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Abstract. We determine the two greatest numbers of weak congruences of lattices. The number
of weak congruences of some special lattices are deduced via combinatorial considerations.
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1. INTRODUCTION, PRELIMINARIES

A weak congruence on the algebra A is a compatible weak equivalence on A, i.e.,
symmetric and transitive relation on A being a subuniverse of A2. The collection
CwA of weak congruences on an algebra A is an algebraic lattice under inclusion.
The congruence lattice ConA, the subuniverse lattice SubA are sublattices of CwA
as well as ConB, for every subalgebra B of A. See [7] and the book of B. Šešelja and
A. Tepavčević [8] for more details. The lattice of weak congruences of a lattice was
studied in [9]. Weak congruence lattices of groups have been studied recently with
the aim of characterizing various types of groups by weak congruence lattices [4, 5].
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The greatest numbers of subuniverses of lattices were determined in [3] and [1],
the greatest numbers of congruences of lattices were determined in [2] and [6] .

Let P and Q be posets with disjoint underlying sets. Then the ordinal sum P+ord Q
is the poset on P∪Q with s≤ t if, either s, t ∈P and s≤ t; or s, t ∈Q and s≤ t; or s∈P
and t ∈ Q. In other words, every element of P is less than every element of Q, and the
relations in P and Q stay the same; to draw the Hasse diagram of P+ord Q, we place
the Hasse diagram of Q above that of P and then connect any minimal element of Q
with any maximal element of P. If K with 1 and L with 0 are finite posets, then their
glued sum K+glu L is the ordinal sum of the posets K \{1K}, the singleton poset, and
L \ {0L}, in this order. Note that +glu and +ord are associative but not commutative
operations.

2. THE GREATEST NUMBER OF WEAK CONGRUENCES OF FINITE LATTICES

Theorem 1. If L is a finite lattice of size n = |L|, then L has at most 3n+1
2 weak

congruences. Furthermore, |CwL|= 3n+1
2 if and only if L is a chain.

Proof. First, we prove that if L is a chain, then |CwL|= 3n+1
2 . By [3], an n-element

lattice can have at most 2n subuniverses. Furthermore, |SubL|= 2n if and only if it is
a chain. By [2], an n-element lattice can have at most 2n−1 congruences; furthermore,
|ConL|= 2n−1 if and only if it is a chain. Now

|CwL|= 1+ ∑
L∗∈SubL

L∗ ̸=∅

|ConL∗|= 1+
n

∑
i=1

(
n
i

)
2i−1

= 1+
∑

n
i=1

(n
i

)
2i

2
= 1+

−1+∑
n
i=0

(n
i

)
2i

2

= 1+
−1+(1+2)n

2
=

3n +1
2

.

We have to show that all the n-element lattices have fewer weak congruences than
3n+1

2 . We denote the elements of L by a1 ≺ ·· · ≺ an. If L′ is not a chain, then it has at
least two incomparable elements, say p||q. Of course p∨ q ∈ L′ and p∧ q ∈ L′. We
denote the remaining elements of L′ by b1, . . . ,bn−4 arbitrarily. Now∣∣CwL′∣∣= 1+ ∑

L∗∈SubL′
L∗ ̸=∅

|ConL∗|

By [3], the sum |CwL′| has less summands than the sum |CwL| . We make an injec-
tion from the summands of |CwL′| to the summands of |CwL| in such a way that
the image of each summand is not greater than the summand itself. For this, we
define a bijective map ϕ : L′ → L, (p∧q) 7→ a1, p 7→ a2, q 7→ a3, (p∨q) 7→ a4, and if
x ̸∈ {p,q, p∧ q, p∨ q}, then ϕ(x) ∈ L \ {a1,a2,a3,a4} arbitrarily. This ϕ induces an
injective map from the set of sublattices of L′ to the set of sublattices of L in a natural
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way (notice that all the subsets of L are subuniverses), and also an injective map from
the summands of |CwL′| to the summands of |CwL| in such a way that the image of
each summand of |CwL′| is not greater than the summand itself.

□

3. LANTERN: THE N-ELEMENT LATTICE Mn−2

We use the notation M1 for the 3-element chain and M2 for the 4-element Boolean
lattice. For n ≥ 3, Mn−2 consists of n− 2 atoms, which are also coatoms, and of 0
and 1. So, the lattice Mn−2 has n−2 atoms and n elements. We call the lattice Mn−2
a lantern.

Theorem 2. For n≥ 3, the lantern Mn−2 has 2n−1+n2+2n−5 weak congruences.

Proof. In the considered lantern Mn−2 there are n congruences of n one-element
sublattices, they provide n weak congruences.

Moreover, there are 2n−3 two-element sublattices, and each has two congruences,
so here we have 4n−6 weak congruences.

Further, there are n−2 three element sublattices (3-element chains) and each has
4 congruences, providing 4n−8 weak congruences.

Each sublattice with 4 elements contains 1 and 0 and two more middle elements.
There are (n−2)(n−3)

2 sublattices of 4 elements and each has 4 congruences, so there
are 2(n−2)(n−3) weak congruences here.

Each sublattice of 5 and more elements contains 1 and 0 and three or more middle
elements. Those sublattices have only 2 trivial congruences. There are

n−2

∑
k=3

(
n−2

k

)
such sublattices. Since

n−2

∑
k=0

(
n−2

k

)
= 2n−2,

the number of congruences on sublattices with five and more elements is: 2 · (2n−2 −
1− (n−2)−

(n−2
2

)
) which is equal to 2n−1 −n2 +3n−4.

Summing all together, there are 1+n+4n−6+4n−8+2n2 −10n+12+2n−1 −
n2 +3n−4 = 2n−1 +n2 +2n−5 weak congruences of the lantern Mn−2. □

4. THE NUMBER OF WEAK CONGRUENCES OF ORDINAL SUM OF LATTICES

Lemma 1. Given finite lattices L1 and L2, let L = L1 +ord L2. Then

|SubL|= |SubL1||SubL2|.

Proof. It is easy to see that any subuniverse of L can be obtained by the union of a
subuniverse chosen from L1 with a subuniverse chosen from L2. □
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Lemma 2. Given finite lattices L1 and L2, let L = L1 +glu L2. Then

|ConL|= |ConL1||ConL2|.

Proof. It is well-known that the congruence classes of lattices are convex. It is
easy to see that any congruence of L can be obtained by chosing a congruence of L1
and choosing a congruence of L2. □

Lemma 3. Given finite lattices L1 and L2, Let L = L1 +ord L2. Then

|CwL|= 2 · (|CwL1|−1)(|CwL2|−1)+ |CwL1|+ |CwL2|−1.

Proof. Any weak congruence of Li is a weak congruence of L. Now |CwL1|+
|CwL2| count the empty set twice, so we have to subtract 1. All the remaining sub-
universes are ordinal sums of nonempty subuniverses of form B1 ⊆ L1 and B2 ⊆ L2.
Ordinal sum is nothing else than glued sum of them with a 2-element chain in the
middle:

L1 +ord L2 = L1 +glu C2 +glu L2.

Now we can note that any weak congruence on L which have some elements from
both L1 and L2 we can get in two ways. First, as the union of a nonempty weak con-
gruence on L1 and a nonempty weak congruence on L2. Second, the transitive closure
of the relation which is the union of the full relation on the two element chain with
the union of a nonempty weak congruence on L1 and a nonempty weak congruence
on L2. Therefore, we get 2 · (|CwL1|−1)(|CwL2|−1) such weak congruences.

□

5. LANTERN ON CHAIN

Theorem 3. If L ≃C1+ord Mk−2+ord C2, where C1 and C2 are chains or the empty
set, and |C1|+ |C2|= l, then

|CwL|= (2k +2k2 +4k−11) ·3l +1
2

Proof. We use Theorem 1, Theorem 2 and Lemma 3. Let |C1| = l1 and |C1| = l2
and L∗ ≃C1 +ord Mk−2. First

|CwL∗|= 2 ·
(

3l1 +1
2

−1
)
(2k−1 + k2 +2k−5−1)+

3l1 +1
2

+2k−1 + k2 +2k−5−1

=
(2k +2k2 +4k−11) ·3l1 +1

2
.

Second
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|CwL|= 2 ·
(

3l2 +1
2

−1
)(

(2k +2k2 +4k−11) ·3l1 +1
2

−1
)

+
3l2 +1

2
+

(2k +2k2 +4k−11) ·3l1 +1
2

−1 =

=
(2k +2k2 +4k−11) ·3l +1

2
.

□

6. THE SECOND GREATEST NUMBER OF WEAK CONGRUENCES OF FINITE
LATTICES

Theorem 4. If |L| = n ≥ 4 and L has less than 3n+1
2 weak congruences, then the

second greatest value in weak congruences is 53·3n−4+1
2 . Furthermore, L has 53·3n−4+1

2
weak congruences if and only if L ≃C1 +glu B4 +glu C2, where C1 and C2 are chains
or the empty set and B4 is the four element Boolean lattice.

Proof. By Theorem 3, we obtain the result 53·3n−4+1
2 .

We prove that all the other n-element lattices have less weak congruences. To show
this, first we calculate the above number in a different way. By [3], L has 13 · nn−4

sublattices. By [2], this form of an n-element lattice L has 2n−2 congruences. We
denote the non-comparable elements of B4 by a and b. Now

|CwL|= 1+ ∑
L∗∈SubL

L∗ ̸=∅

|ConL∗|

= 1+ ∑
L∗∈SubL

B4⊆L∗

|ConL∗|+ ∑
L∗∈SubL

b̸∈L∗

a∈L∗

|ConL∗|+ ∑
L∗∈SubL
{a}∩L∗=∅

|ConL∗|= (∗∗)

Now

1+ ∑
L∗∈SubL
{a}∩L∗=∅

|ConL∗|= |CwCn−1|

so

(∗∗) =
n−4

∑
i=0

(
n−4

i

)
2i+4−2 +

n−2

∑
i=0

(
n−2

i

)
2i+1−1 +

3n−1 +1
2

= 4(1+2)n−4 +(1+2)n−2 +
3n−1 +1

2
=

53 ·3n−4 +1
2

.
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Consider an arbitrary n-element lattice L′ that is neither a chain, nor of form
C1 +glu B4 +glu C2,. Clearly∣∣CwL′∣∣= 1+ ∑

L∗∈SubL′
L∗ ̸=∅

|ConL∗| .

This sum contains not more summands than that of L by [3].
We show that |CwL′| ≤ |CwL| . If L′ is neither a chain, nor of the form C1 +glu

B4 +glu C2, then it has antichains, let a||b one of them. We make an injection from
the summands of |CwL′| to the summands of |CwL| in such a way that the image of
each summand is not greater than the summand itself. For this, we define a bijective
map ϕ : L′ → L. Denote the elements of B4 in L by {p,q, p∧ q, p∨ q}. Let aϕ = p,
bϕ = q, (a∧ b)ϕ = p∧ q, (a∨ b)ϕ = p∨ q; otherwise we define ϕ arbitrarily but
bijectively. The image of any sublattice of L′ is a sublattice of L because if the
considered sublattice contains both a and b, then the image of it is a sublattice of
form C1 +glu B4 +glu C2. If the considered sublattice contains at most one of a and
b, then its image is a chain. Now clearly by [2], the image of each summand is not
greater than the summand itself because the image of a sublattice is a chain or of
form C1 +glu B4 +glu C2, but the latter case happens only when the sublattice is not a
chain. □

7. CHANDELIER

Let Nm1,m2,...,mn be a lattice of width n, containing n chains with m1, m2,...,mn
elements. They have intersection {0,1}, any other element of it belongs exactly to
one chain. The index i in mi denote the i-th chain. We call the lattice Nm1,m2,...,mn a
chandelier.

Theorem 5. The chandelier Nm,k has

3m −1
2

3k −1
2

+3 · (2m −1)(2k −1)+
3m+2 +3k+2

2
−4

weak congruences.

Proof. This lattice has m+ k + 2 elements. By Theorem 1 the number of weak
congruences on the chain with m+ 2 elements is 3m+2+1

2 , and the number of weak
congruences on the chain with k+2 elements is 3k+2+1

2 . Here, we counted twice the
weak congruences on the sublattice {0,1}, and there are 5 of them.

Further, we calculate the sublattices having non-comparable elements and congru-
ences on them.

We note that 0 and 1 must belong to any of such sublattices L1 and at least one
element different from 0 and 1 must belong to L1 from each of the two chains. When
we fix such a sublattice with non-comparable elements, we can note that there are
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two types of congruences on such a sublattice, depending on whether 0 and 1 are
one-element congruence classes or not.

First, suppose that in a fixed sublattice L1, {0} and {1} are one-element classes in
a congruence and we calculate the number of all such congruences. We can chose
independently the congruence classes on each of the chains and if this chain has
e.g. m1 and k1 elements in a sublattice L1, then there are 2m1−1 · 2k1−1 different
congruences. Moreover, on each sublattice L1 we have the congruence L2

1. When
we calculate all congruences on all combinations of such sublattices, there are

m

∑
l=1

k

∑
s=1

(
m
l

)(
k
s

)
(2l−12s−1 +1)

weak congruences of this type.
Second, if {0} or {1} are not one-element classes, then due to the properties of

congruences, if 0 is in a congruence relation with one of the elements of one of the
chains, then the whole chain is a congruence block, and 1 is in the relation with
all elements of the other chain. Hence, for each of the sublattices there are two
possibilities (depending on the chain which is in the congruence relation with 0).
Hence, there are

2 ·
m

∑
l=1

k

∑
s=1

(
m
l

)(
k
s

)
such weak congruences.

Altogether there are
m

∑
l=1

k

∑
s=1

(
m
l

)(
k
s

)
2l−12s−1 +3 ·

m

∑
l=1

k

∑
s=1

(
m
l

)(
k
s

)
+

3m+2 +3k+2

2
−4

weak congruences. This is equal to

3m −1
2

3k −1
2

+3 · (2m −1)(2k −1)+
3m+2 +3k+2

2
−4.

□

Let Nm1,m2,...,mn be a chandelier of width n, containing n chains with m1, m2,...,mn

elements. Let w(k)(ml1 , . . . ,mlk) be the number of special weak congruences on
Nm1,m2,...,mn , which are congruences of sublattices of Nm1,m2,...,mn of width k where
{ml1 , . . .mlk} is a fixed subset of the set {m1,m2, ...,mn} containing k different ele-
ments. If n = 1, then w(n)(m) is the number of weak congruences on the chain with
n-elements (not counting the empty set).

It is easy to see that

|CwNm,k|= w(1)(m)+w(1)(k)+w(2)(m,k)−3.

Further, |CwNm,k,l|=w(1)(m)+w(1)(k)+w(1)(l)+w(2)(m,k)+w(2)(m, l)+w(2)(k, l)+
w(3)(m,k, l)−7.
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Lemma 4. Let k ≥ 3. Then,

w(k)(m1, . . .mn) =
k

∏
i=1

3mi −1
2

+(2m1 −1) · (2m2 −1) · . . . · (2mk −1)

Proof. w(k)(m1, . . .mk) is the set of congruences on sublattices of Nm1,m2,...,mn of
width k. This means that 0 and 1 belong to each of these sublattices as well as at
least one element from each of k chains. We obtain different weak congruences as
union of weak congruences on chains. Besides the squares of all subalgebras are
also weak congruences. 0 and 1 are one-element congruence classes unless the weak
congruence is the square of the sublattice.

The number of sublattices of width k is (2m1 −1) · (2m2 −1) · . . . · (2mk −1) and the
number of weak congruences (which are not square) is ∏

k
i=1

3mi−1
2 □

We use the notation w(i)A for w(i)(m1, . . .mi), if A = {m1, . . .mi}.
The proof of the following theorem is straightforward.

Theorem 6. The number of weak congruences of a chandelier of width n is

|CwNm1,m2,...,mn |=
n

∑
i=1

∑
A∈P i({m1,m2,...,mn})

w(i)A−4n+5,

where P i({m1,m2, ...,mn}) is the set of all subsets of {m1,m2, ...,mn} with i elements.

8. APPENDIX: N5, M3 AND M4 ON CHAINS

In this chapter, we determine the number of weak congruences of some special
lattices, which play significant role in lattice theory. These results can be obtained by
using Lemma 3, but we prove them without it.

Theorem 7. If |L| ≥ 5 and L ≃C1 +glu N5 +glu C2, where C1 and C2 are chains or
the empty set, then L has 125·3n−5+1

2 weak congruences.

Proof. By [6], the n-element lattice of form C1+glu N5+glu C2 has 5 ·2n−5 congru-
ences. We denote by a and b the atoms of N5 and by c and b the coatoms of N5; of
course a ≺ c.

|CwL|= 1+ ∑
L∗∈SubL

L∗ ̸=∅

|ConL∗|=

= ∑
L∗∈SubL

N5⊆L∗

|ConL∗|+ ∑
L∗∈SubL
a,b∈L∗

c ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL

c,b∈L∗

a̸∈L∗

|ConL∗|+ ∑
L∗∈SubL

b∈L∗
a,c ̸∈L∗

|ConL∗|

+ |CwCn−1|=

=
n−5

∑
i=0

(
n−5

i

)
5 ·2i+5−5 +2

n−5

∑
i=0

(
n−5

i

)
2i+4−2 +

n−3

∑
i=0

(
n−3

i

)
2i+1−1
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+
3n−1 +1

2
=

= 5 · (1+2)n−5 +8 · (1+2)n−5 +9 · (1+2)n−5 +
3n−1 +1

2

=
125 ·3n−5 +1

2
.

□

Remark 1. We conjecture that 125·3n−5+1
2 is the third greatest number of weak con-

gruences of finite lattices, and the corresponding lattice is L ≃ C1 +glu N5 +glu C2,
where C1 and C2 are chains or the empty set.

Theorem 8. If |L| ≥ 5 and L ≃C1 +glu M3 +glu C2, where C1 and C2 are chains or
the empty set, then L has 91·3n−5+1

2 weak congruences.

Proof. It is easy to see that the n-element lattice of form C1 +glu M3 +glu C2 has
2n−4 congruences. We denote by a, b and c the atoms of M3, which are also coatoms
of M3. We denote the sublattice of this lattice by deleting one coatom (denoted by a)
of M3 by L̂. Now

|CwL|= 1+ ∑
L∗∈SubL

L∗ ̸=∅

|ConL∗|

= ∑
L∗∈SubL
M3⊆L∗

|ConL∗|+ ∑
L∗∈SubL

a∈L∗
b,c ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL
a,b∈L∗

c ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL

a,c∈L∗

b̸∈L∗

|ConL∗|+

+ |Cw L̂|

=
n−5

∑
i=0

(
n−5

i

)
2i+5−4 +

n−3

∑
i=0

(
n−3

i

)
2i+1−1 +2

n−5

∑
i=0

(
n−5

i

)
2i+4−2

+
53 ·3n−5 +1

2

= 2 · (1+2)n−5 +(1+2)n−3 +8 · (1+2)n−5 +
53 ·3n−5 +1

2

=
91 ·3n−5 +1

2
□

Theorem 9. If |L| ≥ 5 and L ≃C1 +glu M4 +glu C2, where C1 and C2 are chains or
the empty set, then L has 149·3n−6+1

2 weak congruences.

Proof. It is easy to see that the n-element lattice of form C1 +glu M4 +glu C2 has
2n−5 congruences. We denote by a, b, c and d the atoms of M4, which are also
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coatoms of M4. We denote the sublattice of this lattice by deleting one coatom (de-
noted by a) of M4 by L̂. Now

|CwL|= 1+ ∑
L∗∈SubL

L∗ ̸=∅

|ConL∗|= ∑
L∗∈SubL
M4⊆L∗

|ConL∗|+ ∑
L∗∈SubL

a∈L∗
b,c,d ̸∈L∗

|ConL∗|

+ ∑
L∗∈SubL
a,b∈L∗

c,d ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL

a,c∈L∗

b,d ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL
a,d∈L∗

b,c ̸∈L∗

|ConL∗|

+ ∑
L∗∈SubL
a,b,c∈L∗

d ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL
a,b,d∈L∗

c ̸∈L∗

|ConL∗|+ ∑
L∗∈SubL
a,c,d∈L∗

b̸∈L∗

|ConL∗|+ |Cw L̂|

=
n−6

∑
i=0

(
n−6

i

)
2i+6−5 +

n−4

∑
i=0

(
n−4

i

)
2i+1−1 +3

n−6

∑
i=0

(
n−6

i

)
2i+4−2

+3
n−6

∑
i=0

(
n−6

i

)
2i+5−4 +

91 ·3n−6 +1
2

= 2 · (1+2)n−6 +(1+2)n−4 +12 · (1+2)n−6 +6 · (1+2)n−6

+
91 ·3n−6 +1

2

=
149 ·3n−6 +1

2.
□
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[4] J. Jovanović, B. Šešelja, and A. Tepavčević, “Lattice characterization of finite nilpotent groups,”
Algebra Universalis, vol. 82, no. 3, 2021, doi: 10.1007/s00012-021-00716-7.
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