

ON FINITELY G-SUPPLEMENTED MODULES

CELIL NEBIYEV AND HASAN HÜSEYIN ÖKTEN

Received 17 September, 2022

Abstract. In this work, some properties of finitely g-supplemented modules are investigated. Let M be a finitely g-supplemented R-module and N be a finitely generated or small submodule of M. Then M/N is finitely g-supplemented. Let $f: M \longrightarrow N$ be an R-module epimomorphism with small kernel. If M is finitely g-supplemented, then N is also finitely g-supplemented. Let M be a finitely g-supplemented module, $Rad_gM \le U \le M$ and U be finitely generated. Then U/Rad_gM is a direct summand of M/Rad_gM .

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: small submodules, essential submodules, g-small submodules, f-supplemented modules

1. INTRODUCTION

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let *R* be a ring and *M* be an *R*-module. We denote a submodule *N* of *M* by $N \le M$. Let M be an R-module and $N \le M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A submodule N of an R -module M is called an *essential* submodule, denoted by $N \leq M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. Let M be an R-module and K be a submodule of M. K is called a *generalized small* (briefly, *g-small*) submodule of *M* if for every essential submodule T of M with the property M = K + T implies that T = M, we denote this by $K \ll_g M$ (in [6], it is called an *e-small* submodule of M and denoted by $K \ll_e M$). Let *M* be an *R*-module and $U, V \leq M$. If M = U + V and *V* is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. M is said to be *finitely supplemented* (briefly, *f-supplemented*) if every finitely generated submodule of M has a supplement in M. Let M be an *R*-module and $U, V \le M$. If M = U + V and M = U + T with $T \le V$ implies that T = V© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC BY 4.0.

V, or equivalently, M = U + V and $U \cap V \ll_g V$, then V is called a *g*-supplement of U in M. M is said to be *g*-supplemented if every submodule of M has a g-supplement in M. The intersection of maximal submodules of an R-module M is called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote RadM = M. The intersection of essential maximal submodules of an R-module M is called a *generalized radical* (briefly, *g*-radical) of M and denoted by Rad_gM (in [6], it is denoted by Rad_eM). If M have no essential maximal submodules, then we denote Rad_gM = M. An R-module M is said to be noetherian if every submodule of M is finitely generated. Let M be an R-module and $K \le V \le M$. We say V lies above K in M if $V/K \ll M/K$.

More details about supplemented modules are in [1,5]. More informations about g-small submodules and g-supplemented modules are in [2,3].

Lemma 1. Let *M* be an *R*-module and $K, N \leq M$. Consider the following conditions.

- (1) If $K \le N$ and N is generalized small submodule of M, then K is a generalized small submodule of M.
- (2) If K is contained in N and a generalized small submodule of N, then K is a generalized small submodule in submodules of M which contain N.
- (3) If $K \ll_g L$ and $N \ll_g T$ with $L, T \leq M$, then $K + N \ll_g L + T$.
- (4) $\operatorname{Rad}_{g}M = \sum_{L \ll_{g}M} L.$
- (5) Let T be an R-module and $f: M \to T$ be an R-module homomorphism. If $K \ll_g M$, then $f(K) \ll_g T$. Here $f(Rad_g M) \leq Rad_g T$.

Proof. See [3, Lemma 1 and Lemma 3].

2. FINITELY G-SUPPLEMENTED MODULES

Definition 1. Let M be an R-module. If every finitely generated submodule of M has a g-supplement in M, then M is called a finitely g-supplemented (or briefly fg-supplemented) module. (See also [4])

Clearly we can see that every f-supplemented module is fg-supplemented.

Proposition 1. Every g-supplemented module is fg-supplemented.

Proof. Clear from definitions.

Proposition 2. Let M be a fg-supplemented R-module. If M is noetherian, then M is g-supplemented.

Proof. Let $U \le M$. Since M is noetherian, U is finitely generated and since M is fg-supplemented, U has a g-supplement in M. Hence M is g-supplemented.

Lemma 2. Let M be a fg-supplemented R-module and N be a finitely generated submodule of M. Then M/N is fg-supplemented.

Proof. Let U/N be a finitely generated submodule of M/N. Since U/N finitely generated, there exists a finitely generated submodule K of M such that U = K + N. Since K and N are finitely generated, U = K + N is also finitely generated. By hypothesis, U has a g-supplement V in M. Then by [2, Lemma 4], (V+N)/N is a g-supplement of U/N in M/N. Hence M/N is fg-supplemented.

Corollary 1. Let M be a fg-supplemented R-module and N be a cyclic submodule of M. Then M/N is fg-supplemented.

Proof. Clear from Lemma 2.

Corollary 2. Let $f: M \longrightarrow N$ be an R-module epimomorphism and Kef be finitely generated. If M is fg-supplemented, then N is also fg-supplemented.

Proof. Since *M* is fg-supplemented and *Kef* is finitely generated, by Lemma 2, M/Kef is fg-supplemented. Then by $M/Kef \cong N$, *N* is also fg-supplemented. \Box

Corollary 3. Let $f : M \longrightarrow N$ be an R-module epimomorphism with cyclic kernel. If M is fg-supplemented, then N is also fg-supplemented.

Proof. Clear from Corollary 2.

Lemma 3. Let M be an fg-supplemented module, $Rad_gM \le U \le M$ and U be finitely generated. Then U/Rad_gM is a direct summand of M/Rad_gM .

Proof. Since *M* is fg-supplemented and *U* is a finitely generated submodule of *M*, *U* has a g-supplement *V* in *M*. Here M = U + V and $U \cap V \ll_g V$. By Lemma 1, $U \cap V \leq Rad_g M$. Then $\frac{M}{Rad_g M} = \frac{U+V}{Rad_g M} = \frac{U}{Rad_g M} + \frac{V+Rad_g M}{Rad_g M}$ and $\frac{U}{Rad_g M} \cap \frac{V+Rad_g M}{Rad_g M} = \frac{U \cap V+Rad_g M}{Rad_g M} = \frac{Rad_g M}{Rad_g M} = 0$. Hence $\frac{M}{Rad_g M} = \frac{U}{Rad_g M} \oplus \frac{V+Rad_g M}{Rad_g M}$ and $U/Rad_g M$ is a direct summand of $M/Rad_g M$.

Corollary 4. Let M be a fg-supplemented module and Rad_gM be finitely generated. Then every finitely generated submodule of M/Rad_gM is a direct summand of M/Rad_gM .

Proof. Let $U/Rad_g M$ be a finitely generated submodule of $M/Rad_g M$. Then there exists a finitely generated submodule K of M such that $U = K + Rad_g M$. Since K and $Rad_g M$ are finitely generated, $U = K + Rad_g M$ is also finitely generated. Then by Lemma 3, $U/Rad_g M$ is a direct summand of $M/Rad_g M$.

Lemma 4. Let M be a fg-supplemented R-module and $N \ll M$. Then M/N is fg-supplemented.

Proof. Let U/N be a finitely generated submodule of M/N. Then there exists a finitely generated submodule K of M such that U = K + N. Since M is fg-supplemented, K has a g-supplement V in M. Here M = K + V and $K \cap V \ll_g V$. Since $K \le U$, M = K + V = U + V. Let M = U + T with $T \trianglelefteq V$. Then M = U + T = K + N + T and

since $N \ll M$, K + T = M. Since V is a g-supplement of K in M and $T \leq V$, by definition, T = V. Hence V is a g-supplement of U in M. By [2, Lemma 4], (V + N)/N is a g-supplement of U/N in M/N. Hence M/N is fg-supplemented.

Corollary 5. Let $f : M \longrightarrow N$ be an R-module epimomorphism with small kernel. If M is fg-supplemented, then N is also fg-supplemented.

Proof. Since *M* is fg-supplemented and $Kef \ll M$, by Lemma 4, M/Kef is fg-supplemented. Then by $M/Kef \cong N$, *N* is also fg-supplemented.

Lemma 5. Let M be a fg-supplemented R-module and $Rad_g M \ll M$. Then every finitely generated submodule of $M/Rad_g M$ is a direct summand of $M/Rad_g M$.

Proof. Let U/Rad_gM be a finitely generated submodule of M/Rad_gM . Then there exists a finitely generated submodule K of M such that $U = K + Rad_gM$. Since M is fg-supplemented, K has a g-supplement V in M. Here M = K + V and $K \cap V \ll_g V$. Since $K \leq U$, M = K + V = U + V. Let M = U + T with $T \leq V$. Then $M = U + T = K + Rad_gM + T$ and since $Rad_gM \ll M$, K + T = M. Since V is a g-supplement of K in M and $T \leq V$, by definition, T = V. Hence V is a g-supplement of U in M. Here M = U + V and $U \cap V \ll_g V$. By Lemma 1, $U \cap V \leq Rad_gM$. Then $\frac{M}{Rad_gM} = \frac{U + V}{Rad_gM} = \frac{U}{Rad_gM} + \frac{V + Rad_gM}{Rad_gM}$ and $\frac{U}{Rad_gM} \cap \frac{V + Rad_gM}{Rad_gM} = \frac{U \cap V + Rad_gM}{Rad_gM} = \frac{Rad_gM}{Rad_gM} = 0$. Hence $\frac{M}{Rad_gM} = \frac{U}{Rad_gM} \oplus \frac{V + Rad_gM}{Rad_gM}$ and U/Rad_gM is a direct summand of M/Rad_gM .

Corollary 6. Let M be a fg-supplemented R-module and $Rad_gM \ll M$. Then every finitely generated submodule of M/RadM is a direct summand of M/RadM.

Proof. Since $Rad_g M \ll M$, $RadM = Rad_g M$. Then by Lemma 5, every finitely generated submodule of M/RadM is a direct summand of M/RadM.

REFERENCES

- J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting modules. Supplements and projectivity in module theory.*, ser. Front. Math. Basel: Birkhäuser, 2006.
- [2] B. Koşar, C. Nebiyev, and N. Sökmez, "g-supplemented modules," Ukr. Math. J., vol. 67, no. 6, pp. 975–980, 2015, doi: 10.1007/s11253-015-1127-8.
- [3] B. Koşar, C. Nebiyev, and A. Pekin, "A generalization of g-supplemented modules," *Miskolc Math. Notes*, vol. 20, no. 1, pp. 345–352, 2019, doi: 10.18514/MMN.2019.2586.
- [4] C. Nebiyev and H. H. Ökten, "Finitely g-supplemented modules," in 3rd International E-Conference on Mathematical Advances and Applications ICOMAA-2020, 2020.
- [5] R. Wisbauer, Foundations of module and ring theory. A handbook for study and research., revised and updated Engl. ed. ed., ser. Algebra Log. Appl. Philadelphia etc.: Gordon and Breach Science Publishers, 1991, vol. 3.
- [6] D. X. Zhou and X. R. Zhang, "Small-essential submodules and Morita duality." Southeast Asian Bull. Math., vol. 35, no. 6, pp. 1051–1062, 2011.

C. NEBIYEV AND H. H. ÖKTEN

Authors' addresses

Celil Nebiyev

Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, Samsun, TURKEY *E-mail address:* cnebiyev@omu.edu.tr

Hasan Hüseyin Ökten

(Corresponding author) Amasya University, Technical Sciences Vocational School, Amasya, Turkey

E-mail address: hokten@gmail.com

942