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Abstract. We prove the existence of multiple positive solutions for a nonlinear third-order non-
local boundary value problem by applying Krasnosel’skii’s fixed point theorem. To illustrate the
applicability of the obtained results, we consider an example.
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1. INTRODUCTION

We study boundary value problem consisting of the nonlinear third-order differen-
tial equation

x′′′+ f (t,x) = 0, t ∈ (0,1), (1.1)

and the boundary conditions

x(0) = 0, x′(0) = 0, x(1) =
1∫

0

x(ξ)dξ. (1.2)

We assume that f : [0,1]× [0,∞)→ [0,∞) is continuous.
The purpose of the paper is to give results on the existence of multiple positive

solutions to (1.1), (1.2) by applying Krasnosel’skii’s fixed point theorem. By a pos-
itive solution of (1.1), (1.2) we understand C3[0,1] function which is positive on
0 < t ≤ 1 and satisfies differential equation (1.1) for 0 < t < 1 and boundary condi-
tions (1.2). However, note that if f (t,0) = 0, then boundary value problem (1.1), (1.2)
always has the trivial solution. Since f (t,x) is not defined for x < 0, every solution
of (1.1), (1.2) is nonnegative. In what follows, we will show that every nonnegative
nontrivial solution of (1.1), (1.2) is positive.
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Actually, our main result states that for each given positive integer n, we can indic-
ate f so that problem (1.1), (1.2) has at least n positive solutions. The approach that
we will use to obtain this result is the often used one. First, we rewrite problem (1.1),
(1.2) as an equivalent integral equation by constructing the corresponding Green’s
function. Then, we define an operator in the suitable cone of nonnegative continuous
functions, and hence the problem reduces to find fixed points of the operator. Finally,
we prove the existence of multiple fixed points in the cone using Krasnosel’skii’s
cone compression and expansion theorem of norm type [7, 8].

Krasnosel’skii’s theorem is a very convenient and effective tool for studying the ex-
istence and multiplicity of positive solutions to boundary value problems, and there-
fore a lot of authors employ this technique in their research. J.R. Graef and B. Yang
consider third-order three-point boundary value problem and give sufficient condi-
tions for the existence of multiple positive solutions to this problem in [3]. The same
authors, in [4], obtain existence and nonexistence results for positive solutions for a
higher-order multi-point boundary value problem, and in [5], obtain sufficient condi-
tions for the existence and nonexistence of positive solutions for a third-order two-
point boundary value problem. J.R.L. Webb and G. Infante establish the existence
of multiple positive solutions for a second-order nonlocal boundary value problem
in [12]. The same authors, in [13], give a method of establishing the existence of
multiple positive solutions for a large number of nonlinear differential equations of
arbitrary order with any allowed number of nonlocal conditions. The problem we are
studying here is a special case of a family of problems studied in [10], but in this
paper, we use somewhat different conditions on the nonlinearity in the equation. We
will explain this difference in Example 1 (see Section 4). A. Calamai and G. Infante
study a parameter-dependent analogue of problem (1.1),(1.2) in the context of delay
equations in [1].

Nonlocal boundary conditions make it possible to obtain more accurate models
and consequently often appear in physics and various branches of applied mathem-
atics. Much research has been done on nonlocal boundary value problems in the last
decades. See, for example, the papers by J.R. Graef and J.R.L. Webb [2], J.R.L.
Webb [9–11], J.R. Graef and B. Yang [6] and references therein.

Since our main tool in this paper is Krasnosel’skii’s fixed point theorem, let us
state this theorem for the reader’s convenience.

Theorem 1 (Krasnosel’skii, [8]). Let E be a Banach space and K ⊂ E be a cone
in E. Assume Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2, T : K ∩(
Ω2 \Ω1

)
→ K is a completely continuous operator such that

(A) ∥T x∥ ≤ ∥x∥, ∀x ∈ K ∩∂Ω1 and ∥T x∥ ≥ ∥x∥, ∀x ∈ K ∩∂Ω2, or
(B) ∥T x∥ ≥ ∥x∥, ∀x ∈ K ∩∂Ω1 and ∥T x∥ ≤ ∥x∥, ∀x ∈ K ∩∂Ω2.

Then T has a fixed point in K ∩
(
Ω2 \Ω1

)
.
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The paper contains three sections besides the Introduction. In Section 2, we rewrite
the main problem as an equivalent integral equation, by constructing the correspond-
ing Green’s function. Also, we give some inequalities for Green’s function here. In
Section 3, we prove our main theorem on the existence of multiple positive solutions
for the problem. In conclusion, we consider an example to illustrate the applicability
of our main result in Section 4.

2. CONSTRUCTION AND ESTIMATION OF THE GREEN’S FUNCTION

Our first goal is to rewrite problem (1.1), (1.2) as an equivalent integral equation.
So, let us consider the linear equation

x′′′+h(t) = 0, t ∈ (0,1), (2.1)

together with boundary conditions (1.2).

Proposition 1. Let h : [0,1] → R be a continuous function. Then the function
defined by

x(t) =
1∫

0

G(t,s)h(s)ds

is the unique solution of boundary value problem (2.1),(1.2), where

G(t,s) =
1
4

{
t2(1− s)2(s+2)−2(t − s)2, 0 ≤ s ≤ t ≤ 1,
t2(1− s)2(s+2), 0 ≤ t ≤ s ≤ 1.

(2.2)

Proof. Let x(t) be a solution of problem (2.1),(1.2). Integrating equation (2.1)
thrice, we get

x(t) = x(0)+ t x′(0)+
1
2

t2 x′′(0)− 1
2

t∫
0

(t − s)2h(s)ds,

and, in view of boundary conditions (1.2), we obtain

x(t) =
1
2

t2 x′′(0)− 1
2

t∫
0

(t − s)2h(s)ds.

Since x(1) =
1∫

0

x(ξ)dξ, it follows that

1
2

x′′(0)− 1
2

1∫
0

(1− s)2h(s)ds =
1∫

0

1
2

ξ
2x′′(0)− 1

2

ξ∫
0

(ξ− s)2h(s)ds

 dξ
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and hence

x′′(0) =
1
2

1∫
0

(1− s)2(s+2)h(s)ds.

Therefore,

x(t) =
1
4

t2
1∫

0

(1− s)2(s+2)h(s)ds− 1
2

t∫
0

(t − s)2h(s)ds

=
1
4

t∫
0

t2(1− s)2(s+2)h(s)ds+
1
4

1∫
t

t2(1− s)2(s+2)h(s)ds

− 1
2

t∫
0

(t − s)2h(s)ds

=
1
4

t∫
0

(
t2(1− s)2(s+2)−2(t − s)2)h(s)ds+

1
4

1∫
t

t2(1− s)2(s+2)h(s)ds.

□

Hence boundary value problem (1.1), (1.2) is equivalent to the integral equation

x(t) =
1∫

0

G(t,s) f (s,x(s))ds, 0 ≤ t ≤ 1, (2.3)

in the sense that x is a solution of (1.1), (1.2) iff it is a solution of (2.3). Here G(t,s)
denotes the Green’s function for the problem x′′′ = 0, (1.2), and is explicitly given by
(2.2).

Next, we prove some inequalities for the Green’s function G(t,s).

Proposition 2. For all (t,s) ∈ [0,1]× [0,1], we have

G(t,s)≥ 0. (2.4)

If (t,s) ∈ (0,1)× (0,1), then
G(t,s)> 0.

Proof. For 0 ≤ t ≤ s ≤ 1, it is obvious that t2(1− s)2(s+2)≥ 0.
If 0 ≤ s ≤ t ≤ 1, we have

t2(1− s)2(s+2)−2(t − s)2 ≥ t2(1− s)2(s+2)− (s+2)(t − s)2

= (s+2)
(
t2(1− s)2 − (t − s)2)= (s+2)

(
s2(t −1)(t +1)−2st(t −1)

)
= s(s+2)(t −1)(t(s−2)+ s) = s(s+2)(1− t)(t(2− s)− s)≥ 0.

□



MULTIPLICITY OF POSITIVE SOLUTIONS FOR A THIRD-ORDER BVP 971

Proposition 3. For all (t,s) ∈ [0,1]× [0,1], we have

G(t,s)≤ s(1− s)2(s+2)
2(3− s2)

. (2.5)

Proof. Let us find the maximum of G(t,s) for each s with respect to t.

For 0 ≤ s ≤ t ≤ 1, the maximum occurs at t =
2

3− s2 and is equal to
s(1− s)2(s+2)

2(3− s2)
.

If 0 ≤ t ≤ s ≤ 1, the maximum occurs at t = s and is equal to
s2(1− s)2(s+2)

4
.

Since for all (t,s) ∈ [0,1]× [0,1],

s(1− s)2(s+2)
2(3− s2)

=
s2(1− s)2(s+2)

2s(3− s2)
≥ s2(1− s)2(s+2)

4
,

we get the proof. □

Proposition 4. For all (t,s) ∈ [1/2,1]× [0,1], we have

G(t,s)≥ 1
4
· s(1− s)2(s+2)

2(3− s2)
. (2.6)

Proof. For Λ1 = {(t,s) : 1/2 ≤ t ≤ 1, 0 ≤ s ≤ 1, s ≤ t}, we have

inf
Λ1

G(t,s)
s(1− s)2(s+2)

2(3− s2)

= inf
Λ1

(3− s2)(4t −2s− t2(3− s2))

2(1− s)2(s+2)
=

1
3
.

If Λ2 = {(t,s) : 1/2 ≤ t ≤ 1, 0 ≤ s ≤ 1, t ≤ s}, then

inf
Λ2

G(t,s)
s(1− s)2(s+2)

2(3− s2)

= min
Λ2

t2(3− s2)

2s
=

1
4
.

Therefore,
G(t,s)

s(1− s)2(s+2)
2(3− s2)

≥ 1
4

for
1
2
≤ t ≤ 1, 0 ≤ s ≤ 1.

□

Proposition 5. Every nonnegative nontrivial solution x(t) of (1.1), (1.2) is posit-
ive.

Proof. Suppose that there exists t0 ∈ (0,1) such that x(t0) = 0. Since boundary
value problem (1.1), (1.2) is equivalent to integral equation (2.3) we get

x(t0) =
1∫

0

G(t0,s) f (s,x(s))ds = 0.



972 S. SMIRNOV

Since G(t0,s) f (s,x(s))≥ 0 for all s ∈ [0,1] then

G(t0,s) f (s,x(s)) = 0 for all s ∈ [0,1].

Since G(t0,s) > 0 for all s ∈ (0,1) we get that x′′′(s) = − f (s,x(s)) = 0 for all s ∈
(0,1). Therefore x(s) is a polynomial of degree at most two. Since x(s) satisfies
boundary conditions (1.2) it follows that x(s) = 0 for all s ∈ [0,1]. We get the contra-
diction. □

3. EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS

In this section, we prove our main result on the existence of multiple positive
solutions for boundary value problem (1.1), (1.2) by applying Krasnosel’skii’s fixed
point theorem.

For our constructions, consider the Banach space C[0,1] with the norm

∥x∥= max
0≤t≤1

|x(t)|, x ∈C[0,1].

Define a cone K in C[0,1] by

K =

{
x ∈C[0,1] : x(t)≥ 0, min

1
2≤t≤1

x(t)≥ 1
4
∥x∥

}
,

and an integral operator T : K →C[0,1] by

(T x)(t) =
1∫

0

G(t,s) f (s,x(s))ds, 0 ≤ t ≤ 1.

It is easy to see that boundary value problem (1.1), (1.2) has a solution x if and only
if x is a fixed point of the operator T . Also, it is well known that T : K →C[0,1] is a
completely continuous operator.

Proposition 6. T (K)⊂ K.

Proof. From inequality (2.4), it follows that for x ∈ K, (T x)(t)≥ 0 on [0,1]. Also,
for x ∈ K, we have from (2.5) that

(T x)(t) =
1∫

0

G(t,s) f (s,x(s))ds ≤
1∫

0

s(1− s)2(s+2)
2(3− s2)

f (s,x(s))ds,

so that

∥T x∥ ≤
1∫

0

s(1− s)2(s+2)
2(3− s2)

f (s,x(s))ds. (3.1)
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And next, if x ∈ K, we have by (2.6) and (3.1),

min
1
2≤t≤1

(T x)(t) = min
1
2≤t≤1

1∫
0

G(t,s) f (s,x(s))ds

≥ 1
4

1∫
0

s(1− s)2(s+2)
2(3− s2)

f (s,x(s))ds ≥ 1
4
∥T x∥.

□

We shall use the following notations:

I1 =

 max
0≤t≤1

1∫
0

G(t,s)ds

−1

<

 max
0≤t≤1

1∫
1/2

G(t,s)ds

−1

= I2.

The next two propositions will be used in the proof of our main result.

Proposition 7. Suppose that there exists r > 0 such that f (t,x) ≤ I1 r for (t,x) ∈
[0,1]× [0,r]. If x ∈ K with ∥x∥= r, then ∥T x∥ ≤ r.

Proof. If x ∈ K with ∥x∥= r, then for t ∈ [0,1] we have

(T x)(t) =
1∫

0

G(t,s) f (s,x(s))ds ≤ I1 r
1∫

0

G(t,s)ds ≤ I1 r max
0≤t≤1

1∫
0

G(t,s)ds = r,

or ∥T x∥ ≤ r.
□

Proposition 8. Suppose that there exists r > 0 such that f (t,x) ≥ I2 r for (t,x) ∈
[0,1]× [r/4,r]. If x ∈ K with ∥x∥= r, then ∥T x∥ ≥ r.

Proof. If x ∈ K with ∥x∥ = r, then for every s ∈ [1/2,1] we have min
1
2≤s≤1

x(s) ≥

1
4
∥x∥= 1

4
r and x(s) ∈ [r/4,r]. Therefore,

∥T x∥= max
0≤t≤1

1∫
0

G(t,s) f (s,x(s))ds

≥ max
0≤t≤1

1∫
1/2

G(t,s) f (s,x(s))ds ≥ I2 r max
0≤t≤1

1∫
1/2

G(t,s)ds = r.

□
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Theorem 2. Suppose that there exist 2m constants 0< r1 < r2 < · · ·< r2m−1 < r2m,

and let α(n) = 2n− 1− (−1)n

2
, β(n) = 2n− 1+(−1)n

2
, where 1 ≤ n ≤ m. If

f (t,x)≤ I1 rα(n) for (t,x) ∈ [0,1]× [0,rα(n)]

and
f (t,x)≥ I2 rβ(n) for (t,x) ∈ [0,1]× [rβ(n)/4,rβ(n)],

then boundary value problem (1.1),(1.2) has at least m positive solutions xn(t) such
that r2n−1 ≤ ∥xn∥ ≤ r2n.

Proof. If Ωk = {x ∈C[0,1] : ∥x∥< rk}, 1 ≤ k ≤ 2m, then, from Proposition 7 and
Proposition 8, we have

∥T x∥ ≤ ∥x∥ for x ∈ K ∩∂Ωα(n),

and
∥T x∥ ≥ ∥x∥ for x ∈ K ∩∂Ωβ(n).

From Theorem 1, we see that T has fixed point in each of the sets K∩
(
Ω2n \Ω2n−1

)
.

Thus, boundary value problem (1.1), (1.2) has at least m positive solutions. □

4. EXAMPLE

Example 1. Consider boundary value problem (1.1),(1.2) with

f (t,x) =



28x2, 0 ≤ x ≤ 1,
622(x−1)2 +28, 1 ≤ x ≤ 2,

60
2
√

6−1
(
√

x−1−1)+650, 2 ≤ x ≤ 25,

g(x), g(25) = 710, 25 ≤ x,

where g : [25,∞)→ [0,∞) is a continuous function.

We have I1 =
256
9

≈ 28.44 and I2 =
24

1057

(
7537−405

√
105

)
≈ 76.9.

If we choose r1 = 1, r2 = 8, r3 = 8.4, r4 = 25, we get

f (t,x)≤ I1 r1 for (t,x) ∈ [0,1]× [0,r1],

f (t,x)≥ I2 r2 for (t,x) ∈ [0,1]× [r2/4,r2],

f (t,x)≥ I2 r3 for (t,x) ∈ [0,1]× [r3/4,r3],

f (t,x)≤ I1 r4 for (t,x) ∈ [0,1]× [0,r4].

Therefore, by Theorem 2, the boundary value problem has at least two positive solu-
tions x1(t) and x2(t) such that

1 ≤ ∥x1∥ ≤ 8, 8.4 ≤ ∥x2∥ ≤ 25.

Solutions x1(t) and x2(t) are depicted in Figure 1 and Figure 2. These figures were ob-
tained by using the program Wolfram Mathematica 11.1. Each solution has a double
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zero at t = 0 and is equal to its antiderivative at t = 1. The initial conditions for these
solutions are x1(0)= 0, x′1(0)= 0, x′′1(0)≈ 6.27314 and x2(0)= 0, x′2(0)= 0, x′′2(0)≈
170.0105.

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

x(t)

FIGURE 1. Solution
x1 (solid) with its an-
tiderivative (dashed).

0.2 0.4 0.6 0.8 1.0
t

5

10

15

20

x(t)

FIGURE 2. Solution
x2 (solid) with its an-
tiderivative (dashed).

Now, let us discuss the difference between conditions on nonlinearity f in The-
orem 2 and in [10] (Theorem 2.2). According to [10], the problem has at least two
positive solutions if certain conditions are fulfilled, two of which are the following
inequalities

0 ≤ lim
x→0+

f (x)
x

< µ1, 0 ≤ lim
x→∞

f (x)
x

< µ1,

where µ1 is called the principal characteristic value of operator T or the principal
eigenvalue of the corresponding boundary value problem. We see, that the first in-

equality is fulfilled, but the second one is not fulfilled, because lim
x→∞

f (x)
x

can be every
nonnegative number in our example. Also, the author would like to mention, that our
conditions allow us to get an estimate of the norm for positive solutions to the prob-
lem.
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