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Abstract. In this work, amply socle supplemented modules are defined and some properties of
these modules are investigated. We prove that every T—projective and socle supplemented mod-
ule is amply socle supplemented. We also prove that every factor module and every homo-
morphic image of an amply socle supplemented module are amply socle supplemented. Let M
be a projective and socle supplemented R—module. Then every finitely M —generated R—module
is amply socle supplemented.
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1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules
will be unital left modules.

Let R be a ring and M be an R—module. We will denote a submodule N of M by
N <M. Let M be an R—module and N < M. If L = M for every submodule L of
M such that M = N + L, then N is called a small (or superfluous) submodule of M
and denoted by N < M. Let M be an R -module. M is called a hollow module if
every proper submodule of M is small in M. M is called a local module if M has the
largest submodule, i.e. a proper submodule which contains all other proper submod-
ules. A submodule N of an R -module M is called an essential submodule of M and
denoted by N < M in case K NN # 0 for every submodule K # 0, or equvalently,
NNL=0 for L <M implies that L =0. Let M be an R—module and U,V < M. If
M =U +V and V is minimal with respect to this property, or equivalently, M =U +V
and UNV <V, then V is called a supplement of U in M. M is called a supplemented
module if every submodule of M has a supplement in M. If every essential sub-
module of M has a supplement in M, then M is called an essential supplemented
(or briefly, e-supplemented) module. Let M be an R—module and U < M. If for
every V < M such that M = U 4V, U has a supplement V'with V' <V, we say U
has ample supplements in M. If every submodule of M has ample supplements in
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M, then M is called an amply supplemented module. If every essential submodule of
M has ample supplements in M, then M is called an amply essential supplemented
(or briefly, amply e-supplemented) module. The intersection of all maximal submod-
ules of an R—module M is called the radical of M and denoted by RadM. If M have
no maximal submodules, then we denote RadM = M. The sum of all simple submod-
ules of an R—module M is called the socle of M and denoted by SocM. Let M be an
R—module. It is defined the relation 'B* ’ on the set of submodules of an R—module
M by XB*Y if and only if Y + K = M for every K < M such that X + K = M and
X+T =M forevery T <M such that Y +7 = M. Let M be an R—module and
K <V <M. WesayV lies above K in M if V/K < M/K (see [15, 16]).

More informations about (amply) supplemented modules are in [2, 13-16]. More
details about (amply) essential supplemented modules are in [6,7,9—11]. The defini-
tion of B* relation and some properties of this relation are in [1].

Lemma 1. Let M be an R -module. The following statements hold.

(i) SocM = N L.

LIM

(if) For K <M, SocK = KNSocM.
(iif) SocM < M if and only if SocK # 0 for every nonzero submodule K of M.
(iv) Let N be an R—module and f : M — N be an R—module homomorphism.

Then f (SocM) C Socf (M).

(v) For K <M, (SocM +K) /K C Soc(M/K).

(vi) If M = %}M}w then SocM = ?SOCM}L.

Proof. See [16, 21.2]. O

Definition 1 ([3-5]). Let M be an R—module. If every U < M with SocM < U has
a supplement in M, then M is called a socle supplemented (or briefly, s-supplemented)
module.

Definition 2 ([4,5]). Let M be an R—module and X < M. If X is a supplement of
a submodule U of M with SocM < U, then X is called a s-supplement submodule in
M.

Lemma 2 ([4, 5]). Let M be a socle supplemented module. Then every finitely

M —generated R—module is socle supplemented.

2. AMPLY SOCLE SUPPLEMENTED MODULES

Definition 3. Let M be an R—module. If every submodule of M which contains
SocM has ample supplements in M, then M is called an amply socle supplemented
(or briefly, amply s-supplemented) module. (See also [8])

Clearly, every amply socle supplemented module is socle supplemented.

Lemma 3. Let M be an amply s-supplemented module. Then M is amply e-
supplemented.
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Proof. LetU <M. By Lemma 1, SocM < U and since M is amply s-supplemented,
U has ample supplements in M. Hence M is amply e-supplemented. O

Corollary 1. Let M be an amply s-supplemented module. Then M is e-supple-
mented.

Proof. Clear from Lemma 3. ]

Proposition 1. Let M be an amply e-supplemented module and SocM < M. Then
M is amply s-supplemented.

Proof. Let SocM <U <M. Since SocM IM,U <M. Since M is amply e-supple-
mented, U has ample supplements in M. Hence M is amply s-supplemented. g

Proposition 2. Let M be an amply s-supplemented module. Then M /RadM have
no proper essential submodules.

Proof. Since M is amply s-supplemented, by Corollary 1, M is e-supplemented.
Then by [11, Proposition 2.5], M /RadM have no proper essential submodules. [

Lemma 4. Let M be an amply s-supplemented module. Then every factor module
of M is amply s-supplemented.

Proof. Let M /K be any factor module of M. Let Soc(M/K) <U/K < M/K and
M/K =U/K+V/K. By Lemma 1, (SocM+K)/K C Soc(M/K). Hence
(SocM +K) /K < U/K and SocM < U. Since M/K =U/K+V/K, M =U +V.
Since M is amply s-supplemented, U has a supplement X in M with X < V. Since
K < U, by [16, 41.1], (X+K) /K is a supplement of U/K in M/K. Moreover,
(X+K)/K <V/K. Hence M/K is amply s-supplemented. O

Corollary 2. Every homomorphic image of an amply s-supplemented module is
amply s-supplemented.

Proof. Clear from Lemma 4. O

Let M be an R—module. If for every U,V < M with M = U + V, there exists an
R—module homomorphism f : M — M with f (M) < U and (1 —f) (M) <V, then
M is called a ®-projective module. (See [12, 16].)

Lemma 5. IfM is a m-projective and s-supplemented module, then M is an amply
s-supplemented module.

Proof. Let SocM <U <M, M =U +YV and X be a supplement of U in M. Since M
is T -projective and M = U +V, there exists an R -module homomorphism f: M — M
such that Imf C V and Im(1— f) CU. So, we have M = f (M) + (1 — f) (M) =
FU)+ f(X)+U=U+ f(X). Suppose that a € UN f(X). Since a € f(X), then
there exists x € X such thata = f (x). Sincea= f (x) = f (x) —x+x=x— (1 — f) (x)
and (1—f)(x) € U, we have x =a+ (1 —f)(x) € U. Thus x € UNX and so,
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a=f(x) € f(UNX). Therefore we have UN f(X) < f(UNX) < f(X). This
means that f (X) is a supplement of U in M. Moreover, f(X) C V. Therefore M is
amply s-supplemented. O

Corollary 3. If M is projective and s-supplemented, then M is amply s-supple-
mented.

Proof. Clear from Lemma 5. ]

Lemma 6. Let M be an R—module. If every submodule of M which contains SocM
is B* equivalent to a s-supplement submodule in M, then M is s-supplemented.

Proof. Let SocM < U < M. By hypothesis, there exists a s-supplement submodule
X in M such that UB*X. Since X is a s-supplement submodule in M, there exists a
submodule Y of M such that SocM <Y and X is a supplement of ¥ in M. Since
SocM <Y, by hypothesis, there exists a s-supplement submodule V in M such that
YPB*V. Since X is a supplement of Y in M and YB*V, by [1, Theorem 2.6 (ii)], X is a
supplement of V in M. Since V is a supplement submodule in M, we can see that V is
a supplement of X in M and since UB*X, by [2, Theorem 2.6 (ii)], V is a supplement
of U in M. O

Lemma 7. Let M be a mt-projective R—module. If every submodule of M which
contains SocM is B* equivalent to a s-supplement submodule in M, then M is amply
s-supplemented.

Proof. By Lemma 6, M is s-supplemented. Then by Lemma 5, M is amply s-
supplemented. g

Corollary 4. Let M be a projective R—module. If every submodule of M which
contains SocM is B* equivalent to a s-supplement submodule in M, then M is amply
s-supplemented.

Proof. Clear from Lemma 7. |

Corollary 5. Let M be a -projective R—module. If every submodule of M which
contains SocM lies above a s-supplement submodule in M, then M is amply s-supple-
mented.

Proof. Clear from Lemma 7. O

Lemma 8. Let A be a finite index set and {M, } \ be a family of projective R—mod-

ules. If My, is s-supplemented for every A € A, then ® M,_is amply s-supplemented.
AEA

Proof. Since M, is s-supplemented for every A € A, we can see that & M, is
AEA

s-supplemented. Since M) is projective for every A € A, by [16, 18.1], & M, is
AeA

projective. Since @ M, is projective and s-supplemented, by Corollary 3, & M, is
AEA AEA

amply s-supplemented.
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Corollary 6. Let M be a projective R—module. If M is s-supplemented, then M
is amply s-supplemented for every finite index set A.

Proof. Clear from Lemma 8. O

Corollary 7. Let M be a projective R—module. If M is s-supplemented, then every
finitely M —generated R—module is amply s-supplemented.

Proof. Let N be a finitely M —generated R—module. Then there exist a finite index
set A and an R—module epimorphism f : M® — N. Since M is projective and
s-supplemented, by Corollary 6, M (A) s amply s-supplemented. Then by Corollary
2, N is amply s-supplemented. g

Lemma 9. Let M be an R—module. If every submodule of M is s-supplemented,
then M is amply s-supplemented.

Proof. Let SocM <U <M and M =U +V with V <M. Since SocM < U, by
Lemma 1, SocV =V NSocM < U NYV. By hypothesis, V is s-supplemented. Then
UNV hasasupplement X inV. By this, V=UNV4+XandUNX=UNVNX K< X.
Then M =U+V =U4+UNV+X=U+Xand UNX < X. Hence M is amply
s-supplemented. g

Lemma 10. Let R be any ring. Then every R—module is s-supplemented if and
only if every R—module is amply s-supplemented.

Proof. (=) Let M be any R—module. Since every R—module is s-supplemented,
every submodule of M is s-supplemented. Then by Lemma 9, M is amply s-supple-
mented.

(«<=) Clear. O

Proposition 3. Let R be a ring. The following assertions are equivalent.

(i) rR is s-supplemented.
(ii) gR is amply s-supplemented.
(iii) Every finitely generated R—module is s-supplemented.
(iv) Every finitely generated R—module is amply s-supplemented.

Proof. (i) <= (ii) Clear from Corollary 3, since gR is projective.

(i) = (iii) Clear from Lemma 2.

(iif) = (iv) Let M be a finitely generated R—module. Then there exist a finite
index set A and an R—module epimorphism f : R®) — M. Since every finitely
generated R—module is s-supplemented, RY) is s-supplemented. Since gR is pro-
jective, by [16, 18.1], R™ is also projective. Then by Corollary 3, R™ is amply
s-supplemented. Since f : R — M is an R—module epimorphism, by Corollary
2, M is also amply s-supplemented.

(iv) = (i) Clear. O
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