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Abstract. The paper studies the non-oscillatory properties of two-dimensional systems of non-
linear differential equations

u′ = g(t)|v|
1
α sgnv, v′ =−p(t)|u|αsgnu,

where the functions g : [0,+∞[→ [0,+∞[, p : [0,+∞[→ R are locally integrable and α > 0. We
are especially interested in the case of

∫+∞ g(s)ds <+∞.
In the paper, new non-oscillation criteria are established. Among others, they generalize well-

known results for linear systems as well as second order linear and also half-linear differential
equations. The criteria presented complement the results of Hartman-Wintner’s type for the
system in question.
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1. INTRODUCTION

On the half-line R+ = [0,+∞[ , we consider the two-dimensional system of non-
linear ordinary differential equations

u′ = g(t)|v|
1
α sgnv,

v′ =−p(t)|u|αsgnu,
(1.1)

where α > 0 and p, g : R+ → R are locally Lebesgue integrable functions.
By a solution to system (1.1) on the interval J ⊆ [0,+∞[ we understand a vec-

tor function (u,v), where functions u,v : J → R are absolutely continuous on every
compact interval contained in J and satisfy equalities (1.1) almost everywhere in J.

It was proved in [9] that all non-extendable solutions to system (1.1) are defined on
the whole interval [0,+∞[. Consequently, speaking about a solution to system (1.1),
we assume, without loss of generality, that it is defined on [0,+∞[.
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
BY 4.0.
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Definition 1. A solution (u,v) of system (1.1) is called non-trivial, if

|u(t)| + |v(t)| ̸= 0 for t ≥ 0.

We say that a non-trivial solution (u,v) of system (1.1) is non-oscillatory if at least
one of its components does not have any sequence of zeroes tending to infinity, and
oscillatory otherwise.

In [9, Theorem 1.1], it is shown that a certain analogue of Sturm’s theorem holds
for system (1.1) if the function g is non-negative. Especially if system (1.1) has a non-
oscillatory solution, then any other of its non-trivial solutions is also non-oscillatory.
Therefore, it is natural to assume

g(t)≥ 0 for a. e. t ≥ 0 (1.2)

throughout the paper.
On the other hand, if g(t) ≡ 0 on some neighborhood of +∞, then all non-trivial

solutions to system (1.1) are non-oscillatory. Consequently, we also suppose that the
inequality

meas{τ ≥ t : g(τ)> 0}> 0 for t ≥ 0 (1.3)

holds.

Definition 2. We say that system (1.1) is non-oscillatory if all its non-trivial solu-
tions are non-oscillatory.

The oscillation and non-oscillation theory for ordinary differential equations is
widely studied in the literature. The criteria presented below are close to those estab-
lished in [1–4, 6–8, 10, 12]. Namely, many of them (see, e.g., the survey given in [1])
are known for the so-called “half-linear” equation(

r(t)|u′|q−1sgnu′
)′
+ p(t)|u|q−1sgnu = 0, (1.4)

where q > 1, p,r : [0,+∞[→ R are continuous and r is positive. We can see that
(1.4) is a particular case of system (1.1). Indeed, if the function u, with the properties
u ∈C1 and r|u′|q−1sgnu′ ∈C1, is a solution to equation (1.4), then the vector function
(u,r|u′|q−1sgnu′) is a solution to system (1.1) with g(t) := r

1
1−q (t) for t ≥ 0 and

α := q− 1. In the case of
∫ +∞

0 g(s)ds = +∞, some of the above-mentioned results
are generalized in [11].

Throughout the paper, we assume that the function g is integrable on [0,+∞[, i.e.∫ +∞

0
g(s)ds <+∞. (1.5)

In this case, the interesting results dealing with the oscillation of the system (1.1) are
presented in [2]. Below formulated criteria complement these ones in certain sense.

On the other hand, as far as we know, not many non-oscillation criteria are known
under the assumption (1.5). In particular, for the half-linear equation (1.4), one can
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find some non-oscillation criteria, e.g., in [1,5]. But there are some ”sign” restrictions
on the coefficient p.

We introduce the following notations. Let

f (t) :=
∫ +∞

t
g(s)ds for t ≥ 0.

In view of assumptions (1.2), (1.3) and (1.5), we have

lim
t→+∞

f (t) = 0

and
f (t)> 0 for t ≥ 0.

Further, for any λ > α, we put

cα(t;λ) := (λ−α) f λ−α(t)
∫ t

0

g(s)
f λ−α+1(s)

(∫ s

0
f λ(ξ)p(ξ)dξ

)
ds for t ≥ 0.

It is known that some analogy of the Hartmann–Wintner theorem (see [2, Corol-
lary 2.11], where we put ν = 1 − α + λ) holds. In particular, if the function
cα(·;λ) has no finite limit and liminft→+∞ cα(t;λ) > −∞, then system (1.1) is oscil-
latory.

In this paper, we provide non-oscillatory criteria for the case where there exists a
finite limit of the function cα(·;λ), i.e.,

lim
t→+∞

cα(t;λ) =: c∗α(λ) ∈ R.

Under this assumption, we put for any λ ∈ ]α,+∞[ and µ ∈ [0,α[

Q(t;α,λ) :=
1

f λ−α(t)

(
c∗α(λ)−

∫ t

0
p(s) f λ(s)ds

)
for t ≥ 0,

H(t;α,µ) := f α−µ(t)
∫ t

0
p(s) f µ(s)ds for t ≥ 0.

Moreover, let us denote
Q∗(α,λ) := liminf

t→+∞
Q(t;α,λ), H∗(α,µ) := liminf

t→+∞
H(t;α,µ),

Q∗(α,λ) := limsup
t→+∞

Q(t;α,λ), H∗(α,µ) := limsup
t→+∞

H(t;α,µ). (1.6)

2. MAIN RESULTS

This section contains formulations of the main results of the paper. Firstly, we
formulate the non-oscillation criteria for system (1.1) in terms of the lower and upper
limits of the function Q(·,α,λ).

For any κ ∈ R, let us denote by A(κ) and B(κ) the smallest and the greatest roots
of the equation

α|x|
1+α

α +λx+(λ−α)κ = 0. (2.1)
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Let us note that, the equation (2.1) has exactly two real roots if κ <
(

λ

1+α

)α
1

λ−α
.

Moreover, A(κ) ∈
]
−∞,

( µ
1+α

)α
[

, i.e. the smallest one is always negative (see Fig-

ure 1(a), where α = 2, λ = 3, κ = 1
2 ).

Theorem 1. Let λ ∈ ]α,+∞[ ,

A(κ)+κ < Q∗(α,λ) and Q∗(α,λ)<
1

λ−α

(
α

1+α

)1+α

(2.2)

be fulfilled, where κ = α(λ−α)+λ

(λ−α)(1+α)

(
α

1+α

)α. Then, system (1.1) is non-oscillatory.

Before we formulate the following statement, we denote by B̃(η) the greatest root
of the equation

α|x|
1+α

α −αx+η = 0. (2.3)

Let us note that, the equation (2.3) has exactly two real roots if η <
(

α

1+α

)1+α,

moreover, B̃(η) ∈
](

α

1+α

)α
,∞
[

, i.e. the greatest one is always positive (see Fig-

ure 1(b), where α = 2, η = 1
18 ).

(a) f (x) = 2|x| 3
2 +3x+ 1

2 (b) g(x) = 2|x| 3
2 −2x+ 1

18

FIGURE 1.

Theorem 2. Let λ ∈ ]α,+∞[ ,

−∞ < Q∗(α,λ)≤ A(κ)+κ (2.4)

and
Q∗(α,λ)< Q∗(α,λ)+ B̃(η)+B

(
Q∗(α,λ)+ B̃(η)

)
(2.5)

be fulfilled, where κ = α(λ−α)+λ

(λ−α)(1+α)

(
α

1+α

)α and η = (λ−α)Q∗(α,λ). Then, system
(1.1) is non-oscillatory.
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Remark 1. Theorem 2 complements Theorem 1 in certain sense. Indeed, if the
first inequality in (2.2) is not satisfied and Q∗(α,λ) is finite, then condition (2.4)
holds. In such a case, it is sufficient to verify condition (2.5) and the system (1.1) is
non-oscillatory according Theorem 2 (see Example 1) .

In the following theorems we established the non-oscillation criteria in terms of
the lower and upper limits of the function H(·,α,µ). Now, we denote by Ā(ν) and
B̄(ν) the smallest and greatest roots of the equation

α|x|
1+α

α +µx+(α−µ)ν = 0. (2.6)

Let us note that, the equation (2.6) has two real roots if ν < 1
α−µ

( µ
1+α

)1+α, moreover,

Ā(ν) ∈
]
−∞,

( µ
1+α

)α
]

, i.e. the smallest one is always negative.

Theorem 3. Let µ ∈ [0,α[ ,

− α(2α+1)
(1+α)(α−µ)

(
α

1+α

)α

< H∗(α,µ) and H∗(α,µ)< ν− Ā(ν) (2.7)

be fulfilled with ν =− α(α+µ)+µ
(α−µ)(1+α)

(
α

1+α

)α. Then, system (1.1) is non-oscillatory.

Finally, we formulate the statement which completes the previous one in the same
sense, as it is mentioned in Remark 1 for Theorem 1 and Theorem 2.

Theorem 4. Let µ ∈ [0,α[ ,

−∞ < H∗(α,µ)≤− α(2α+1)
(1+α)(α−µ)

(
α

1+α

)α

(2.8)

and
H∗(α,µ)< δ− Ā(δ) (2.9)

be fulfilled, where δ =
(

B̂((α−µ)H∗(α,µ))
) α

1+α

+H∗(α,µ) and B̂(ξ) is the greatest
root of the equation

α|x|
α

1+α +αx+ξ = 0, for ξ ≤ 0.

Then, system (1.1) is non-oscillatory.

Let us note, that the B̂(ξ) ∈
]
−
(

α

1+α

)α
,+∞

[
and B̂(ξ)> 0 for ξ < 0.

Remark 2. In [1, Section 3.1], there are functions Q, H and also non-oscillatory
criteria defined for the equation (1.4) with the particular parameters λ = α+ 1 and
µ = 0. However, in this paper, they are formulated in a more general way, where
λ ∈]α,+∞[ and µ ∈ [0,λ[. One can see (e.g. Example 2) that it is meaningful, since
we can decide on non-oscillation in more cases of the system in question (1.1).
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Example 1. Let α = 2, λ = 3,

g(t) =
1

(1+ t)2 ,

and

p(t) =

(
89

432
+

5
√

105
144

)(
sin(ln(1+ t))+ cos(ln(1+ t))− 15

√
105−19

89+15
√

105

)
· (1+ t)

for t ≥ 0.
One can verify that

f (t) =
∫ +∞

t
g(s)ds =

1
1+ t

for t ≥ 0

and

c2(t,3) =
1

1+ t

∫ t

0

(∫ s

0
p(ξ)dξ

)
ds

=
(−15

√
105−69)sin(ln(1+ t))+(−19+15

√
105) ln(t +1)+108t

432(t +1)

for t > 0. Hence, we get

c∗2(3) = lim
t→+∞

c2(t,3) =
1
4
.

Moreover,

Q(t;2,3) = (t +1)
(

1
4
−

∫ t

0

p(s)
(1+ s)3 ds

)

=
(89+15

√
105)

(
cos
(

ln(1+t)
2

))2
−15

√
105−35

216
for t ≥ 0,

therefore,

Q∗(2,3) = liminf
t→+∞

Q(t;2,3) =−15
√

105+35
216

and

Q∗(2,3) = limsup
t→+∞

Q(t;2,3) =
1
4
.

On the other hand, for α = 2, λ = 3, we have κ = 20
27 and the equation (2.1) is of

the form

2|x|
3
2 +3x+

20
27

= 0.
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It is not difficult to verify that

A
(

20
27

)
+

20
27

=−(5+
√

105)2

144
+

20
27

=−15
√

105+35
216

= Q∗(2,3).

Consequently, we cannot apply Theorem 1, since the first inequality in (2.2) is not
satisfied. However, one can show that Theorem 2 guarantees non-oscillation of the
system in question. Indeed, for λ = 3 and α = 2, we have η = Q∗(2,3) and equation
(2.3) is of the form

2|x|
3
2 −2x− 15

√
105+35
216

= 0.

One can verify that

B̃

(
−15

√
105+35
216

)
=

65+5
√

105
72

and

B
(

Q∗(α,λ)+ B̃(η)
)
=−4

9
.

Hence,

Q∗(2,3) =
1
4
<

8
27

= Q∗(2,3)+ B̃

(
−15

√
105+35
216

)
+B

(
Q∗(α,λ)+ B̃(η)

)
.

Consequently, according to Theorem 2, system (1.1) is non-oscillatory.

Example 2. Let α = 2,

g(t) =
1

(1+ t)2 , and p(t) =
(

2cos t
3

− 7
9(1+ t)

)
(1+ t)2 for t ≥ 0.

If we put µ = 1, then one can calculate that

f (t) =
∫ +∞

t
g(s)ds =

1
1+ t

for t ≥ 0

and

H(t;2,1) = f (t)
∫ t

0
p(s) f (s)ds =

1
1+ t

∫ t

0

(
2(1+ s)coss

3
− 7

9

)
ds

=
6(1+ t)sin t +6cos t −7t −6

9(1+ t)
for t ≥ 0.

Hence,

H∗(2,1) = liminf
t→+∞

H(t;2,1) =−13
9
,

and

H∗(2,1) = limsup
t→+∞

H(t;2,1) =−1
9
.
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For α = 2, µ = 1, we have ν =− 8
27 and the equation (2.6) is of the form

2|x|
3
2 + x− 8

27
= 0.

One can verify that

Ā
(
− 8

27

)
=−

(
(57+4

√
203)

1
3 +1

6
+

1

6(57+4
√

203)
1
3

)2

,

thus,

ν− Ā(ν) =− 8
27

+

(
(57+4

√
203)

1
3 +1

6
+

1

6(57+4
√

203)
1
3

)2

≈−0.019 >−1
9
= H∗(2,1).

Clearly,

− α(2α+1)
(1+α)(α−µ)

(
α

1+α

)α

=−40
27

<−13
9

= H∗(2,1).

We see that both conditions in (2.7) are satisfied and, therefore, according to The-
orem 3, system (1.1) is non-oscillatory.

On the other hand, if we put µ = 0, then

−2α+1
1+α

(
α

1+α

)α

=−20
27

>−19
18

= H∗(2,0),

and now we cannot apply Theorem 3. Consequently, it is meaningful to consider our
criteria with the ”weight” f µ.

3. PROOFS OF THE MAIN RESULTS

Firstly, we present an auxiliary lemma, which we use to prove the main theorems.

Lemma 1 ([11, Lemma 3.1]). Let there exist a locally absolutely continuous func-
tion σ : [a,+∞[ → R satisfying the inequality

σ
′(t)≤−p(t)−αg(t)|σ(t)|

1+α

α for a. e. t ≥ a, (3.1)

where a ≥ 0. Then, system (1.1) is non-oscillatory.

It is not difficult to verify the next lemma by a direct calculation.

Lemma 2. Let
y(x) := α|x|

1+α

α +βx+ γ,

where α, β > 0 and γ ∈ R. Then,

y′(x)< 0 for ]−∞,x1[ , y′(x)> 0 for ]x1,∞[ , (3.2)
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where x1 =−
(

β

1+α

)α

, and

lim
x→−∞

y(x) = +∞, lim
x→+∞

y(x) = +∞.

Proof of Theorem 1. In view of (1.6) and (2.2), there exists t0 > 0 such that

A(κ)+κ < Q(t;α,λ)<
1

λ−α

(
α

1+α

)1+α

for t ≥ t0.

Hence,

A(κ)< Q(t;α,λ)−κ <−
(

α

1+α

)α

for t ≥ t0. (3.3)

One can show that x2 = −
(

α

1+α

)α is the root of the equation (2.1). Moreover, by
virtue of the hypothesis λ > α and Lemma 2 (with β = λ and γ = κ(λ−α)), we get

A(κ)< x1 < x2, and α|x|
1+α

α +λx+(λ−α)κ < 0 for x ∈ ]A(κ),x2[ , (3.4)

where x1 =−
(

λ

1+α

)α

. The latter inequalities, together with (3.3), yield

α|Q(t;α,λ)−κ|
1+α

α +λ(Q(t;α,λ)−κ)+(λ−α)κ ≤ 0 for t ≥ t0. (3.5)

Let us introduce the function σ as follows

σ(t) :=
1

f α(t)
(Q(t;α,λ)−κ) for a. e. t ≥ t0. (3.6)

It is clear that

σ
′(t) =

g(t)
f 1+α(t)

(λ(Q(t;α,λ)−κ)+(λ−α)κ)− p(t) for t ≥ t0.

The latter equality, together with (3.5), implies

σ
′(t)≤ g(t)

f 1+α(t)

(
−α|Q(t;α,λ)−κ|

1+α

α

)
− p(t) for a. e. t ≥ 0.

Hence, in view of (3.6), we get that inequality (3.1) is satisfied with a = t0. Con-
sequently, according to Lemma 1, system (1.1) is non-oscillatory. □

Proof of Theorem 2. By virtue of (1.6), (2.4) and (2.5), there exist ε > 0 and tε > 0
such that

Q∗(α,λ)− ε < Q(t;α,λ)< Q∗(α,λ)+ ε (3.7)

and

Q∗(α,λ)+ ε < Q∗(α,λ)− ε+ B̃(ηε)+B
(

Q∗(α,λ)− ε+ B̃(ηε)
)

for t ≥ tε (3.8)

hold with ηε = (λ−α)(Q∗(α,λ)− ε).
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An analysis similar to that in the proof of Theorem 1 shows that (3.4) holds, where

x1 = −
(

α

1+α

)α and x2 =−
(

λ

1+α

)α

. Therefore,

A(κ)<−
(

λ

1+α

)α

and α|x1|
1+α

α +λx1 +(λ−α)κ < 0.

The latter inequality guarantees that

κ <
1

λ−α

(
λ

1+α

)1+α

.

Hence, in view of (2.4), we obtain

Q∗(α,λ)≤ A(κ)+κ <

(
λ

1+α

)α
α−αλ+α2

(1+α)(λ−α)

and, consequently,

Q∗(α,λ)(λ−α)<

(
λ

1+α

)α
α−αλ+α2

1+α
. (3.9)

On the other hand, the function z : x 7→ α|x| 1+α

α −αx+ηε is decreasing
on
]
−∞,

(
α

1+α

)α
[

, and increasing on
](

α

1+α

)α
,∞
[

. Moreover, by virtue of (3.9), we
get

z
((

λ

1+α

)α)
< 0.

Hence, B̃(ηε)>
(

λ

1+α

)α

and, consequently,

−B̃(ηε)<−
(

λ

1+α

)α

. (3.10)

If we put
κε = Q∗(α,λ)− ε+ B̃(ηε), (3.11)

then it is not difficult to verify that −B̃(ηε) is the root of equation (2.1) with κ = κε.
Moreover, (3.10) and Lemma 2 (with β = λ and γ = (λ−α)κε) imply, that −B(ηε) =
A(κε) and

α|x|
1+α

α +λx+(λ−α)κε < 0 for x ∈ ]A(κε),B(κε)[ . (3.12)
In view of (3.7), (3.8) and (3.11), we get

A(κε) =−B̃(ηε)≤ Q(t;α,λ)−κε ≤ B(κε) for t ≥ tε.

The latter inequalities and (3.12) yield (3.5) with κ = κε and t0 = tε.
Now, let the function σ be defined by formula (3.6) with κ = κε and t0 = tε. Ana-

logously, as in the proof of Theorem 1, one can verify that inequality (3.1) with a = tε
holds and, consequently, according to Lemma 1, system (1.1) is non-oscillatory.

□
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Proof of Theorem 3. In view of (1.6) and (2.7), there exist t0 > 0 such that

− α(2α+1)
(1+α)(α−µ)

(
α

1+α

)α

< H(t;α,µ)< ν− Ā(ν) for t ≥ t0. (3.13)

According to Lemma 2 (with β = µ and γ = (α−µ)ν), one can see that function

y(x) := α|x|
1+α

α +µx+(α−µ)ν for x ∈ R (3.14)

satisfies relations (3.2) with x1 =−
( µ

α+1

)α. Moreover, it is not difficult to verify, that(
α

1+α

)α is the greatest root of the equation (2.6). Hence, by virtue of (3.2), we have

y(x)< 0 for x ∈
]

Ā(ν),
(

α

1+α

)α[
. (3.15)

On the other hand, from (3.13), we obtain

Ā(ν)< ν−H(t;α,µ)<
(

α

1+α

)α

= B̄(ν) for t ≥ t0.

The latter inequalities, together with (3.14) and (3.15), yield

α|ν−H(t;α,µ)|
1+α

α +µ(ν−H(t;α,µ))+(α−µ)ν ≤ 0 for t ≥ t0. (3.16)

Now, we put

σ(t) :=
1

f α(t)
(ν−H(t;α,µ)) for t ≥ t0. (3.17)

One can show that

σ
′(t) =

g(t)
f 1+α(t)

(µ(ν−H(t;α,µ))+(α−µ)ν)− p(t) for a. e. t ≥ t0.

Hence, in view of (3.16), we obtain

σ
′(t)≤ g(t)

f 1+α(t)

(
−α|ν−H(t;α,µ)|

1+α

α

)
− p(t) for a. e. t ≥ t0.

Consequently, by virtue of (3.17), we get that (3.1) holds with a = t0 and, according
to Lemma 1, system (1.1) is non-oscillatory. □

Proof of Theorem 4. In view of (1.6) and (2.9), there exist ε > 0 and tε > 0 such
that

H∗(α,µ)− ε < H(t;α,µ)< H∗(α,µ)+ ε for t ≥ tε (3.18)
and

H∗(α,µ)+ ε < δε − Ā(δε) for t ≥ tε (3.19)
hold, where

δε =
(

B̂((α−µ)(H∗(α,µ)− ε))
) α

1+α

+H∗(α,µ)− ε. (3.20)

From (2.8), we get
B̂((α−µ)(H∗(α,µ)− ε))> 0.
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Moreover, in view of the latter inequality, one can show that(
B̂((α−µ)(H∗(α,µ)− ε))

) α

1+α

is the greatest root of the equation (2.6) with ν = δε, i.e.,

B̄(δε) =
(

B̂((α−µ)(H∗(α,µ)− ε))
) α

1+α

.

Consequently, from (3.18), (3.19) and (3.20), we get

Ā(δε)< δε −H(t;α,µ)< B̄(δε). (3.21)

On the other hand, an analysis similar to that in the proof of Theorem 3 shows that
function

yε(x) := α|x|
1+α

α +µx+(α−µ)δε

satisfies relations
y(x)< 0 for x ∈

]
Ā(δε), B̄(δε)

[
.

The latter inequality together with (3.21) yield (3.16) with ν = δε and t0 = tε. Ana-
logously, as in the proof of Theorem 3, one can verify that function

σ(t) :=
1

f α(t)
(δε −H(t;α,µ)) for t ≥ tε

satisfies inequality (3.1) with a= tε and, consequently, according to Lemma 1, system
(1.1) is non-oscillatory. □
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[1] O. Došlý and P. Řehák, Half-linear differential equations. Amsterdam: Elsevier, 2005.
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