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proved.
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1. INTRODUCTION

In this paper, we are interested in the following problem:
utt −M

(
∥∇u∥2

2

)
∆u(t)+β1|ut(t)|m(x)−2ut(t) = u|u|p(x)−2 ln |u|k.

u(x,0) = u0(x), ut(x,0) = u1(x), in Ω

u(x, t) = 0, in ∂Ω× (0,∞),

(1.1)

where Ω ⊂RN is a bounded domain with sufficiently smooth boundary ∂Ω, β1,k > 0,
M(s) is a positive C1-function like M(s) = 1 + sγ, γ > 0. p(.) and m(.) are the
variable exponents given as measurable functions on Ω such that:

2 ≤ p− ≤ p(x)≤ p+ ≤ p∗,

2 ≤ m− ≤ m(x)≤ m+ ≤ m∗, (1.2)

where

p− = ess inf
x∈Ω

p(x), p+ = esssup
x∈Ω

p(x),

m− = ess inf
x∈Ω

m(x), m+ = esssup
x∈Ω

m(x), (1.3)
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and

p∗,m∗ =
2(n−1)

n−2
, if n ≥ 3. (1.4)

Of course, the problem we are going to study is of the Kirchhoff-type equation de-
veloped by Kirchhoff in the year 1876 [9], which is concerned with the study of
describing small vibration amplitude of elastic stings.

The variable-exponents problems are among the most important and fertile re-
search fields in recent years, and many researchers have touched on this matter. These
problems appear in many physical phenomena and in many different branches of sci-
ences and their mathematical modeling, such as image processing, electrical fluids,
elasticity theory, and linear viscosity. For more in-depth study of this topic, we refer
the reader to [1–4, 15]. Also, many results were reached regarding global existence,
asymptotic behavior and blow-up of the solutions.

As for logarithmic nonlinearity, it appears in many fields of physical and applied
sciences, including quantum mechanics, nuclear physics, and optics. The same goes
for inflationary cosmology and symmetry theories. This is what led many math-
ematicians and researchers to address these applications and work on this type of
problems.

In this context, we mention previous works that have a direct relationship with
our present work. In case γ = 0, the authors in [5] determined the existence and
uniqueness of a local solution in time by the Faedo-Galerkin method and they proved
the blow-up of a solution under suitable conditions (see [6, 8–11]). Recently, in the
present of a delay term also in the case γ = 0 in [14, 16] the authors established
a global existence result under suitable conditions on the initial data only without
imposing the Sobolev Logarithmic Inequality. After that, by the Komornik’s lemma
they proved the stability results, and they presented a numerical study that supports
their results.

There are other works that study the variable exponent, including the followings.
In [12] the authors considered a nonlinear Kirchhoff-type equation with distributed
delay and variable-exponents in the presence of the source term (k = 0). Under
suitable hypotheses they proved the blow-up of solutions, and by using an integral
inequality due to Komornik they obtained the general decay result but in the case
b = 0 (in the absence of the source term). Also, in [12–14], the authors considered a
nonlinear p(x)-Laplacian equation with time delay and variable exponents, and they
proved the blow-up of the solutions. Then, by applying an integral inequality due to
Komornik, they obtained the decay result. Starting from all these works and supple-
menting them, we will try to study our problem (1.1), as we consider the coupling
with the logarithmic nonlinearity and the variable exponent, with a thorough study it
makes our problem different from what was previously studied.

The remainder of our work is organized as follows: in Section 2, we lay down
the hypotheses, concepts and lemmas we need. In Section 3, the global existence is
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shown and in the Section 4, we obtain the general decay result. Next, in Section 5,
we prove the blow-up of the solutions. Finally, we put a general conclusion.

2. PRELIMINARIES

In this section,we introduce some notations and materials that will be used through-
out this work. Firstly, let p : Ω → [1,∞) be a measurable function. We define the
variable-exponent Lebesgue space with a variable exponent p(.) by

Lp(.)(Ω) =

{
u : Ω → R; measurable in Ω :

∫
Ω

|u|p(.)dx < ∞

}
,

with a Luxemburg-type norm

∥u∥p(.) = inf
{

σ > 0 :
∫

Ω

| u
σ
|p(x)dx ≤ 1

}
.

Equipped with this norm, Lp(.)(Ω) is a Banach space (see [4]). Next, we define the
variable-exponent Sobolev space W 1,p(.)(Ω) as follows

W 1,p(.)(Ω) =

{
u ∈ Lp(.)(Ω);∇u exists and |∇u| ∈ Lp(.)(Ω)

}
,

with
∥u∥1,p(.) = ∥u∥p(.)+∥∇u∥p(.).

W 1,p(.)(Ω) is a Banach space, and the closure of C∞
0 (Ω) is defined by W 1,p(.)

0 (Ω).
For u ∈W 1,p(.)

0 (Ω), we give the equivalent norm

∥u∥1,p(.) = ∥∇u∥p(.).

W−1,p′(.)
0 (Ω) denotes the dual of W 1,p(.)

0 (Ω), where 1
p(.) +

1
p′(.) = 1. Also, we suppose

that

|p(x)− p(y)| ≤ − A
log |x− y|

and |m(x)−m(y)| ≤ − B
log |x− y|

for all x,y ∈ Ω,

(2.1)
A,B > 0 and 0 < ζ < 1 with |x− y|< ζ. (Log-Hölder inequality).

Lemma 1 ([2]). Suppose that p(.) verifies 1.4 and let Ω be a bounded domain of
Rn. Then, ∃c∗ = c(Ω, p+, p−)> 0,

∥u∥p(.) ≤ c∗∥∇u∥p(.), ∀u ∈W 1,p(.)
0 (Ω).

Lemma 2 ([2]). If p : Ω → [1,∞) is continuous,

2 ≤ p− ≤ p(x)≤ p+ ≤ 2n
n−2

, n ≥ 3, (2.2)

is held, then the embedding H1
0 (Ω)→ Lp(.)(Ω) is continuous.
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Lemma 3 (Unit ball property, [3]). Let p ≥ 1 be a measurable function on Ω.
Then,

∥g∥p(.) ≤ 1, if and only if ρp(.)(g)≤ 1,

where

ρp(.)(g) =
∫

Ω

|g(x)|p(x)dx.

Lemma 4 ([2]). If p ≥ 1 is a measurable function on Ω, then

min
{
∥u∥p−

p(.),∥u∥p+

p(.)

}
≤ ρp(.)(u)≤ max

{
∥u∥p−

p(.),∥u∥p+

p(.)

}
,

for all u ∈ Lp(.)(Ω) and for a.e. x ∈ Ω.

Theorem 1. Assume that (1.2) and (2.1) hold. Then, for all (u0,u1) ∈ H1
0 (Ω)×

L2(Ω) there exists a unique solution u of problem (1.1) on (0,T ) such that

u ∈C((0,T ),H1
0 (Ω))∩C1((0,T ),L2(Ω)),

ut ∈ Lm(.)(Ω× (0,T )). (2.3)

Firstly, we define the energy functional.

Lemma 5. The functional of energy E, given by

E(t) =
1
2
∥ut∥2

2 +
1
2
∥∇u(t)∥2

2 +
1

2(γ+1)
∥∇u(t)∥2(γ+1)

2

+ k
∫

Ω

|u|p(x)

p2(x)
dx−

∫
Ω

|u|p(x) ln |u|k

p(x)
dx, (2.4)

satisfies

E ′ (t)≤−β1

∫
Ω

|ut(t)|m(x)dx ≤ 0. (2.5)

Proof. By the inner product of (1.1) with ut , we get

d
dt

{
1
2
∥ut∥2

2 +
1
2
∥∇u(t)∥2

2 +
1

2(γ+1)
∥∇u(t)∥2(γ+1)

2 + k
∫

Ω

|u|p(x)

p2(x)
dx−

∫
Ω

|u|p(x) ln |u|k

p(x)
dx
}

=−β1

∫
Ω

|ut(t)|m(x)dx. (2.6)

Hence, we find (2.4) and (2.5), also E is a decreasing function. This completes the
proof. □
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3. GLOBAL EXISTENCE

Now, we show that the solution of (1.1) is uniformly bounded and global in time.
For this purpose, we set

I(t) = ∥∇u∥2
2 −

∫
Ω

|u|p(x) ln |u|kdx, (3.1)

J(t) =
1
2
∥∇u(t)∥2

2 +
1

2(γ+1)
∥∇u(t)∥2(γ+1)

2 + k
∫

Ω

|u|p(x)

p2(x)
dx−

∫
Ω

|u|p(x) ln |u|k

p(x)
dx.

(3.2)

Hence,

E(t) = J(t)+
1
2
∥ut∥2

2. (3.3)

Lemma 6. Suppose that the initial data u0,u1 ∈ H1(Ω) × L2(Ω) satisfying
I(0)> 0 and

ξ :=C∗(p+,k)
(

2p−

p−−2
E(0)

) p++k−2
2

< 1. (3.4)

Then I(t)> 0, for any t ∈ [0,T ].

Proof. Of course, for the first case, if
∫

Ω
|u|p(x) ln |u|kdx < 0, the result is clear.

Therefore, we can go directly to the second case and impose:
∫

Ω
|u|p(x) ln |u|kdx > 0.

Since I(0) > 0 we deduce by continuity that there exists T ∗ ≤ T such that I(t) ≥ 0
for all t ∈ [0,T ∗]. This implies that ∀t ∈ [0,T ∗],

J(t)≥ 1
2
∥∇u(t)∥2

2 +
1

2(γ+1)
∥∇u(t)∥2(γ+1)

2 +
k

(p+)2

∫
Ω

|u|p(x)dx

− 1
p−

∫
Ω

|u|p(x) ln |u|kdx

≥ p−−2
2p−

∥∇u(t)∥2
2 +

1
2(γ+1)

∥∇u(t)∥2(γ+1)
2 +

k
(p+)2

∫
Ω

|u|p(x)dx+
1

p−
I(t)

≥ p−−2
2p−

∥∇u(t)∥2
2.

Hence,

∥∇u(t)∥2
2 ≤

2p−

p−−2
J(t)≤ 2p−

p−−2
E(t)≤ 2p−

p−−2
E(0). (3.5)

On the other hand, using the facts that ln |u|< |u| and |u|> 1, we get∫
Ω

|u|p(x) ln |u|kdx <
∫

Ω

|u|p++kdx. (3.6)

Then, the embedding H1
0 (Ω)) ↪→ Lp++k(Ω) yields∫

Ω

|u|p++kdx ≤C∗(p+,k)∥∇u(t)∥p++k
2 =C∗(p+,k)∥∇u(t)∥2

2∥∇u(t)∥p++k−2
2 . (3.7)
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Using (3.5), we find

∫
Ω

|u|p(x) ln |u|kdx <C∗(p+,k)
(

2p−E(0)
p−−2

) p++k−2
2

∥∇u(t)∥2
2 < ξ∥∇u(t)∥2

2, (3.8)

where ξ =C∗(p+,k)
(

2p−E(0)
p−−2

) p++k−2
2

and C∗(p+,k) is the embedding constant.

According (3.1) and (3.5), we get

I(t)> (1−ξ)∥∇u(t)∥2
2 > 0, ∀t ∈ [0,T ∗]. (3.9)

By repeating this procedure, T ∗ can be extended to T . This completes the proof. □

Remark 1. Under the conditions of Lemma 6, we have J(t)≥ 0 and consequently
E(t)≥ 0, ∀t ∈ [0,T ]. Hence, by (3.2) and (3.5) we find

∥ut(t)∥2
2 ≤ 2E(0),

∥∇u(t)∥2
2(γ+1) ≤ 2(γ+1)E(0),∫

Ω

|u|p(x)dx ≤ (p+)2

k
E(0). (3.10)

4. GENERAL DECAY

In this section, we state and prove the general decay of system (1.1). The following
lemma will be used in the upcoming results.

Lemma 7 (Komornik, [10]). Let E : R+ → R+ be a non-increasing function and
suppose that ∃σ,ω > 0 such that∫

∞

s
E1+σ(t)dt ≤ 1

ω
Eσ(0)E(s) = cE(s), ∀s > 0. (4.1)

Then, we have for ∀t ≥ 0{
E(t)≤ cE(0)/(1+ t)

1
σ , if σ > 0,

E(t)≤ cE(0)e−ωt , if σ = 0.
(4.2)

In the next step, we give the third result of our work.

Theorem 2. Assume that (1.2) and (2.1) hold. Then ∃c,λ > 0 such that the solu-
tion of (1.1) satisfies{

E(t)≤ cE(0)/(1+ t)
2

m+−2 , if m+ > 2,
E(t)≤ cE−λt , if m(x) = 2.

(4.3)
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Proof. Multiplying (1.1) by uEq(t), for q > 0 to be specified later, and integrating
the result over Ω× (s,T ),s < T , gives∫ T

s
Eq(t)

∫
Ω

{
uutt −M

(
∥∇u∥2

2

)
u∆u(t)+β1uut |ut(t)|m(x)−2 −|u|p(x) ln |u|k

}
dxdt = 0,

(4.4)

which implies that∫ T

s
Eq(t)

∫
Ω

{
d
dt
(uut)−|ut |2 +M

(
∥∇u∥2

2

)
|∇u|2 +β1uut |ut(t)|m(x)−2|u|p(x) ln |u|k

}
dxdt

= 0. (4.5)

By (2.4) and the relation

d
dt

(
Eq(t)

∫
Ω

uutdx
)
= qEq−1(t)E ′(t)

∫
Ω

uutdx+Eq(t)
d
dt

(∫
Ω

uutdx
)
,

we get

2
∫ T

s
Eq+1(t)dt

=
∫ T

s

d
dt

(
Eq(t)

∫
Ω

uutdx
)

dt︸ ︷︷ ︸
I1

−q
∫ T

s

(
Eq−1(t)E ′(t)

∫
Ω

uutdx
)

dt︸ ︷︷ ︸
I2

+2
∫ T

s

(
Eq(t)

∫
Ω

|∇u|2dx
)

dt︸ ︷︷ ︸
I3

+2k
∫ T

s

(
Eq(t)

∫
Ω

|u|p(x)

p2(x)
dx
)

dt︸ ︷︷ ︸
I4

+
γ+2
γ+1

∫ T

s

(
Eq(t)

∫
Ω

∥∇u∥2γ

2 |∇u|2dx
)

dt︸ ︷︷ ︸
I5

(4.6)

+β1

∫ T

s

(
Eq(t)

∫
Ω

uut |ut(t)|m(x)−2dx
)

dt︸ ︷︷ ︸
I6

−
∫ T

s

(
Eq(t)

∫
Ω

|u|p(x) ln |u|kdx
)

dt︸ ︷︷ ︸
I7

−2
∫ T

s

(
Eq(t)

∫
Ω

|u|p(x) ln |u|k

p(x)
dx
)

dt︸ ︷︷ ︸
I8

.

At this point, we estimate Ii, i = 1, ...,8 of the RHS in (4.6), we have

I1 = Eq(T )
∫

Ω

uut(x,T )dx−Eq(s)
∫

Ω

uut(x,s)dx

≤ 1
2

Eq(T )
{∫

Ω

u2(x,T )dx+
∫

Ω

u2
t (x,T )dx

}
+

1
2

Eq(s)
{∫

Ω

u2(x,s)dx+
∫

Ω

u2
t (x,s)dx

}
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≤ 1
2

Eq(T )
{

c∗∥∇u(T )∥2
2 +2E(T )

}
+Eq(s)

{
c∗∥∇u(s)∥2

2 +2E(s)
}

≤ c1

(
Eq+1(T )+Eq+1(s)

)
. (4.7)

Since E is decreasing, we get

I1 ≤ cEq+1(s)≤ Eq(0)E(s)≤ cE(s). (4.8)

Similarly, we find

I2 ≤−q
∫ T

s
Eq−1(t)E ′(t)

(
c∗E(T )+E(T )

)
dt

≤−c
∫ T

s
Eq(t)E ′(t)dt ≤ cEq+1(s)≤ cE(s). (4.9)

Next, we get

I3 = 2
∫ T

s

(
Eq(t)∥∇u∥2

)
dt ≤ 2

∫ T

s
Eq(t)E(t)dt ≤ cEq+1(s)≤ cE(s). (4.10)

We estimate the next term as follows,

I4 = 2k
∫ T

s
Eq(t)

∫
Ω

|u|p(x)

p2(x)
dxdt ≤ c

∫ T

s
Eq(t)E(t)dt ≤ cEq+1(s)≤ cE(s). (4.11)

For the fifth term, we have

I5 = 2(γ+2)
∫ T

s

(
Eq(t)

∥∇u∥2(γ+1)
2

2(γ+1)

)
dt ≤ 2(γ+2)

∫ T

s
Eq(t)E(t)dt ≤ cEq+1(s)

≤ cE(s), (4.12)

and using Young’s inequality, we find

I6 = β1

∫ T

s

(
Eq(t)

∫
Ω

uut |ut(t)|m(x)−2dx
)

dt

≤ ε

∫ T

s

(
Eq(t)

∫
Ω

|u(t)|m(x)dx
)

dt + c
∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt

≤ ε

∫ T

s
Eq(t)

[∫
Ω+

|u(t)|m+
dx+

∫
Ω−

|u(t)|m−
dx
]

dt

+ c
∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt.

By using the embeddings H1
0 (Ω) ↪→ Lm−

(Ω) and H1
0 (Ω) ↪→ Lm+

(Ω), we get

I6 ≤ ε

∫ T

s
Eq(t)

[
c∥∇u(t)∥m+

2 + c∥∇u(t)∥m−
2

]
dt
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+ c
∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt

≤ ε

∫ T

s
Eq(t)

[
cE

m+−2
2 (0)E(t)+ cE

m−−2
2 (0)E(t)

]
dt

+ c
∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt

≤ cε

∫ T

s
Eq+1(t)dt + c

∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt. (4.13)

Similarly, we get

I7 =
∫ T

s

(
Eq(t)

∫
Ω

|u|p(x) ln |u|kdx
)

dt

≤ ξ

∫ T

s
Eq(t)∥∇u(t)∥2

2dt

≤ c
∫ T

s
Eq+1(t)dt ≤ cEq+1(s)≤ cE(s). (4.14)

Finally, we have

I8 =
∫ T

s

(
Eq(t)

∫
Ω

|u|p(x) ln |u|k

p(x)
dx
)

dt

≤ 1
p−

∫ T

s

(
Eq(t)

∫
Ω

|u|p(x) ln |u|kdx
)

dt

≤ cI7 ≤ cE(s). (4.15)

By combining (4.6)-(4.15), we find∫ T

s
Eq+1(t)dt ≤ cε

∫ T

s
Eq+1(t)dt + c

∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt + cE(s).

(4.16)

Now, we choose ε small enough such that∫ T

s
Eq+1(t)dt ≤ cE(s)+ c

∫ T

s

(
Eq(t)

∫
Ω

cε(x)|ut(t)|m(x)dx
)

dt. (4.17)

When ε is fixed, then cε(x)≤ M since m(x) is bounded. Then,∫ T

s
Eq+1(t)dt ≤ cE(s)+ cM

∫ T

s

(
Eq(t)

∫
Ω

|ut(t)|m(x)dx
)

dt

≤ cE(s)− cM
β1

∫ T

s
Eq(t)E ′(t)dt

≤ cE(s)+
cM

β1(q+1)

[
Eq+1(s)−Eq+1(T )

]
≤ cE(s). (4.18)
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Taking T → ∞, we find ∫
∞

s
Eq+1(t)dt ≤ cE(s). (4.19)

Finally, Komornik’s Lemma 7 ( with σ = q = m+−2
2 ) implies our result. The proof is

complete. □

5. BLOW-UP

Now, to prove the blow-up, we assume that E(0) < 0 and
∫

Ω

|u|p(x) ln |u|kdx > 0.

Let

H(t) =−E(t) =
∫

Ω

|u|p(x) ln |u|k

p(x)
dx− k

∫
Ω

|u|p(x)

p2(x)
dx

− 1
2
∥ut∥2

2 −
1
2
∥∇u(t)∥2

2 −
1

2(γ+1)
∥∇u(t)∥2(γ+1)

2 . (5.1)

From (2.5), we have
E(t)≤ E(0)< 0. (5.2)

Then

H′(t) =−E ′(t)≥ β1

∫
Ω

|ut(t)|m(x)dx ≥ 0, (5.3)

and

0 <H(0)≤H(t)≤
∫

Ω

|u|p(x) ln |u|k

p(x)
dx ≤ k

p−

∫
Ω

|u|p(x) ln |u|, (5.4)

where
ρ(u) = ρp(.)(u) =

∫
Ω

|u|p(x)dx.

Lemma 8 ([13]). Assume that (1.2) is held. Then ∃c = c(Ω)> 1, such that

ρ
s/p−(u)≤ c

(
∥∇u∥2

2 +ρ(u)
)
. (5.5)

Then we have

∥ u∥s
p− ≤ c

(
∥∇u∥2

2 +∥u∥p−

p−

)
, (5.6)

ρ
s/p−(u)≤ c

(
|H(t)|+∥ut∥2

2 +ρ(u)
)
, (5.7)

∥ u∥s
p− ≤ c

(
|H(t)|+∥ut∥2

2 +∥ u∥p−

p−

)
, (5.8)

∀u ∈ H1
0 (Ω) and 2 ≤ s ≤ p−. Let (u) be a solution of (1.1), then

ρ(u)≥ c∥u∥p−

p− (5.9)



GLOBAL EXISTENCE, GENERAL DECAY AND BLOW-UP OF SOLUTIONS 547

and ∫
Ω

|u|m(x)dx ≤ c
(

ρ
m−/p−(u)+ρ

m+/p−(u)
)
. (5.10)

Theorem 3. Suppose that (1.2), (2.1) and E(0) < 0. Then, the solution of (1.1)
blows up in finite time.

Proof. We set

K (t) =H1−α(t)+ ε

∫
Ω

uutdx, (5.11)

where ε > 0 to be assigned later and

0 < α < min
{

p−−2
2p−

,
p−−m+

p−(m+−1)

}
. (5.12)

By multiplying (1.1) by u and with a derivative of (5.11), we get

K ′(t) = (1−α)H−α(t)H′(t)+ ε∥ut∥2
2 − ε∥∇u∥2(γ+1)

2

− ε∥∇u∥2
2 + εk

∫
Ω

|u|p(x) ln |u|dx− εβ1

∫
Ω

uut |ut |m(x)−2dx. (5.13)

Using Young’s inequality, we find for δ1 > 0

εβ1

∫
Ω

uut |ut |m(x)−2dx ≤ εβ1

{
1

m−

∫
Ω

δ
m(x)
1 |u|m(x)dx+

m+−1
m−

∫
Ω

δ
− m(x)

m(x)−1
1 |ut |m(x)dx

}
.

(5.14)

By substituting (5.14) into (5.13), we obtain

K ′(t)≥ (1−α)H−α(t)H′(t)+ ε∥ut∥2
2 − ε∥∇u∥2(γ+1)

2

− ε∥∇u∥2
2 + εk

∫
Ω

|u|p(x) ln |u|dx

− εβ1

{
1

m−

∫
Ω

δ
m(x)
1 |u|m(x)dx+

m+−1
m−

∫
Ω

δ
− m(x)

m(x)−1
1 |ut |m(x)dx

}
. (5.15)

Therefore, by setting δ1 so that

δ
− m(x)

m(x)−1
1 = β1κH−α(t). (5.16)

Replacing in (5.15) and by (5.3), we find

K ′(t)≥
[
(1−α)− εκm̂

]
H−α(t)H′(t)+ ε∥ut∥2

2

− ε∥∇u∥2
2 − ε∥∇u∥2(γ+1)

2 + εk
∫

Ω

|u|p(x) ln |u|dx (5.17)

− ε
β1

m−

∫
Ω

(β1κ)1−m(x)Hα(m(x)−1)(t)|u|m(x)dx,
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where m̂ = m+−1
m− . Using (5.4) and (5.10), we have

β1

m−

∫
Ω

(β1κ)1−m(x)Hα(m(x)−1)(t)|u|m(x)dx ≤ β1

m−

∫
Ω

(β1κ)1−m−
Hα(m+−1)(t)|u|m(x)dx

=
C1

κm−−1H
α(m+−1)(t)

∫
Ω

|u|m(x)dx

≤ C2

κm−−1

[
ρ

m−
p− +α(m+−1)

(u)+ρ
m+

p− +α(m+−1)
(u)

]
.

(5.18)

By (5.12), we find

s = m−+αp−(m+−1)≤ p−, and s = m++αp−(m+−1)≤ p−.

Further, Lemma 8 gives

C1Hα(m+−1)(t)
∫

Ω

|u|m(x)dx ≤ C3

κm−−1

(
∥∇u∥2

2 +ρ(u)
)
. (5.19)

Combining (5.17) and (5.19), we obtain

K ′(t)≥
[
(1−α)− εκm̂

]
H−α(t)H′(t)+ ε∥ut∥2

2 − εC4∥∇u∥2
2

− ε∥∇u∥2(γ+1)
2 − ε

C3

κm−−1 ρ(u)+ εk
∫

Ω

|u|p(x) ln |u|dx, (5.20)

where C4 =
C3

κm−−1 +1.
For 0 < a < 1, we have from (5.1)

ε

p−

∫
Ω

|u|p(x) ln |u|kdx ≥ ε

∫
Ω

|u|p(x)

p(x)
ln |u|kdx

= ε(1−a)H(t)+
ε(1−a)

2
∥ut∥2

2 + ε(1−a)k
∫

Ω

|u|p(x)

p2(x)
dx

+
ε(1−a)

2
∥∇u∥2

2 +
ε(1−a)
2(γ+1)

∥∇u∥2(γ+1)
2

+aε

∫
Ω

|u|p(x)

p(x)
ln |u|kdx,

≥ ε(1−a)H(t)+
ε(1−a)

2
∥ut∥2

2 +
ε(1−a)k
(p+)2

∫
Ω

|u|p(x)dx

+
ε(1−a)

2
∥∇u∥2

2 +
ε(1−a)
2(γ+1)

∥∇u∥2(γ+1)
2

+
aε

p+

∫
Ω

|u|p(x) ln |u|kdx. (5.21)
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We conclude that

ε

∫
Ω

|u|p(x) ln |u|kdx ≥ ε(1−a)p−H(t)+
ε(1−a)p−

2
∥ut∥2

2 +
ε(1−a)kp−

(p+)2

∫
Ω

|u|p(x)dx

+
ε(1−a)p−

2
∥∇u∥2

2 +
ε(1−a)p−

2(γ+1)
∥∇u∥2(γ+1)

2

+
aεp−

p+

∫
Ω

|u|p(x) ln |u|kdx, (5.22)

substituting in (5.20), gives

K ′(t)≥
[
(1−α)− εκm̂

]
H−α(t)H′(t)+ ε

[
p−(1−a)

2
+1

]
∥ut∥2

2

+ ε

[
p−(1−a)

2
−1− C3

κm−−1

]
∥∇u∥2

2 + εp−(1−a)H(t)

+ ε

[
p−(1−a)
2(γ+1)

−1
]
∥∇u∥2(γ+1)

2 − ε

(
(1−a)kp−

(p+)2 − C3

κm−−1

)
ρ(u)

+
aεp−

p+

∫
Ω

|u|p(x) ln |u|kdx. (5.23)

In this stage, we select a > 0 so small that

p−(1−a)
2

−1 > 0 and
p−(1−a)
2(γ+1)

−1 > 0,

then we choose κ so large that(
p−(1−a)

2
−1

)
− C3

κm−−1 > 0 and
(1−a)kp−

(p+)2 − C3

κm−−1 > 0,

when κ,a are fixed. We can choose ε so small that

(1−α)− εκm̂ > 0.

Thus, for some µ1 > 0, estimate (5.23) becomes

K ′(t)≥ µ1

{
H(t)+∥ut∥2

2 +∥∇u∥2
2 +∥∇u∥2(γ+1)

2 +ρ(u)+
∫

Ω

|u|p(x) ln |u|kdx
}
,

(5.24)
and

K (t)≥ K (0)> 0, t > 0. (5.25)
Therefore, by using Hölder’s and Young’s inequalities, we have

∥u∥2 = (
∫

Ω

u2dx)
1
2 ≤ [(

∫
Ω

(|u|2)p−/2dx)
2

p− .(
∫

Ω

1dx)1− 2
p− ]

1
2 ≤ c∥u∥p−, (5.26)

and
|
∫

Ω

uutdx| ≤ ∥ut∥2.∥u∥2 ≤ c∥ut∥2.∥u∥p− .



550 M. ALNEGGA, A. CHOUCHA, D. OUCHENANE, AND S. BOULAARAS

Therefore

|
∫

Ω

uutdx|
1

1−α ≥ c∥ut∥
1

1−α

2 .∥u∥
1

1−α

p−

≤ c[∥ut∥
θ

1−α

2 +∥u∥
µ

1−α

p− ], (5.27)

where 1
µ +

1
θ
= 1. We take θ = 2(1−α), to get

µ
1−α

=
2

1−2α
≤ p−.

Subsequently, for s = 2
(1−2α) , we obtain

|
∫

Ω

uutdx|
1

1−α ≤ c[∥ut∥2
2 +∥u∥s

p− ].

Therefore, Lemma 8 gives

|
∫

Ω

uutdx|
1

1−α ≥ c
{
H(t)+∥ut∥2

2 +ρ(u)
}
. (5.28)

Subsequently,

K
1

1−α (t) =
{
H1−α + ε

∫
Ω

uutdx
} 1

1−α

≤ c
{
H(t)+ |

∫
Ω

uutdx|
1

1−α

}
≤ c

{
H(t)+∥ut∥2

2 +ρ(u)
}

≤ c
{
H(t)+∥ut∥2

2 +∥∇u∥2
2 +∥∇u∥2(γ+1)

2 +ρ(u)+
∫

Ω

|u|p(x) ln |u|kdx
}
.

(5.29)

According (5.24) and (5.29), we have

K ′(t)≥ λK
1

1−α (t), (5.30)

where λ(µ1,c)> 0, and by integration of (5.30), we find

K
α

1−α (t)≥ 1

K
−α

1−α (0)−λ
α

(1−α) t
.

Hence, the solution blows up in a finite time T ∗, such that

T ∗ =
1−α

λαK α/(1−α)(0)
.

Then the proof is completed. □
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6. CONCLUSION

The combination of the logarithmic term and the variable exponent in a nonlin-
ear Kirchhoff-type equations makes our problem different from what was previously
studied, and for this was the purpose of this work, as we showed the global existence.
Also, we have reached the result of the general decay by using the integral inequality
due to [10]. Next, we reached the result of blowing up of the solutions. This work is
a solution to the open problem of our proposal in [5, 7].

What we want to perform in the future from the expected research works is an
attempt to employ the same way with the same problem, but by adding another com-
ponent of damping, which contributes to an actual solution to the required problem.
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