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Abstract. In this paper, we study the character values of homogeneous monotonic P-polynomial
table algebras with finite dimension d ≥ 5. To this end, we obtain a trigonometric polynomial
to calculate the eigenvalues of the first intersection matrix of these table algebras using the z-
transform. Finally by applying some methods for tridiagonal matrices, the character values of
these table algebras are given in terms of Chebyshev polynomials.
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1. INTRODUCTION

The characters of table algebras are applied to study the properties of table algeb-
ras and can be used in association schemes and finite groups (see [7] and [16]). In
particular, the eigenvalues of an association scheme which determine its algebraic
structure can be obtained using the characters of table algebras (see [10]). The char-
acter values of certain table algebras have also been calculated in some articles such
as [19] for lower dimensions.

In our previous work [12], we have calculated the character values of two classes
of perfect P-polynomial table algebras given in [17] using the eigenstructure of some
special tridiagonal matrices. Here, we intend to study the character values of homo-
geneous monotonic P-polynomial table algebras with finite dimension d ≥ 5 whose
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first intersection matrix is a (d +1)× (d +1) tridiagonal matrix (cf. [4]) as follows:
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0 4 0

4k 3k−6 k+2
. . .

0 k+2 2k−4 k+2
. . . . . . . . . . . .

k+2 2k−4 k+2
k+2 3k−2


, (1.1)

where k is the valency of the table algebras. It should be noted that the adjacency al-
gebra of a distance-regular graph is a monotonic P-polynomial table algebra [2, Pro-
position III.1.2]. The adjacency algebra arising from a distance-regular graph whose
nontrivial distance relations all are of the same valency is also homogeneous. How-
ever, there are other homogeneous monotonic P-polynomial table algebras which do
not correspond to distance-regular graphs [4].

As we know, it is possible to calculate the character values of P-polynomial table
algebras by obtaining the eigenvalues of their first intersection matrix (see [4, Re-
mark 3.1]). Additionally, the first intersection matrix of P-polynomial table algebras
is tridiagonal and the eigenstructure of tridiagonal matrices has been studied in many
articles such as [13, 14] and [15]. However in this work, the eigenvalues of the tri-
diagonal matrix (1.1) are found through developing methods using the z-transform
which lead to a trigonometric polynomial. The roots of trigonometric polynomials
can be obtained by some numerical methods such as the approach in [5] and through
them, reasonable approximations of character values are found. That is of course not
our goal in this work.

The structure of this paper is as follows. Section 2 is about important concepts and
definitions that this work is based on. In Section 3, we study the eigenvalues of the
first intersection matrix of homogeneous monotonic P-polynomial table algebras and
obtain some results regarding their character values. Some concluding remarks are
stated in Section 4.

Throughout this paper, C and R+ denote the complex numbers and the positive
real numbers, respectively.

2. PRELIMINARY DEFINITIONS AND CONCEPTS

In this section, we review some important concepts related to this work. In partic-
ular, we introduce table algebras and specifically P-polynomial table algebras in 2.1.
An overview of the z-transform and some of its properties is given in 2.2.

2.1. Table algebras

We first go over some concepts related to table algebras and P-polynomial table
algebras. Note that some definitions and interpretations of table algebras are not
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exactly the same in all references. For example, table algebras are generally non-
commutative in some papers (e.g., [18]). However, we follow the definitions in [4].

Let A be a finite-dimensional associative commutative algebra with a basis
B = {x0 = 1A,x1, · · · ,xd}. Then (A,B) is a table algebra if the following conditions
are satisfied:

(i) xix j = ∑
d
m=0 βi jmxm with βi jm ∈ R+∪{0}, for all i, j;

(ii) there is an algebra automorphism of A (denoted by −) such that its order
divides 2 and if xi ∈ B, then xi ∈ B and i is defined by xi = xi;

(iii) for all i, j, we have βi j0 ̸= 0 if and only if j = i, and βii0 > 0.
In the item (i), the βi jm are called the intersection numbers of (A,B) and also, the
elements of B are called the basis elements of (A,B). (A,B) is called a real table
algebra if i = i for all i = 0,1, . . . ,d. Additionally, the i-th intersection matrix of
(A,B) is a matrix whose entries are the intersection numbers of (A,B) in the form of:

Bi =


βi00 βi01 . . . βi0d
βi10 βi11 . . . βi1d

...
...

. . .
...

βid0 βid1 . . . βidd


(d+1)×(d+1)

.

For every table algebra (A,B), there exists a unique algebra homomorphism such
as f : A → C with f (xi) = f (xi) ∈ R+, i = 0,1, . . . ,d, (cf. [1, Lemma 2.9]). If
f (xi) = βii0, i = 0,1, . . . ,d, then (A,B) is called standard. If d ≥ 2 and for i > 0,
f (xi) is constant, then (A,B) is called homogeneous.

A P-polynomial table algebra (A,B) is a real standard table algebra for which
there exist the complex coefficient polynomials νi(x) with νi(x1) = xi, i = 2, . . . ,d.
For every P-polynomial table algebra (A,B), there exist bi−1,ai,ci+1 ∈ R such that

x1xi = bi−1xi−1 +aixi + ci+1xi+1, (2.1)

with bi ̸= 0, (i= 0,1, . . . ,d−1), ci ̸= 0, (i= 1, . . . ,d), and b−1 = cd+1 = 0. So, the first
intersection matrix of a P-polynomial table algebra is a tridiagonal matrix as follows:

B1 =


a0 c1
b0 a1 c2

b1 a2
. . .

. . . . . . cd
bd−1 ad


(d+1)×(d+1)

, (2.2)

and the valency of the P-polynomial table algebra is b0 = β110. A monotonic table al-
gebra is a P-polynomial table algebra for which ci ≤ ci+1 (i = 1, . . . ,d), and
bi ≥ bi+1 (i = 0, . . . ,d −2).

Suppose that (A,B) is a table algebra. It is well known that A is semisimple and
the set of its primitive idempotents {e0,e1, · · · ,ed} forms another basis for A (see
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[2, Page 93]). Consequently, each xi ∈ B can be written as

xi =
d

∑
j=0

pi( j)e j,

where pi( j) ∈ C. On the other hand, if we consider {χ0,χ1, . . . ,χd} as the set of
irreducible characters of the algebra A, we are interested in the values which each
χi takes on the basis elements of A. These values are called the character values of
(A,B). The pi( j) are equal to the character values of (A,B). More precisely, for each
i = 0,1, . . . ,d

pi( j) = χ j(xi), j = 0,1, . . . ,d,
see [3, Page 11] for more details.

Also, the pi( j) are equal to the eigenvalues of the i-th intersection matrix. If (A,B)
is a P-polynomial table algebra, then we have

pi( j) = νi(p1( j)), i = 0,1, . . . ,d, (2.3)

where νi(x) is a complex coefficient polynomial of degree i with νi(x1) = xi.

2.2. z-transform

We now give an overview of z-transform. The concept of z-transform has the same
role in discrete-time signals as Laplace transform does in continuous-time signals.
For a discrete-time signal which is a sequence of real or complex numbers such as
x[n], its z-transform is defined as the power series

X(z) =
+∞

∑
n=−∞

x[n]z−n, (2.4)

where n is an integer and z is a complex variable. The function X(z) in (2.4) is called
the two-sided or bilateral z-transform of x[n]. The one-sided or unilateral z-transform
of x[n] is defined by

X(z) =
+∞

∑
n=0

x[n]z−n = x[0]+ x[1]z−1 + x[2]z−2 + · · · .

We use the notation x[n]↔ X(z) to show that X(z) is the z-transform of x[n].
The z-transform is a linear operation. This means that if we have x[n]↔ X(z) and

u[n]↔U(z), then
ax[n]+bu[n]↔ aX(z)+bU(z), (2.5)

where a,b ∈ C.
Let x[n]↔ X(z) and q be a positive integer. Then we have

x[n−q]↔ z−qX(z), (2.6)

and
x[n+q]↔ zqX(z)− x[0]zq − x[1]zq−1 −·· ·− x[q−1]z. (2.7)
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The proof of the above properties and more facts about the z-transform can be found
in [11, Chapter 7].

3. HOMOGENEOUS MONOTONIC P-POLYNOMIAL TABLE ALGEBRAS

Throughout this section, we study the characters of homogeneous monotonic P-
polynomial table algebras with finite dimension d ≥ 5. To do so, we concentrate on
calculating the eigenvalues of the first intersection matrix of homogeneous monotonic
P-polynomial table algebras which is given in (1.1).

Theorem 1. Let (A,B) be a homogeneous monotonic P-polynomial table algebra
with B= {x0 = 1A,x1, · · · ,xd} and d ≥ 5. Then the eigenvalues of the first intersection
matrix of (A,B) are given by

ηi =
k+2

2
cos(θi)+

k−2
2

, i = 0,1, . . . ,d,

where k is the valency of (A,B) and the θi are the roots of the following equation:

(k+2)sin((d +2)θ)−4sin((d +1)θ)−2k sin(dθ)+4sin((d −1)θ)

+(k−2)sin((d −2)θ) = 0.

Proof. The first intersection matrix of (A,B) is given in (1.1). Since we wish to
use right eigenvectors (i.e. column vectors) here, the transpose of the first intersec-
tion matrix should be used, so that the automatic degree map eigenvalue k clearly
corresponds to the right eigenvector [1, · · · ,1]t . The transpose of the first intersection
matrix can be written as follows:

BT
1 =

1
4



−2k+4 4k 0

4 k−2 k+2
. . .

0 k+2 0 k+2
. . . . . . . . . . . .

k+2 0 k+2
k+2 k+2


+

(
k−2

2

)
I
(d+1)×(d+1) .

Denote the above tridiagonal matrix by P. Then the eigenvalues of B1 are

ηi =
λi

4
+

k−2
2

, i = 0,1, . . . ,d, (3.1)

where λi, (i = 0,1, . . . ,d), are the eigenvalues of P. Let λ be an eigenvalue of P and
u = [u1, · · · ,ud+1]

t be the eigenvector corresponding to λ. Then we can consider the
eigenvector u as a sequence {u[i]}∞

i=0 with

u[i] =

{
ui if i = 1, · · · ,d +1,
0 otherwise,
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and u1 ̸= 0. Since Pu = λu, we have

u[0] = 0
(k+2)u[0]+ (k+2)u[2] = λu[1]+ (2k−4)u[1]+ (2−3k)u[2]
(k+2)u[1]+ (k+2)u[3] = λu[2]+ (k−2)u[1]+ (2− k)u[2]
(k+2)u[2]+ (k+2)u[4] = λu[3]
...
(k+2)u[d −1]+ (k+2)u[d +1] = λu[d]
(k+2)u[d]+ (k+2)u[d +2] = λu[d +1]− (k+2)u[d +1]
u[d +2] = 0.

(3.2)

Consequently, we have the following equation:

(k+2)u[h+2]+ (k+2)u[h] = λu[h+1]+ f [h+1], h = 0,1, · · · (3.3)

where

f [h] =


(2k−4)u[1]+ (2−3k)u[2] if h = 1,
(k−2)u[1]+ (2− k)u[2] if h = 2,
−(k+2)u[d +1] if h = d +1,
0 otherwise.

The z-transform of f [h] is

F [z] =
∞

∑
h=0

f [h]z−h

= ((2k−4)u[1]+ (2−3k)u[2])z−1

+((k−2)u[1]+ (2− k)u[2])z−2 − (k+2)u[d +1]z−(d+1). (3.4)

From (2.7), we calculate the z-transform of (3.3) which is

(k+2)
(
z2U(z)−u[0]z2 −u[1]z+U(z)

)
= λzU(z)−λu[0]z+ zF(z)− f [0]z

and since u[0] = f [0] = 0, we can obtain U(z) as follows:

U(z) =
1

(k+2)z2 −λz+ k+2
(F [z]+ (k+2)u[1])z

=
1

(k+2)z−2 −λz−1 + k+2
(F [z]+ (k+2)u[1])z−1. (3.5)

Note that from Remark 2.3, the eigenvalues of B1 are real and therefore the coeffi-
cients of (k+2)z−2 −λz−1 + k+2 are all real and two cases may arise as follows.

(i) If (k+2)z−2 −λz−1 + k+2 has two distinct roots, then the roots are

γ± =
λ±

√
ω

2(k+2)
,
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where ω = λ2 −4(k+2)2 ̸= 0. We can write γ± = p± iq, where p,q ∈ C and q ̸= 0.
From γ+γ− = p2 +q2 = 1 and γ++ γ− = 2p = λ/(k+2), it follows that

γ± =
√

p2 +q2 (cos(θ)± isin(θ)) = e±iθ, cos(θ) =
λ

2(k+2)
, (3.6)

where θ is either a real or a pure imaginary number. Let

X(z) =
1

(k+2)z−2 −λz−1 +(k+2)
.

From (2.6), we know that

z−qX(z)↔ x[ j−q]H[ j−q] where H[x] =

{
1 if x ≥ 0,
0 if x < 0.

(3.7)

So that, by getting the inverse z-transform from (3.5) and using (3.4), we have

u[ j] = (k+2)u[1]x[ j−1]H[ j−1]+ ((2k−4)u[1]+ (2−3k)u[2])x[ j−2]H[ j−2]

+ ((k−2)u[1]+ (2− k)u[2])x[ j−3]H[ j−3]

− (k+2)u[d +1]x[ j−d −2]H[ j−d −2]. (3.8)

We shall now find x[ j] and plug it into (3.8). By partial fractions decomposition of
X(z), we can write

X(z) =
1√
ω

(
1

γ−− z−1 −
1

γ+− z−1

)
,

therefore,

x[ j] =
1√
ω

(
(γ−)

−( j+1)− (γ+)
−( j+1)

)
=

2i√
ω

sin(( j+1)θ). (3.9)

Note that {a−(n+1)}∞
n=0 ↔ 1/(a− z−1). From (3.8) and (3.9), we have

u[ j] =
2i√
ω

[
(k+2)u[1]sin( jθ)H[ j−1]

+ ((2k−4)u[1]+ (2−3k)u[2])sin(( j−1)θ)H[ j−2]

+ ((k−2)u[1]+ (2− k)u[2])sin(( j−2)θ)H[ j−3]

− (k+2)u[d +1]sin(( j−d −1)θ)H[ j−d −2]
]
. (3.10)

Setting j = d +2 in (3.10) yields

u[d +2] =
2i√
ω

[
(k+2)u[1]sin((d +2)θ)

+((2k−4)u[1]+ (2−3k)u[2])sin((d +1)θ)

+((k−2)u[1]+ (2− k)u[2])sin(dθ)− (k+2)u[d +1]sin(θ)
]
.

(3.11)
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Similarly, when j = d +1,

u[d +1] =
2i√
ω

[
(k+2)u[1]sin((d +1)θ)

+((2k−4)u[1]+ (2−3k)u[2])sin(dθ)

+((k−2)u[1]+ (2− k)u[2])sin((d −1)θ)
]
. (3.12)

Moreover, we know that

γ+− γ− =

√
ω

(k+2)
= 2isin(θ). (3.13)

From (3.11), (3.12) and (3.13), we conclude that

u[d +2] =
2i√
ω

[
(k+2)u[1]sin((d +2)θ)+((k−6)u[1]+ (2−3k)u[2])sin((d +1)θ)

+((2− k)u[1]+2ku[2])sin(dθ)

+((2− k)u[1]+ (k−2)u[2])sin((d −1)θ)
]
.

From (3.2), we know that

u[2] =
λ+2k−4

4k
u[1], (3.14)

and also, by (3.6), we have λ = 2(k+2)cos(θ), consequently we get

u[d +2] =
iu[1](k+2)

2k
√

ω

[
(k+2)sin((d +2)θ)−4sin((d +1)θ)−2k sin(dθ)

+4sin((d −1)θ)+(k−2)sin((d −2)θ)
]
.

Since u[d +2] = 0, θ is the root of the following equation:

(k+2)sin((d +2)θ)−4sin((d +1)θ)−2k sin(dθ)+4sin((d −1)θ)

+(k−2)sin((d −2)θ) = 0. (3.15)

(ii) Suppose that (k+2)z−2 −λz−1 +(k+2) has a repeated root. As such, ω = 0

and λ = ±2(k+ 2). Let Y (z) =
z−1

(k+2)z−2 −λz−1 +(k+2)
. From (3.4), (3.5) and

(3.7), we get

u[ j] = (k+2)u[1]y[ j]+ ((2k−4)u[1]+ (2−3k)u[2])y[ j−1]H[ j−1]

+ ((k−2)u[1]+ (2− k)u[2])y[ j−2]H[ j−2]

− (k+2)u[d +1]y[ j−d −1]H[ j−d −1]. (3.16)

We shall now find y[ j] and plug it into (3.16). We can write

Y (z) =
z−1

(k+2)z−2 −λz−1 + k+2
=

z−1

(k+2)(z−2 − λ

k+2 z−1 +1)
=

z−1

(k+2)(z−1 ±1)2 .
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That yields

y[ j] =
1

k+2
(±1) j+1 j. (3.17)

Notice that the above equality is obtained due to {nan}∞
n=0 ↔ az/(z − a)2 (cf.

[11, Table 7.3]). From (3.16) and (3.17), we have

u[ j] =
1

k+2

[
(k+2)u[1](±1) j+1 j

+((2k−4)u[1]+ (2−3k)u[2]) (±1) j( j−1)H[ j−1]

+ ((k−2)u[1]+ (2− k)u[2]) (±1) j−1( j−2)H[ j−2]

− (k+2)u[d +1](±1) j−d( j−d −1)H[ j−d −1]
]
. (3.18)

If we set j = d +2 in (3.18), then we have

u[d +2] =
1

k+2

[
(k+2)u[1](±1)d+3(d +2)

+((2k−4)u[1]+ (2−3k)u[2]) (±1)d+2(d +1)

+((k−2)u[1]+ (2− k)u[2]) (±1)d+1d − (k+2)u[d +1]
]
,

and also, u[d +1] is as follows

u[d +1] =
1

k+2

[
(k+2)u[1](±1)(d+2)(d +1)

+((2k−4)u[1]+ (2−3k)u[2]) (±1)(d+1)d

+((k−2)u[1]+ (2− k)u[2]) (±1)d(d −1)
]
,

so by using this and u[d +2] = 0, we obtain that

(k+2)(±1)u[1](d +2)+((k−6)u[1]+ (2−3k)u[2]) (d +1)

+((2− k)u[1]+2ku[2]) (±1)d − ((k−2)u[1]+ (2− k)u[2]) (d −1) = 0. (3.19)

We now consider two equations (3.20) and (3.21) from (3.19) as follows. The first
equation is

(k+2)u[1](d +2)+((k−6)u[1]+ (2−3k)u[2]) (d +1)

+((2− k)u[1]+2ku[2])d − ((k−2)u[1]+ (2− k)u[2]) (d −1) = 0. (3.20)

In this case, λ =−2(k+2) and also from (3.14), we conclude that u[2] =−2u[1]/k.
After some simplifications, we obtain from (3.20) that d =−2 which is a contradic-
tion. The other equation is

− (k+2)u[1](d +2)+((k−6)u[1]+ (2−3k)u[2]) (d +1)

− ((2− k)u[1]+2ku[2])d − ((k−2)u[1]+ (2− k)u[2]) (d −1) = 0. (3.21)
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In this case, λ = 2a and from (3.14), we conclude that u[2] = u[1]. After some sim-
plifications, we get d =−1 which is a contradiction.

All in all, we conclude that the θi can all be obtained from (3.15) and so, from
(3.6) we have λi = 2(k+2)cos(θi), where the λi are the eigenvalues of the matrix P.
Consequently, by (3.1), the eigenvalues of B1 are

ηi =
k+2

2
cos(θi)+

k−2
2

(i = 0,1, . . . ,d),

as expected. □

Importantly, Theorem 1 shows that the general form of the eigenvalues of the first
intersection matrix of a homogeneous monotonic P-polynomial table algebra with
valency k is cos(θi)(k+2)/2+(k−2)/2 which means that the eigenvalues lie in the
interval

[−2,k],

and when k > 2, this is a better boundary than [−k,k] which is given in [4, Proposi-
tion 3.1].

In the following theorem, we calculate the characters of homogeneous monotonic
P-polynomial table algebras with finite dimension d ≥ 5.

Theorem 2. Let (A,B) be a homogeneous monotonic P-polynomial table algebra
with B = {x0 = 1A,x1, · · · ,xd} and d ≥ 5. Then the character values of (A,B) are

p0( j) = 1,

p1( j) = η j,

pi( j) =
(√

k+2
2

)i−4[(
η

2
j −

3k−6
4

η j − k
)

Ui−2

(
2η j − k+2

2
√

k+2

)

−
(√

k+2
2

)3

η j Ui−3

(
2η j − k+2

2
√

k+2

)]
,

where i = 2, . . . ,d, j = 0,1, . . . ,d and the η j are the eigenvalues of B1 which are
obtained in Theorem 1.

Proof. For each i, i = 0,1, . . . ,d, the pi( j), j = 0,1, . . . ,d, are equal to the eigen-
values of the i-th intersection matrix Bi. Since B0 = Id+1, we have p0( j) = 1 for all j.
Similarly, the p1( j) are equal to the eigenvalues of B1 which are calculated in The-
orem 1. To obtain the pi( j), i = 2, . . . ,d, we must calculate the complex coefficient
polynomial νi(x), where xi = νi(x1). Obviously, ν1(x) = x, and from (1.1) and (2.1)
we get

x1x1 = k+
3k−6

4
x1 +

k+2
4

x2 ⇒ ν2(x) =
4x2 − (3k−6)x−4k

k+2
.
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We claim that

νi(x) =
4

k+2

((
x− k−2

2

)
νi−1(x)−

k+2
4

νi−2(x)
)
, (3.22)

where i = 2, . . . ,d. To prove this, we use induction on i. It is fairly straightforward
using (2.1) to get

ν3(x) =
4

k+2

((
x− k−2

2

)
ν2(x)−

k+2
4

ν1(x)
)
.

Now, we assume that (3.22) holds for i < d. From (2.1) and the induction hypothesis,
it is concluded that

νd (x) =
4

k+2

((
x− k−2

2

)
νd−1(x)−

k+2
4

νd−2(x)
)
.

We now consider the following recursive relation:

ϕn(x) =
(

x− k−2
2

)
ϕn−1(x)−

k+2
4

ϕn−2(x), n > 2,

with ϕ1(x) = (k+2)x/4 and ϕ2(x) = x2 − (3k−6)x/4− k. By using [6, Lemma 1],
we find that

ϕn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k+2
4 x 1 0

k 4
k+2 x− 3k−6

k+2 1
. . .

0 k+2
4 x− k−2

2 1
. . . . . . . . . . . .

k+2
4 x− k−2

2 1
k+2

4 x− k−2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Laplace expansion gives

ϕn(x) =
(

x2 − 3k−6
4

x− k
)

Dn−2(x)−
(

k+2
4

)2

xDn−3(x), (3.23)

where Dn(x) is the characteristic polynomial of

k−2
2 1 0

k+2
4

k−2
2 1

. . .

0 k+2
4

k−2
2

. . .
. . . . . . . . . 1

k+2
4

k−2
2


n×n

,

so from [8, Section 2], we can see that

Dn(x) =
(√

k+2
2

)n

Un

(
2x− k+2
2
√

k+2

)
. (3.24)
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Finally, from (3.22), (3.23) and (3.24) we conclude that

νi(x) =
4

k+2
ϕi(x)

=

(√
k+2
2

)i−4[(
x2 − 3k−6

4
x− k

)
Ui−2

(
2x− k+2
2
√

k+2

)

−
(√

k+2
2

)3

x Ui−3

(
2x− k+2
2
√

k+2

)]
,

for i = 2, . . . ,d. Due to (2.3), the proof is now complete. □

Example 1. Let (A,B) be a homogeneous monotonic P-polynomial table algebra
of valency k = 2 and diameter d ≥ 5. Then from (1.1), the first intersection of (A,B)
is

B1 =



0 1
2 0 1

1 0 1
. . . . . . . . .

1 0 1
1 1


(d+1)×(d+1)

.

Now, we calculate the characters of (A,B). From Theorem 1, we must find the roots
of the following equation:

sin((d +2)θ)− sin((d +1)θ)− sin(dθ)+ sin((d −1)θ) = 0. (3.25)

It implies that
cos((d +1)θ)sin(θ)− cos(dθ)sin(θ) = 0.

We can assume that sin(θ) ̸= 0, because otherwise, θ = nπ, (n ∈ N), and λ =
2acos(nπ) = ±2a which leads to k = 2 being an eigenvalue of B1, i.e. case (ii)
in Theorem 1, but k can be obtained from the equation (3.25) which follows from the
case (i) in Theorem 1. This gives

p1( j) = η j = 2cos
(

2 jπ
2d +1

)
, j = 0, . . . ,d.

The other characters of (A,B) can also be found through Theorem 2. The pi( j),
i = 2, . . . ,d, are

pi( j) =
(
η

2
j −2

)
Ui−2

(
η j

2

)
−η jUi−3

(
η j

2

)
= 2cos

(
i jπ

2d +1

)
,

for j = 0, . . . ,d, where Ui(x) and Ti(x) are the i-th degree Chebyshev polynomials
of second kind and first kind, respectively. The above equalities follow from the
properties of Chebyshev polynomials which can be found in [9].
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4. CONCLUDING REMARKS

In this paper, we use the z-transform concept along with techniques from linear al-
gebra and matrix theory to calculate the character values of homogeneous monotonic
P-polynomial table algebras with finite dimension d ≥ 5. Importantly, we calculate
the eigenvalues of a special classes of tridiagonal matrices which may have applic-
ations in other fields. Next, we obtain the characters of homogeneous monotonic
P-polynomial table algebras with finite dimension d ≥ 5 in terms of Chebyshev poly-
nomials. For k > 2, we plan to apply the results of Theorem 2 combined with some
other techniques to find the character values in our future work.
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