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Abstract. Schauder’s fixed point theorem and Banach contraction principle are used to study a
q-difference equation. We give sufficient conditions for the existence, uniqueness, and stability
of the nondecreasing bounded continuous solutions. We also give the approximate sequences for
the corresponding solutions. Finally, some examples are considered for our results.
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1. INTRODUCTION

The study about q-difference equations has a long history. For example, the linear
ordinary q-difference equations have been investigated in the beginning of the 20
century by Birkhoff [4, 5], Carmichael [6], Jackson [8, 9], Adams [1], Trjitzinsky
[16], Mason [11], and other authors [2,3,7,10,12,13,17,18]. However, since the late
1940s, the theory has been relatively little researched. In the last 20 years the field
has recovered its original vitality and the theory of q-difference equations or more
generally functional equations has witnessed substantial advances. See, for example,
[15, 19]. Recently, Si and Zhang [14] studied the existence of analytic solutions of
the nonlinear q-difference equation

G
(

f (x), f (qx), . . . , f (qnx)
)
= 0,

where f is an unknown function and G(x) is given function.
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In this note, we will be concerned with

G
(

f (x), f (qx), . . . , f (qnx)
)
= F(x), (1.1)

where f is an unknown function, F(x) and G(x) are given functions. By means of
the Schauder’s fixed point theorem and Banach contraction principle, we discuss the
existence, uniqueness and stability of nondecreasing bounded continuous solutions
of equation (1.1). Furthermore, we consider the approximate solutions sequence for
the corresponding solutions.

Let M ≥ 1 ≥ m ≥ 0 and C(I) consist of all continuous functions on I = [a,b].
Define

Φ(I;m,M) = { f ∈C(I) : f (a) = a, f (b) = b,a≤ f (x)≤ b,

m(x− y)≤ f (x)− f (y)≤M(x− y), ∀x,y ∈ I,x≥ y}.

Clearly, C(I) is a real Banach space with respect to the uniform norm

∥ f∥= max{| f (x)| : x ∈ I} for f ∈C(I).

In fact, it is easy to check that Φ(I;m,M) is a metric space under the uniform norm
∥ f∥. Furthermore, suppose that the sequence { fn}∞

n=1 in Φ(I;m,M) has a limit f̃ ∈
C(I). Noting

f̃ (x)− f̃ (y) = ( f̃ (x)− fn(x))+( fn(x)− fn(y))+( fn(y)− f̃ (y)), x≥ y,

taking n→ ∞, we have

m(x− y)≤ f̃ (x)− f̃ (y)≤M(x− y), ∀x,y ∈ I, x≥ y

and

f̃ (a) = lim
n→∞

fn(a) = a, f̃ (b) = lim
n→∞

fn(b) = b.

Thus, we have f̃ ∈ Φ(I;m,M) and Φ(I;m,M) is a a complete metric space. In the
class of C1 functions the conditions in the definition of Φ(I;m,M) coincide with
m≤ f ′(x)≤M.

The rest of the paper is organized as follows. In Section 2, we give the existence
of nondecreasing bounded continuous solutions of Eq. (1.1) under the monotonicity
assumption. Section 3 deals with the uniqueness and stability of those solutions. The
final section presents some examples.

2. NONDECREASING BOUNDED CONTINUOUS SOLUTIONS

In this section, the existence of a nondecreasing bounded continuous solutions of
Eq. (1.1) will be proved. Let us give some lemmas which will be used to prove our
theorem.

Lemma 1 ([21, Lemma 1]). Φ(I;m,M) is a compact convex subset of C(I).
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Lemma 2 ([20, Lemma 2]). Suppose that f ,g∈Φ(I;m,M), where M≥ 1≥m> 0,
then the following inequalities hold:

(i) ∥ f k−gk∥ ≤ ∑
k−1
j=0 M j ∥ f −g∥ , k ∈ Z+.

(ii) ∥ f −g∥ ≤M
∥∥ f−1−g−1

∥∥.
(iii)

∥∥ f−1−g−1
∥∥≤ m−1 ∥ f −g∥.

(iv) f−1 ∈Φ(I;M−1,m−1).

Now, we shall consider (1.1) on I = [0,b] under the following assumptions.

(H1) G(x1,x2, . . . ,xn+1) ∈ C(In+1, I), G(0,x2, . . . ,xn+1) = 0,G(b,x2, . . . , xn+1) =
b.

(H2) There exist Li ≥ li ≥ 0 such that, for all xi,yi ∈ I,xi ≥ yi, i = 1,2, . . . ,n+1,

n+1

∑
i=1

li(xi− yi)≤ G(x1,x2, . . . ,xn+1)−G(y1,y2, . . . ,yn+1)≤
n+1

∑
i=1

Li(xi− yi).

Remark 1. Taking xi = b,yi = 0, i = 1,2, . . . ,n+1, we see

b
n+1

∑
i=1

li ≤ G(b, . . . ,b)−G(0, . . . ,0)≤ b
n+1

∑
i=1

Li,

i.e., ∑
n
i=1 li ≤ 1≤ ∑

n
i=1 Li.

Theorem 1. Suppose that (H1) and (H2) hold, F ∈ Φ(I;mF ,MF), 0 < mF ≤ 1 ≤
MF . If inequality

0 < m≤ mF

L1 +M0
≤ 1≤ MF

l1−M1
≤M (2.1)

holds for constants M0 =
M
m ∑

n
i=1 qiLi+1,M1 =

m
M ∑

n
i=1 qili+1, where q ∈ (0,1). Then

Eq. (1.1) has a solution f ∈Φ(I;m,M) with 0 < m≤ 1≤M.

Proof. Define a mapping T : Φ(I;m,M)→C(I) by

T f (x) = G
(

x, f (q f−1(x)), . . . , f (qn f−1(x))
)
, ∀x ∈ I.
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By (H1) and (H2) we know T f is nondecreasing and T f (0) = 0,T f (b) = b. For any
x,y ∈ I with x≥ y, from Lemma 2, we can check that

T f (x)−T f (y)

= G
(

x, f (q f−1(x)), . . . , f (qn f−1(x))
)
−G

(
y, f (q f−1(y)), . . . , f (qn f−1(y))

)
≤ L1(x− y)+L2

(
f (q f−1(x))− f (q f−1(y))

)
+ · · ·

+Ln+1

(
f (qn f−1(x))− f (qn f−1(y))

)
≤ L1(x− y)+

qM
m

L2(x− y)+ · · ·+ qnM
m

Ln+1(x− y)

=
(

L1 +
M
m

n

∑
i=1

qiLi+1

)
(x− y) = (L1 +M0)(x− y)

and

T f (x)−T f (y)

≥ l1(x− y)+ l2
(

f (q f−1(x))− f (q f−1(y))
)
+ · · ·

+ ln+1

(
f (qn f−1(x))− f (qn f−1(y))

)
≥ l1(x− y)− qm

M
l2(x− y)−·· ·− qnm

M
ln+1(x− y)

=
(

l1−
m
M

n

∑
i=1

qili+1

)
(x− y) = (l1−M1)(x− y),

where M0 =
M
m ∑

n
i=1 qiLi+1,M1 =

m
M ∑

n
i=1 qili+1.

Theeqrefore,

0 < (l1−M1)(x− y)≤ T f (x)−T f (y)≤ (L1 +M0)(x− y), ∀x≥ y ∈ I.

So T f is invertible and

1
L1 +M0

(x− y)≤ (T f )−1(x)− (T f )−1(y)≤ 1
l1−M1

(x− y), ∀x≥ y ∈ I,

(2.2)

(T f )−1(0) = 0,(T f )−1(b) = b,0≤ (T f )−1(x)≤ b,∀x ∈ I and (T f )−1 is increasing.
Obviously, T f is a homeomorphism from I = [0,b] to itself.

Define a mapping T : Φ(I;m,M)→C(I) by

T f (x) = (T f )−1 ◦F(x). (2.3)
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Clearly, T f (0) = 0,T f (b) = b and 0 ≤ T f (x) ≤ b. From (2.2) and (2.1), for x ≥
y ∈ I, we have

T f (x)−T f (y)≤ MF

l1−M1
(x− y)≤M(x− y)

and

T f (x)−T f (y)≥ mF

L1 +M0
(x− y)≥ m(x− y),

implying that T is a self-mapping on Φ(I;m,M). For f ,g∈Φ(I;m,M), by Lemma 2,

∥T f −T g∥ ≤
∥∥(T f )−1− (T g)−1∥∥
≤ 1

l1−M1
∥T f −T g∥

≤ 1
l1−M1

(
L2

(
f (q f−1(x))−g(qg−1(x))

)
+ · · ·

+Ln+1

(
f (qn f−1(x))−g(qng−1(x))

))

≤
( n

∑
i=1

Li+1

)
∥ f −g∥+M

( n

∑
i=1

qiLi+1

)
∥ f−1−g−1∥

≤

(
n

∑
i=1

Li+1 +
M
m

n

∑
i=1

qiLi+1

)
∥ f −g∥

= (M0 +
n

∑
i=1

Li+1)∥ f −g∥, (2.4)

implying the continuity of T . By Lemma 1 and Schauder’s fixed-point theorem, T
has a fixed point f ∈Φ(I;m,M), which gives the desired solution. □

Theorem 2. In addition to the assumption of Theorem 1, suppose that

M0 +
n

∑
i=1

Li+1 < 1. (2.5)

Then for any ϕ0 ∈Φ(I;m,M), there exists a sequence (ϕk)
∞
k=0 ⊂Φ(I;m,M) which is

defined by ϕk = T ϕk−1,k = 1,2, . . ., convergent to ϕ∗ which is a solution of Eq. (1.1).

Proof. Consider a mapping T on Φ(I;m,M) as in (2.3). Furthermore, set

ϕk = T ϕk−1, ϕ0 ∈Φ(I;m,M)
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for k ∈N. Noting that T is a self-mapping on Φ(I;m,M), we have (ϕk)
∞
k=0 is a subset

of Φ(I;m,M) and from (2.4),

sup
x∈[a,b]

|T ϕk+1(x)−T ϕk(x)| ≤
(

M0 +
n

∑
i=1

Li+1

)
∥ϕk+1−ϕk∥,

i.e.,

∥T ϕk+1−T ϕk∥ ≤ Γ∥ϕk+1−ϕk∥,

where Γ = M0 +∑
n
i=1 Li+1. Theeqrefore,

∥ϕk+1−ϕk∥= ∥T ϕk−T ϕk−1∥ ≤ Γ
k∥ϕ1−ϕ0∥.

Let

ϕs(x) = ϕ0(x)+
s−1

∑
k=0

(ϕk+1(x)−ϕk(x)),

we now show that ∑
s−1
k=0(ϕk+1(x)−ϕk(x)) converges on the interval [0,b]. This would

imply that ϕs(x) has a limit on this interval as s→ ∞. Clearly, to establish the con-
vergence of ∑

∞
k=0

(
ϕk+1(x)−ϕk(x)

)
, we note that, in view of (2.5), the series

∞

∑
k=0
∥ϕk+1−ϕk∥ ≤

∞

∑
k=0

Γ
k∥ϕ1−ϕ0∥=

1
1−Γ

∥ϕ1−ϕ0∥

converges.
This means that (ϕk)

∞
k=0 is a Cauchy sequence under the supreme norm and,

theeqrefore, uniformly converges to a continuous function ϕ∗ on [0,b]. But we
already know that Φ(I;m,M) is compact, so (ϕk)

∞
k=0 converges to ϕ∗ in Φ(I;m,M).

From ((2.4)) we see that T is continuous, thus ϕ∗← ϕk+1 = T ϕk→ T ϕ∗, we obtain
T ϕ∗ = ϕ∗. Noting that ϕk ∈Φ(I;m,M) for any ϕk = T ϕk−1, ϕ0 ∈Φ(I;m,M), k =
1,2, . . .. Thus ∥ϕk∥= ∥T ϕk−1∥≤ b and we see that ∥ϕ∗∥= ∥T ϕ∗∥≤ b. Theeqrefore,
the sequence of functions given by S = (ϕ0(x),ϕ1(x), . . . ,ϕk(x), . . .) can be regarded
as approximate solutions of Eq. (1.1). Theorem (2) is proved. □

3. UNIQUENESS AND STABILITY

In this section, we consider the uniqueness and stability of the nondecreasing
bounded continuous solutions of (1.1).

Theorem 3. In addition to the assumption of Theorem 1, suppose that (2.5) holds.
Then Eq. (1.1) has a unique solution in Φ(I;m,M), and the unique solution depends
continuously on the given functions G and F. Furthermore, the unique solution can
be obtained by the sequence (ϕk)

∞
k=0, here ϕ0 ∈Φ(I;m,M), ϕk+1 = T ϕk,k = 0,1, . . .

and T is defined as in (2.3).
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Proof. From the proof of Theorem (1), the map T : Φ(I;m,M)→ Φ(I;m,M) in
(2.3). Moreover, by (2.4), we get

∥T f −T g∥ ≤ (M0 +
n

∑
i=1

Li+1)∥ f −g∥ ,

where M0 is defined as in Theorem (1). By (2.5),

Γ = M0 +
n

∑
i=1

Li+1 < 1.

So the fixed point must be unique by the Banach fixed point theorem.
Given G1,G2 satisfy (H1)-(H2), F1,F2 ∈ Φ(I;mF ,MF), we consider the corres-

ponding operators T , T̃ defined by (2.3). Assuming the corresponding conditions
(2.1) and (2.5), there are two unique corresponding functions f1 and f2 in Φ(I;m,M)
such that

f1 = T f1, f2 = T̃ f2.

Then we have

∥ f1− f2∥ ≤ ∥T f1−T f2∥+∥T f2− T̃ f2∥

≤ Γ∥ f1− f2∥+∥T f2− T̃ f2∥,

which implies

∥ f1− f2∥ ≤
1

1−Γ
∥T f2− T̃ f2∥. (3.1)

Using (2.2),

∥T f2− T̃ f2∥= ∥(G1)
−1 ◦F1− (G2)

−1 ◦F2∥
≤ ∥(G1)

−1 ◦F1− (G1)
−1 ◦F2∥+∥(G1)

−1 ◦F2− (G2)
−1 ◦F2∥

≤ 1
l1−M1

∥F1−F2∥+∥G−1
1 −G−1

2 ∥,

by (3.1), we get

∥ f1− f2∥ ≤
1

(1−Γ)(l1−M1)
∥F1−F2∥+

1
1−Γ

∥G−1
1 −G−1

2 ∥.

This proves the continuous dependence of solution f upon G and F , otherwise eqre-
ferred to as stability. From Theorem 2, we can finish the proof. □

4. EXAMPLES

In this section, some examples are provided to illustrate that the assumptions of
Theorem 1 is not self-contradictory.
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Example 1. First, we show that the conditions in Theorem 1 are not self-contra-
dictory. Consider the following equation:

f (x)+ f (x)
(

1
2
− f (x)

)
f
(

1
5

x
)
= x2 +

x
2
, x ∈

[
0,

1
2

]
, (4.1)

where G(x1,x2) = x1 +
(1

2 − x1
)

x1x2,G(0,x2) = 0,G
(1

2 ,x2
)
= 1

2 . We can take L1 =
5
4 ,L2 = 1

16 , l1 = 3
4 , l2 = 0 and F(x) = x2 + x

2 and F ∈ Φ
([

0, 1
2

]
; 1

2 ,
3
2

)
. Taking m =

1
5 ,M = 10, then M0 =

5
8 ,M1 = 0, and a simple calculation yields

0≤ m =
1
5
≤ mF

L1 +M0
=

4
15
≤ 1≤ 2 =

MF

l1−M1
≤ 10 = M,

thus (2.1) is satisfied. Theorem 1 gives a nondecreasing bounded continuous solu-
tion f of Eq. (4.1) in Φ

([
0, 1

2

]
; 1

5 ,10
)
. Noting M0 + L2 = 11

16 < 1, (2.5) is satis-
fied, hence by Theorem 3, we know that the nondecreasing continuous solution is
the unique one in Φ

([
0, 1

2

]
; 1

5 ,10
)
. Furthermore, for any ϕ0 ∈ Φ

([
0, 1

2

]
; 1

5 ,10
)
, the

unique solution of (4.1) in Φ
([

0, 1
2

]
; 1

5 ,10
)

can be approximated by the sequence
(ϕk)

∞
k=0, ϕk = T ϕk−1, T is defined as in (2.3), k = 1,2, . . ..

Example 2. Consider the following equation:

f (x)+ f (x)
(

1
2
− f (x)

)
f (qx) = x2 +

x
2
, x ∈

[
0,

1
2

]
, (4.2)

where q ∈ (0,1), as in Example 6.1,

G(x1,x2) = x1 +(
1
2
− x1)x1x2, G(0,x2) = 0, G(

1
2
,x2) =

1
2
.

We can take

L1 =
5
4
, L2 =

1
16

, l1 =
3
4
, l2 = 0, F(x) = x2 +

x
2
, F ∈Ω

([
0,

1
2

]
;
1
2
,
3
2

)
.

We will consider the existence of solution f ∈Φ
([

0, 1
2

]
;δ,M

)
for (4.2). Noting that

M0 =
M
δ

qL2 =
qM
16δ

,M1 = 0. In order to apply (2.1) in Theorem 1, we need

0 < δ≤ mF

L1 +M0
=

8δ

20m+qM
≤ 1≤ 2 =

MF

l1−M1
≤M.

then

qM ≤ 8−20δ and 2≤M. (4.3)

Theeqrefore

0 < q≤ 4−10δ,
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then

0 < δ <
2
5
.

Furthermore, in order to apply Theorem 3, we need

M0 +L2 =
qM
16δ

+
1
16

< 1,

from (4.3), we have

2≤M <
1
q

min
{

8−20δ,15δ

}
. (4.4)

From (4.3) and (4.4), we know that Eq. (4.2) has an unique nondecreasing bound-
ed continuous solution f ∈ Ω

([
0, 1

2

]
;δ,M

)
with 0 < q ≤ 4− 10δ and 2 ≤ M <

1
q min

{
8−20δ,15δ

}
for 0≤ δ < 2

5 .

By Theorem 3, for any ϕ0 ∈Ω
([

0, 1
2

]
;δ,M

)
, the unique nondecreasing continuous

solution of (4.2) can be approximated by the sequence (ϕk)
∞
k=0, ϕk = T ϕk−1, T as in

(2.3), k = 1,2, . . ..

It is easy to check that q = 1
5 ,m = 1

5 ,M = 10 in Example 1 which is a special case
for Example 2.
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