-
ing.

Definition 4 ([2]). Consider the metric space (Ω,d). If for a given κ > 0 the
following expression holds for all τ0,τ1 ∈ Ω:

d(Hτ0,Hτ1)> 0 =⇒ κ+F(α(τ0,τ1)d(Hτ0,Hτ1))≤ F(ψ(d(τ0,τ1))), (1.3)

where ψ ∈ Ψ and F ∈ F, then the α-admissible mapping H : Ω → Ω is called a
modified Fα-contraction.

Recall that F(ξ) = ln(ξ) ∈ F. Then, inequality (1.3) turns into

α(τ0,τ1)d(Hτ0,Hτ1)≤ e−κ
ψ(d(τ0,τ1))≤ ψ(d(τ0,τ1)) (1.4)

for all τ0,τ1 ∈ Ω and Hτ0 ̸= Hτ1.
In [2] the following result has been verified.

Theorem 2. Consider a complete metric space (Ω,d) and let H : Ω → Ω be a
modified Fα-contraction. If the followings are satisfied:
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(1*) for a given s0 α(s0,Hs0)≥ 1 holds,
(2*) H is α-admissible,
(3*) H is continuous,

then H has a fixed point.

All the above motivate us to investigate the fixed point results for modified Fα-
contraction mappings in the setting modular metric spaces (MMS).

The primary purpose of this paper is to give some fixed point theorems and results
in a MMS for modified Fα-contractions. The existence of solutions for an integral
equation is investigated for an application. As an example, a solution for a given
integral equation is obtained.

This paper is organized as follows: Section 2 offers a comprehensive introduction
to MMS, establishing the foundation for subsequent discussions. Section 3 defines
modified F-contractions and presents the main results of the paper, along with several
important outcomes. Section 4 is dedicated to exploring applications that support
the results obtained. Finally, Section 5 provides a summary of the key insights and
conclusions of the present work.

2. FUNDAMENTALS OF MODULAR SPACES

We consider an example to understand the theory of modular metric spaces [1].
Take Ω as the set of all points above water on the earth’s surface. The average speed
needed to travel directly over land from any point τ0 to another point τ1 in a time t is
denoted by mt(τ0,τ1).

Now we shall consider what kind of characteristics the function mt(τ0,τ1) should
have. If we determine τ0 and τ1, then mt(τ0,τ1) becomes a non-increasing function
of t, and also non-negative. Clearly, mt(τ0,τ1) is symmetric in τ0 and τ1. Till now,
we assume that the points are in same ground. What if τ0 and τ1 are in separate
landmasses? As it is needed to travel from τ0 to τ1 by land, it is not possible to
travel in any time t independently of the speed. In all situations, the speed function
mt(τ0,τ1) should be defined so it can be allowed to get extended real values, i.e.,
mt(τ0,τ1) = ∞. In short, the speed function is non-increasing in t, symmetric in
τ0,τ1 ∈ Ω, and also takes values in [0,∞] for t > 0. Further property of the function
mt(τ0,τ1) is given by

mt+s(τ0,τ1)≤ mt(τ0,τ2)+ms(τ2,τ1) (2.1)

for all τ0,τ1,τ2 ∈ Ω and t,s > 0.
Consider a function m : (0,∞)×Ω×Ω → [0,∞] where Ω ̸= Ø and η > 0. It can be

rewritten as m(η,τ0,τ1)=mη(τ0,τ1) for all η> 0 and τ0,τ1 ∈Ω so that mη : Ω×Ω→
[0,∞].
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Definition 5 ([6, 7]). Assume that mη : Ω×Ω → [0,∞] satisfies the followings:

m1) τ0 = τ1 ⇐⇒ mη(τ0,τ1) = 0,

m2) mη(τ0,τ1) = mη(τ1,τ0),

m3) mη+µ(τ0,τ1)≤ mη(τ0,τ2)+mµ(τ2,τ1)

(2.2)

for all τ0,τ1,τ2 ∈ Ω, and η,µ > 0. Then, mη is called a modular metric (MM) on Ω.

m is called pseudomodular if it satisfies mη(τ,τ) = 0, ∀η > 0 instead of m1).
If instead of m3), m grants the following

mη+µ(τ0,τ1)≤
η

η+µ
mη(τ0,τ2)+

µ
η+µ

mµ(τ2,τ1), ∀η,µ > 0, (2.3)

then it is a convex MM. Furthermore, any convex MM yields

mη(τ0,τ1)≤
µ
η

mµ(τ0,τ1)≤ mµ(τ0,τ1) ∀η,µ > 0 (2.4)

for all τ0,τ1 ∈ Ω and 0 < µ ≤ η [6]. In general,

mη2(τ0,τ1)≤ mη1(τ0,τ1) (2.5)

holds for 0 < η1 ≤ η2 and ∀τ0,τ1 ∈ Ω.

Definition 6 ([6, 7]). m is said to be strict on Ω provided that for τ1,τ2 ∈ Ω with
τ1 ̸= τ2, mη(τ1,τ2) > 0, ∀η > 0, or equivalently if mη(τ1,τ2) = 0 for some η > 0,
then τ1 = τ2.

Let (Ω,d) be a metric space consisting of at least two elements. We shall define
some modular metrics on Ω.

Example 1. Consider the MM

mη(τ0,τ1) =
d(τ0,τ1)

η
, (2.6)

where d is a metric on Ω. Here mη(τ0,τ1) can be taken as the average speed needed
to travel from τ0 to τ1 in time η. It is easy to see that the MM (2.6) is convex.

Example 2. Define the MM

mη(τ0,τ1) =

{
∞, η < d(τ0,τ1),

0, η ≥ d(τ0,τ1),
(2.7)

where d is a metric on Ω. Here mη(τ0,τ1) can be considered as the extreme condition
of the speed metaphor. If η ≥ d(τ0,τ1), then we can travel immediately, yet in the
case of η < d(τ0,τ1), it is not possible to travel from τ0 to τ1. The MM (2.7) is also
convex.
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Definition 7 ([6]). Take an m on Ω and τ0 ∈ Ω. The followings are MMS around
τ0:

Ωm = Ωm(τ0) = {τ ∈ Ω : mη(τ,τ0)→ 0 as η → ∞}, (2.8)

Ω
∗
m = Ω

∗
m(τ0) = {τ ∈ Ω : ∃η = η(τ)> 0, s.t. mη(τ,τ0)< ∞}. (2.9)

Definition 8 ([6, 8]). For Ωm and Ω∗
m the followings hold.

• The sequence {hn} in Ωm is m-convergent to a point h ∈ Ω, named as the
modular limit of {hn}, if and only if mη(hn,h)→ 0 as n → ∞ for some η > 0.

• {hn} in Ωm is m-Cauchy if mη(hn,hm)→ 0 as n,m → ∞ for some η > 0.
• Consider S to be a nonempty subset of Ωm. Provided that every m-Cauchy

sequence belonging to S is m-convergent in S, then S is m-complete.

Now, we give some information about metrics on modular sets. If we take a mod-
ular m on Ω and a modular set Ωm defined by m, then

dm(τ0,τ1) = inf{η > 0: mη(τ0,τ1)≥ η}, ∀τ0,τ1 ∈ Ωm (2.10)

describes a metric on Ωm [6].
In the case when m is convex, the modular space can be equipped with the follow-

ing metric:

d∗
m(τ0,τ1) = inf{η > 0: mη(τ0,τ1)≤ 1}, ∀τ0,τ1 ∈ Ωm. (2.11)

The metrics given above on Ωm are strongly equivalent, i.e., dm ≤ d∗
m ≤ 2dm.

Lemma 1 ([8]). Suppose that m is convex on Ωm. For a sequence hn belonging to
Ωm and h ∈ Ω∗

m, the following holds:

lim
n→∞

d∗
m(hn,h) = 0 ⇐⇒ lim

n→∞
mη(hn,h) = 0 (2.12)

for all η > 0.

In [8], it is demonstrated that modular convergence is strictly weaker than metric
convergence.

Lemma 2 ([8]). For any pseudomodular metric m on Ω, the (2.8)-(2.9) are closed
w.r.t m-convergent. Moreover, if m is strict then the limit is unique whenever it exists.

3. MAIN RESULTS

This part introduces new definitions for generalized modified Fα-contraction map-
pings. Then, some theorems and related results about fixed points for the mentioned
mappings are proved in modular metric spaces.
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Definition 9 ([10, 11]). Let m be a modular metric on a nonempty set Ω. Any
self-mapping H on Ωm is named as a generalized modified Fα-contraction of type I if
there exists κ > 0 s.t.

mη(Hτ0,Hτ1)> 0 implies that

κ+F(α(τ0,τ1)mη(Hτ0,Hτ1))≤

F
(
ψ
(

max{mη(τ0,τ1),
mη(τ0,Hτ0)(1+mη(τ1,Hτ1))

1+mη(τ0,τ1)
,

mη(τ1,Hτ0)(1+mη(τ1,Hτ0))

1+mη(τ0,τ1)
}
))(3.1)

for all τ0,τ1 ∈ Ωm. Here, F ∈ F and ψ ∈ Ψ.

We also introduce the following definition.

Definition 10 ([10, 11]). Let m be a modular metric on a nonempty set Ω. Any
self-mapping H on Ωm is named as a generalized modified Fα-contraction of type II
if for all τ0,τ1 ∈ Ωm, there exists κ > 0 such that the following holds;

mη(Hτ0,Hτ1)> 0 implies that

κ+F(α(τ0,τ1)mη(Hτ0,Hτ1))≤

F
(
ψ
(

max{mη(τ0,τ1),
mη(τ0,Hτ0)(1+mη(τ1,Hτ1))

1+mη(τ0,τ1)
,
mη(τ1,Hτ1)mη(τ0,Hτ0)

1+mη(Hτ0,Hτ1)
,

mη(τ1,Hτ1)mη(τ1,Hτ0)

1+mη(τ1,Hτ0)+mη(τ0,Hτ1)
}
))
,

(3.2)

where F ∈ F and ψ ∈ Ψ.

Now, we shall give our main theorems for mappings satisfying the contraction
conditions (3.1) and (3.2) in Ωm (2.8).

Theorem 3. Let m be a strict modular metric in a complete modular metric space
Ωm, and H : Ωm → Ωm which ensures condition (3.1). Assume that

(C1) for a given s0, α(s0,Hs0)≥ 1 holds,
(C2) H is an α-admissible mapping,
(C3) H is a continuous mapping,

then H admits a fixed point.

Proof. Take an initial point s0 ∈ Ωm satisfying α(s0,Hs0) ≥ 1. Then, construct a
sequence {sn} ∈ Ωm as sn = Hns0, ∀n ∈ N.

Presume that sn = sn+1 holds for any n ∈ N. In this case, sn is the fixed point of H.
Hence, for all n ∈ N sn cannot be equal to sn+1 which gives mη(sn,sn+1) > 0. Since
mη(sn,sn+1) = mη(Hsn−1,Hsn), mη(Hsn−1,Hsn)> 0 holds.

As mη(s0,Hs0) = mη(s0,s1) ≥ 1 and H is an α-admissible mapping, we reach
α(sn−1,sn)≥ 1 for all n.
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Putting τ0 = sn−1 and τ1 = sn in (3.1) yields

κ+F(α(sn−1,sn)mη(Hsn−1,Hsn))≤ F
(
ψ
(

max{mη(sn−1,sn),

mη(sn−1,Hsn−1)(1+mη(sn,Hsn))

1+mη(sn−1,sn)
,
mη(sn,Hsn−1)(1+mη(sn,Hsn−1))

1+mη(sn−1,sn)
}
))
.

(3.3)

Owing to mη(sn,Hsn−1) = mη(sn,sn) = 0, we have

κ+F(α(sn−1,sn)mη(sn,sn+1))

≤ F
(
ψ
(

max{mη(sn−1,sn),
mη(sn−1,sn)(1+mη(sn,sn+1))

1+mη(sn−1,sn)
}
))
.

(3.4)

Assume that mη(sn,sn+1)> mη(sn−1,sn). Then it is evident that

1+mη(sn,sn+1)

1+mη(sn−1,sn)
<

mη(sn,sn+1)

mη(sn−1,sn)
. (3.5)

Putting (3.5) in the right side of (3.4) we have

κ+F(α(sn−1,sn)mη(sn,sn+1))≤ F
(
ψ
(

max{mη(sn−1,sn),mη(sn,sn+1)}
))
. (3.6)

By the assumption mη(sn,sn+1)> mη(sn−1,sn), we attain

κ+F(α(sn−1,sn)mη(sn,sn+1))≤ F(ψ(mη(sn,sn+1))). (3.7)

Since α(sn−1,sn)≥ 1 and by (1F ), F is increasing, we have

F(mη(sn,sn+1))< κ+F(mη(sn,sn+1))≤ κ+F(α(sn−1,sn)mη(sn,sn+1)). (3.8)

Moreover, since ψ(mη(sn,sn+1))< mη(sn,sn+1) and by (1F ), we gain

F(ψ(mη(sn,sn+1)))< F(mη(sn,sn+1)). (3.9)

Combining (3.8) and (3.9) in (3.7) provides

F(mη(sn,sn+1))< F(mη(sn,sn+1)), (3.10)

which causes a contradiction. Thus,

mη(sn,sn+1)≤ mη(sn−1,sn). (3.11)

Putting (3.11) into (3.4) grants

κ+F(mη(sn,sn+1))≤ F(mη(sn−1,sn)), ∀n ≥ 1. (3.12)

Here, we take an = mη(sn,sn+1). Then, expression (3.12) can be written as

κ+F(an)≤ F(an−1), ∀n ≥ 1. (3.13)

Furthermore, we reach

F(an)≤ F(an−1)−κ ≤ F(a0)−nκ, ∀n ≥ 1. (3.14)

Taking the limit of both sides in (3.14) gives

lim
n→∞

F(an) =−∞. (3.15)
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From (2F ), we achieve

lim
n→∞

an = lim
n→∞

mη(sn,sn+1) = 0 (3.16)

for all η > 0. For k ∈ (0,1), we can also write lim
n→∞

ak
nF(an) = 0 by (3F ). Hereby, we

get

0 ≤ ak
nF(an)−ak

nF(a0)≤ ak
n(F(a0)−nκ)−ak

nF(a0) =−nκak
n ≤ 0. (3.17)

As n → ∞, we reach lim
n→∞

nak
n = 0.

By the definition of the limit, one can find n∗ ∈ N s.t.

sn = mη(sn,sn+1)≤
1

n
1
k
, (3.18)

whenever n ≥ n∗. Due to (m3), for m > n ≥ n∗ we write

mη(sn,sm)≤ mηn(sn,sn+1)+mηn+1(sn+1,sn+2)+ · · ·+mηm−1(sm−1,sm), (3.19)

where ηn +ηn+1 + · · ·+ηm−1 = η.
Because 0 < ηi < η for i = n,n+1, . . . ,m−1 and (3.18), we get

mη(sn,sm)≤
1

n
1
k
+

1

(n+1)
1
k
+ · · ·+ 1

(m−1)
1
k

=
m−1

∑
j=n

1

j
1
k

<
∞

∑
j=1

1

j
1
k
.

(3.20)

Since
∞

∑
j=1

1

j
1
k
< ∞, we reach lim

m,n→∞
mη(sn,sm) = 0, i.e., {sn} is an m-Cauchy sequence.

Due to the completeness of Ωm, {sn} is m-convergent to a point s belonging to Ωm,
that is, lim

n→∞
mη(sn,s) = 0.

By the continuity of H, we obtain

mη(s,Hs) = lim
n→∞

mη(sn,Hsn) = lim
n→∞

mη(sn,sn+1) = 0. (3.21)

As m is strict, we find s = Hs. Hence, the proof is completed. □

The following theorem can be verified similarly to Theorem 3.

Theorem 4. Presume that m is a strict modular on a complete modular metric
space Ωm, and H : Ωm → Ωm satisfies condition (3.2). Assume that

(C1) for a given s0, α(s0,Hs0)≥ 1 holds,
(C2) H is an α-admissible mapping,
(C3) H is a continuous mapping,

then H has a fixed point.
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Example 3. Take the set Ω = [0,∞) with mη(τ0,τ1) =
|τ0−τ1|

η
for all τ0,τ1 ∈ [0,∞).

Consider a mapping given by

H(τ) =

{
τ+3

4 , τ ∈ [0,1],
2, τ > 1.

(3.22)

The mapping H : [0,∞) → [0,∞) is continuous on Ωm. Now, we take α : [0,∞)×
[0,∞)→ [0,∞) as

α(τ0,τ1) =

{
1, τ0,τ1 ∈ [0,1],
0, otherwise.

(3.23)

For τ0,τ1 ∈ Ω s.t. α(τ0,τ1)≥ 1, τ0,τ1 must be in [0,1]. We get Hτ0,Hτ1 ∈ [0,1]. By
(3.23), we find α(Hτ0,Hτ1)≥ 1, that is, H is an α-admissible mapping.

For s0 = 0, then Hs0 =
3
4 . Thus, α(s0,Hs0)≥ 1 holds.

Now, we display that (3.1) is satisfied for all τ0,τ1 ∈ [0,∞), where F(ξ) = ln(ξ)
and ψ(ξ) = 1

2 ξ ∈ Ψ for ξ > 0.
If τ0 or τ1 is not in [0,1], then α(τ0,τ1) = 0 and so (3.1) is satisfied.
For τ0,τ1 ∈ [0,1] with Hτ0 ̸= Hτ1, we can write

α(τ0,τ1)mη(Hτ0,Hτ1)) =
|Hτ0 −Hτ1|

η
=

1
4η

|τ0 − τ1| ≤
1
4
|τ0 − τ1|

η

= e−0.6 1
2

mη(τ0,τ1) = e−0.6
ψ(mη(τ0,τ1))

≤ e−0.6
ψ(M1(τ0,τ1)).

(3.24)

Hereby, (3.1) holds for all τ0,τ1 ∈ Ω. Thus, all conditions of Theorem 3 are satisfied,
which gives the existence of fixed points for H. Here, there exist two fixed points,
H1 = 1 and H2 = 2.

In Theorems 3 and 4, if the condition C3 is replaced by the following one:
(C∗

3) For the sequence {sn} s.t. α(sn,sn+1)≥ 1 with lim
n→∞

mη(sn,s) = 0 where s ∈ Ωm,

there exists a subsequence {snp} of {sn} s.t. α(snp ,s) ≥ 1 for all p, then the results
found therein are still true.

Theorem 5. Presume that Ω is a complete MMS and m is a strict MM. Suppose
that H : Ωm →Ωm satisfies the condition (3.1). Assume that (C1), (C2) and (C∗

3) hold.
Then H admits a fixed point.

Proof. From Theorem 3, the same sequence {sn} can be constructed in Ωm so that
{sn} is m-Cauchy and m-convergent to s ∈ Ωm.

Assume that snp = Hs for all p ∈N. Then, the uniqueness of the limit gives s = Hs
as n → ∞. Hereby, the proof is done.
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Hence, assume that there exists p0 ∈N s.t. snp ̸=Hs, ∀p≥ p0. Then, for all p≥ p0
we find Hsnp−1 ̸= Hs, i.e., mη(Hsnp−1,Hs)> 0. By (1.3), we can write

κ+F(α(snp−1,s)mη(Hsnp−1,Hs))≤ F
(
ψ
(

max{mη(snp−1,s),

mη(snp−1,Hsnp−1)(1+mη(s,Hs))
1+mη(snp−1,s)

,
mη(s,Hsnp−1)(1+mη(s,Hsnp−1))

1+mη(snp−1,s)
}
))
.

(3.25)

Since α(snp−1,s)≥ 1 and (1F ), we gain

mη(Hsnp−1,Hs)≤ ψ
(

max{mη(snp−1,s),

mη(snp−1,Hsnp−1)(1+mη(s,Hs))
1+mη(snp−1,s)

,
mη(s,Hsnp−1)(1+mη(s,Hsnp−1))

1+mη(snp−1,s)
}
)
.

(3.26)

As n → ∞, we obtain lim
n→∞

mη(snp ,Hs) = 0. The uniqueness of the limit provides
s = Hs. □

The subsequent theorem is verified in a similar manner.

Theorem 6. Presume that Ωm is a complete MMS and m is a strict MM. Suppose
that H : Ωm → Ωm satisfies condition (3.2), and also the statements (C1), (C2) and
(C∗

3) hold. Then H has a fixed point.

Theorems 3-6 indicate the existence of a fixed point of a mapping, while the fol-
lowing theorem emphasizes the uniqueness of the fixed point of the mapping.

Theorem 7. Suppose that Ωm is a complete MMS and m is a strict MM. Assume
that H : Ωm → Ωm provides the condition (3.1), and also the statements (C1), (C2)
and (C3) hold. If for all s,r ∈ Fix(H), α(s,r)≥ 1 holds where Fix(H) represents the
set of fixed points of H. Then the fixed point of H is unique.

Proof. Assume that r,s ∈ Ωm are two different fixed points of H, i.e., Hs = s and
Hr = r with r ̸= s. Then, mη(Hs,Hr)> 0 is granted.

Hence, putting τ0 = s and τ1 = r in (1.3) gives

κ+F(α(s,r)mη(Hs,Hr))

≤ F
(
ψ
(

max{mη(s,r),
mη(s,Hs)(1+mη(r,Hr))

1+mη(s,r)
,
mη(r,Hs)(1+mη(r,Hs))

1+mη(s,r)
}
))
.(3.27)

Then, we gain

κ+F(α(s,r)mη(Hs,Hr))≤ F(ψ(mη(s,r)))≤ F(mη(s,r)). (3.28)

Since s,r ∈ Fix(H), α(s,r)≥ 1 by (1F ), we have

κ+F(α(s,r)mη(s,r))≤ κ+F(mη(s,r))≤ F(mη(s,r)), (3.29)

which gives κ+F(mη(s,r))≤ F(mη(s,r)), a contradiction. Hence, the proof is com-
pleted. □
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Similarly, we have the following theorem.

Theorem 8. Assume that Ωm is a complete MMS and m is a strict MM. Suppose
that H : Ωm → Ωm satisfies condition (3.2), and (C1), (C2) and (C3) hold. If for all
s,r ∈ Fix(H), α(s,r)≥ 1 holds where Fix(H) represents the set of fixed points of H.
Then the fixed point of H is unique.

An example illustrating the uniqueness of the fixed point is given below.

Example 4. Consider the set Ω = [0,∞) with mη(τ0,τ1) =
|τ0−τ1|

η
for all τ0,τ1 ∈

[0,∞). Define the mapping

H(τ) =

{
τ2+τ

4 , τ ∈ [0,1],
3
4 , otherwise.

(3.30)

The mapping H : [0,∞) → [0,∞) is continuous on Ωm. Now, α : [0,∞)× [0,∞) →
[0,∞) is defined as

α(τ0,τ1) =

{
1, τ0,τ1 ∈ [0,1],
0, otherwise.

(3.31)

For τ0,τ1 ∈ Ω with α(τ0,τ1) ≥ 1, we must have τ0,τ1 ∈ [0,1]. Then, we get
Hτ0,Hτ1 ∈ [0,1]. From (3.31), we find α(Hτ0,Hτ1)≥ 1, that is, H is an α-admissible
mapping.

Here an element s0 ∈ [0,∞) exists s.t. α(s0,Hs0) ≥ 1. If we take s0 = 1
2 , then

Hs0 =
3
16 . Thus, α(s0,Hs0) = α(1

2 ,
3
16)≥ 1 holds.

Now, we show that (3.1) is satisfied for all τ0,τ1 ∈ [0,∞), where F(ξ) = ln(ξ) and
ψ(ξ) = 3

2 ξ ∈ Ψ for ξ > 0.
If τ0 or τ1 is not in [0,1], then α(τ0,τ1) = 0, and therefore (3.1) is satisfied.
For τ0,τ1 ∈ [0,1] with Hτ0 ̸= Hτ1, we write

α(τ0,τ1)mη(Hτ0,Hτ1)) =
|Hτ0 −Hτ1|

η

=
1

4η
|τ2

0 + τ0 − (τ2
1 + τ1)| ≤

1
4η

(|τ2
0 − τ

2
1|+ |τ0 − τ1|)

≤ 1
4η

(|τ0 − τ1||τ0 + τ1|+ |τ0 − τ1|)

≤ 1
4η

(|τ0 − τ1|(|τ0 + τ1|+1))

≤ 3
4
|τ0 − τ1|

η
≤ e−0.6 3

2
mη(τ0,τ1) = e−0.6

ψ(mη(τ0,τ1))

≤ e−0.6
ψ(M1(τ0,τ1)).

(3.32)

Thus, (3.1) holds for all τ0,τ1 ∈ Ω.
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For all τ0,τ1 ∈ Fix(H), we need to show that α(τ0,τ1) ≥ 1. Let τ0,τ1 ∈ Fix(H).
Then, τ0,τ1 must be in [0,1], i.e., α(τ0,τ1)≥ 1. Therefore, all conditions of Theorem
7 are satisfied. Consequently, H has a unique fixed point, i.e., H0 = 0.

Now, we introduce some results.

Corollary 1. Let Ωm be a complete MMS with a strict MM m. Assume that for a
given κ > 0, H : Ωm → Ωm satisfies the following:

d(Hτ0,Hτ1)> 0 =⇒ κ+F(mη(Hτ0,Hτ1))≤ F(ψ(M1(τ0,τ1))) (3.33)

for all τ0,τ1 ∈ Ωm, where ψ ∈ Ψ, F ∈ F, and

M1(τ0,τ1) =

max{mη(τ0,τ1),
mη(τ0,Hτ0)(1+mη(τ1,Hτ1))

1+mη(τ0,τ1)
,
mη(τ1,Hτ0)(1+mη(τ1,Hτ0))

1+mη(τ0,τ1)
}.(3.34)

Then, H owns a unique fixed point in Ωm.

Proof. Taking α(τ0,τ1) = 1 in Theorem 7 concludes the proof. □

Corollary 2. Let Ωm be a complete MMS with a strict MM m. Assume that for a
given κ > 0, H : Ωm → Ωm satisfies the following

d(Hτ0,Hτ1)> 0 =⇒ κ+F(d(Hτ0,Hτ1))≤ F(ψ(M2(τ0,τ1))) (3.35)

for all τ0,τ1 ∈ Ωm, where ψ ∈ Ψ, F ∈ F, and

M2(τ0,τ1) = max{mη(τ0,τ1),
mη(τ0,Hτ0)(1+mη(τ1,Hτ1))

1+mη(τ0,τ1)
,

mη(τ1,Hτ1)mη(τ0,Hτ0)

1+mη(Hτ0,Fτ1)
,

mη(τ1,Hτ1)mη(τ1,Hτ0)

1+mη(τ1,Hτ0)+mη(τ0,Hτ1)
}.(3.36)

Then, H owns a unique fixed point.

Proof. Putting α(τ0,τ1) = 1 in Theorem 8 completes the proof. □

Now, we consider a partially ordered set (poset) in MMS. Then, we give some
fixed point results for posets in MMS.

Definition 11. Let m be a MM on Ω and (Ω,⪯) be a poset. A given map H
on Ωm is said to be nondecreasing w.r.t ⪯ whenever τ0 ⪯ τ1 =⇒ Hτ0 ⪯ Hτ1 for
all τ0,τ1 ∈ Ωm. Moreover, a sequence {hn} is nondecreasing w.r.t ⪯ provided that
hn ⪯ hn+1 for all n.

Definition 12. Let (Ω,⪯) be a poset and m be a MM on Ω. Suppose that
lim
n→∞

mη(hn,h) = 0 for a given sequence {hn} in Ωm. If there exists a subsequence

{hnk} of {hn} s.t. {hnk} ⪯ h for all k, then (Ω,⪯) is called regular.
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Corollary 3. Let m be a strict MM in a complete MMS, Ωm, and (Ωm,⪯) be a
poset. Suppose that H : Ωm → Ωm is a nondecreasing mapping w.r.t ⪯, and (3.33) is
satisfied with τ0 ⪯ τ1. If the following statements hold:

(C∗
1) for a given s0 ∈ Ω, s0 ⪯ Hs0 holds,

(C∗
2) either H is a continuous mapping,

(C∗
3) or (Ωm,⪯) is regular,

then H has a fixed point.

Proof. Initially we define α : Ω×Ω → [0,∞) as

α(τ0,τ1) =

{
1, τ0 ⪯ τ1 or τ1 ⪯ τ0,

0, otherwise.
(3.37)

Since τ1 ⪯ τ0, i.e., mη(Hτ0,Hτ1) ̸= 0, then H is Fα-contraction mapping, that is,

κ+F(α(τ0,τ1)d(Hτ0,Hτ1))≤ F(ψ(M1(τ0,τ1)), (3.38)

where M1(τ0,τ1) is given in (3.34).
From (C∗

1), we gain α(s0,Hs0) ≥ 1. Furthermore, if α(τ0,τ1) ≥ 1 for all τ0,τ1 ∈
Ωm, then either τ0 ⪯ τ1 or τ1 ⪯ τ0 holds which gives that Hτ0 ⪯ Hτ1 or Hτ1 ⪯
Hτ0. From the definition of α(., .), we obtain α(Hτ0,Hτ1) ≥ 1. Hence, H is an
α-admissible mapping.

Now, if H is continuous, then Theorem 3 assures that H has a fixed point.
Suppose that (Ωm,⪯) is regular. Consider a nondecreasing sequence {sn} in Ωm,

with lim
n→∞

mη(sn,s) = 0. Since sn ⪯ sn+1 for all n, α(sn,sn+1)≥ 1. In addition, we can

find a subsequence {snp} of {sn} s.t. snp ⪯ s for all p. Then, we attain α(snp ,s) ≥ 1
for all p. Hereby, Theorem 5 provides the existence of a fixed point.

Thus, we conclude the proof.
□

We also give the following result.

Corollary 4. Let m be a strict MM in a complete MMS, Ωm, and (Ωm,⪯) be a
poset. Suppose that H : Ωm → Ωm is a nondecreasing mapping w.r.t ⪯, and (3.35) is
satisfied with τ0 ⪯ τ1. If the followings hold:

(C∗
1) for a given s0 ∈ Ω, s0 ⪯ Hs0 holds,

(C∗
2) either H is a continuous mapping,

(C∗
3) or (Ωm,⪯) is regular,

then H has a fixed point.
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4. APPLICATION

This section investigates the existence of a solution for an integral equation given
as

g(t) = K(t)+
∫ b

a
M(t,ζ)Y (ζ,g(ζ))dζ, t ∈ [a,b], (4.1)

where the function Y : [0,T ]×R+ → R is continuous and nondecreasing, M : [a,b]×
[a,b]→ R+ and K : [a,b]→ R are continuous functions.

We study this equation on the set of a real-valued continuous function on [a,b],
i.e., Ω =C([a,b]). We consider the following modular space around g0:

Ωm = Ωm(g0) = {h ∈ Ω =C([a,b]) : mη(g,g0)→ 0 as η → ∞}. (4.2)

Now, let us take the strict and convex modular metric mη(g, f ) = d(g, f )
η

. Here d(g, f )
represents the usual metric d(g, f ) = max

t∈[a,b]
|g(t)− f (t)|. Then the space Ωm (4.2)

becomes m-complete. Furthermore, we can equip this space with the partial order
defined as g, f ∈ C([a,b]) s.t. g ≤ f =⇒ g(t) ⪯ f (t) for all t ∈ [a,b] so that Ωm
becomes partially ordered m-complete w.r.t ′ ≤′.

Now, let us define H : C([0,T ])→C([0,T ]) as

(Hg)(t) = K(t)+
∫ b

a
M(t,ζ)Y (ζ,g(ζ))dζ, t ∈ [0,T ]. (4.3)

It is clear that if g(t) is a fixed point of H, then g ∈ C([a,b]) is a solution of the
integral equation (4.1). For this aim, we must show that all hypotheses in Corollary
3 hold.

Theorem 9. Suppose that the followings hold:
(T 1) Y (ζ,g(ζ)) is nondecreasing w.r.t the second variable,
(T 2) for a given κ > 0, A ∈ (0,1) and η ∈ (0,∞), there exist z : Ωm ×Ωm → [0,∞)

and α : Ωm ×Ωm → [0,∞) s.t. if α(g, f ) ≥ 1 for all g, f ∈ Ωm, then for all
ζ ∈ [a,b]

|Y (ζ,g(ζ))−Y (ζ, f (ζ))| ≤ z(g(ζ), f (ζ))|g(ζ)− f (ζ)
η

|, (4.4)

and

|
∫ b

a
M(t,ζ)z(g, f ) dζ| ≤ Ae−κ, (4.5)

(T 3) there exists g0 ∈ Ωm s.t. g0(t)⪯ K(t)+
∫ b

a M(t,sζ)Y (ζ,g0(ζ))dζ,

then H has a solution in C([a,b]).

Proof. In the first instance define α : Ωm ×Ωm → [0,∞) as

α(g, f ) =

{
1, g ⪯ f ,
0, otherwise.

(4.6)
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Consider g, f ∈C([a,b]) s.t. g ⪯ f ⇐⇒ g(t)≤ f (t) for all t ∈ [a,b]. Since Y (s,g(s))
is nondecreasing, it easy to see that Hg ≤ H f , that is, F is nondecreasing w.r.t ’≤’.
In addition, mη(Hg,G f )> 0 holds.

If g ⪯ f , then α(g, f )≥ 1. Hence, (T 1) provides

mη(Hg,H f ) =
d(Hg,H f )

η
=

1
η

max
t∈[a,b]

|Hg(t)−H f (t)|

≤ 1
η

max
t∈[a,b]

∫ b

a
|M(t,ζ)||Y (ζ,g(ζ))−Y (ζ, f (ζ))|dζ.(4.7)

By (4.4), we write

mη(Hg,H f ) =≤ 1
η

max
t∈[a,b]

∫ b

a
|M(t,ζ)|z(g, f )

|h(ζ)−g(ζ)|
η

dζ

≤ max
t∈[a,b]

|h(ζ)−g(ζ)|
η

∫ b

a
|M(t,ζ)|z(g, f )dζ

≤ mη(g, f )
∫ b

a
|M(t,ζ)|z(g, f )dζ.

(4.8)

From (4.5), we obtain
mη(Hg,H f )≤ mη(g, f )Ae−κ. (4.9)

Hereby, we write for all g, f ∈ Ωm s.t. g ⪯ f with Hg ̸= H f

α(g, f )mη(Hg,G f )≤ e−κ
ψ(mη(g, f ))≤ e−κ

ψ(M1(g, f )), (4.10)

where ψ(ξ) = Aξ ∈ Ψ. Thus, (3.33) is satisfied for F(ξ) = ln(ξ).
From (4.6), we conclude α(Hg,H f )≥ 1. Thus, H is α-admissible. (T 3) guaran-

tees that there exists g0 ∈ Ω s.t. g0 ⪯ Hg0, i.e., α(g0,Hg0)≥ 1.
We, therefore, have all hypotheses in Corollary 3 fulfilled; that is, H possesses a

fixed point. Consequently, g ∈C([a,b]) is a solution of (4.1).
□

Example 5. Let Ω =C([0,1]) and mη(g, f ) = max
t∈[0,1]

|g(t)− f (t)|
η

. Consider the integral

equation defined by

g(t) =
1
2
+

1
2η

∫ 1

0

t
ζ+1

g(ζ)
2

dζ, t ∈ [0,1]. (4.11)

Here, K(t) = 1
2 , M(t,ζ) = t

ζ+1 , and Y (ζ,g(ζ)) = g(ζ)
2η

.

Let us define a mapping H : C([0,1])→C([0,1]) as

(Hg)(t) =
1
2
+

1
2η

∫ 1

0

t
ζ+1

g(ζ)
2

dζ, t ∈ [0,1]. (4.12)

We take the function α given in (4.6).
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For g ⪯ f , it is clear that Y (ζ,g(ζ))≤ Y (ζ, f (ζ)), that is, Y is nondecreasing w.r.t
the second variable. So, (T 1) is done.

If g ⪯ f , then α(g, f )≥ 1. Hence, for all ζ ∈ [0,1]

|Y (ζ,g(ζ))−Y (ζ, f (ζ))| ≤ 1
2

g(ζ)− f (ζ)
η

= z(g, f )|g(ζ)− f (ζ)
η

|, (4.13)

where z(g, f ) = 1
2 . Moreover, we obtain

|
∫ 1

0

1
2

t
ζ+1

dζ| ≤ 1
2

max
t∈[0,1]

{t}
∫ 1

0

1
ζ+1

dζ ≤ 1
2

ln(2)≤ e−0.6 ln(2). (4.14)

Hereby, T 2 is satisfied for κ =−0.6 and A = ln2 ∈ (0,1).
We conclude that there exists an element g0 = 0 in C([0,1]) s.t.

g0 = 0 ≤ 1
2
+

1
2η

∫ 1

0

t
ζ+1

0
2

dζ =
1
2
.

So, (T 3) holds.
Since all conditions of Theorem 9 are satisfied, the integral equation (4.11) has a

solution in C([0,1]). Indeed, g(t) = 1
2 +

t
2η

∈C([0,1]) is a solution for (4.11).

5. CONCLUSION

We introduce two generalized modified Fα-contraction of type I and II in MMS.
For these contractions, we state the fixed point theorems, which give the existence of
the fixed point. Moreover, we put another condition (C∗

3) instead of (C3) in Theorem
3 and 4. In this case, we keep the existence of the fixed point. Furthermore, we
consider an additional condition that provides the uniqueness of the fixed point. To
support the outcomes attained here, we give some examples. We also put forward
some significant results. Consequently, we consider an integral equation in MMS
and prove the existence of this equation. The outcomes obtained herein extend the
results for Fα-contraction mappings in metric spaces to MMS. As a final point, in the
example mη(x,y) =

d(x,y)
η

if we take η = 1, all the consequences given are still valid
in an ordinary metric structure, which emphasizes that the results obtained here are
also a generalizations of the existing literature.
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