

COUNTEREXAMPLE TO A CONJECTURE ABOUT DIHEDRAL QUANDLE

SAIKAT PANJA AND SACHCHIDANAND PRASAD

Received 22 August, 2022

Abstract. It was conjectured that the augmentation ideal of a dihedral quandle of even order n > 2 satisfies $|\Delta^k(R_n)/\Delta^{k+1}(R_n)| = n$ for all $k \ge 2$. In this article we provide a counterexample against this conjecture.

2010 Mathematics Subject Classification: Primary: 20N02; Secondary: 20B25; 16S34; 17D99 Keywords: quandle rings, augmentation ideal

1. Introduction

A *quandle* is a pair (A, \cdot) such that '·' is a binary operation satisfying the following two conditions:

- (1) the map $S_a: A \longrightarrow A$, defined as $S_a(b) = b \cdot a$ is an automorphism for all $a \in A$.
- (2) for all $a \in A$, we have $S_a(a) = a$.

To have a better understanding of the structure, a theory parallel to group rings was introduced by Bardakov, Passi and Singh in [1]. Let \mathbb{Z}_n denote the cyclic group of order n. Then defining $a \cdot b = 2b - a$ gives a quandle structure on $A = \mathbb{Z}_n$. This is known as *dihedral quandle*. For other examples see [1]. The quandle ring of a quandle A is defined as follows. Let R be a commutative ring. Consider

$$R[A] := \left\{ \sum_{i} r_i a_i : r_i \in R, a_i \in A, \ r_i = 0 \text{ for all but finitely many } i \right\}.$$

Then this is an additive group in usual way. Define multiplication as

$$\left(\sum_{i} r_{i} a_{i}\right) \cdot \left(\sum_{j} s_{j} a_{j}\right) := \sum_{i,j} r_{i} s_{j} (a_{i} \cdot a_{j}).$$

© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC

The *augmentation ideal* of R[A], $\Delta_R(A)$ is defined as the kernel of the augmentation map

$$\varepsilon: R[A] \to R, \sum_i r_i a_i \mapsto \sum_i r_i.$$

The powers $\Delta_R^k(A)$ are defined as $(\Delta_R(A))^k$. When $R = \mathbb{Z}$, we will be omitting the subscript R. The following proposition gives a basis for $\Delta_R(X)$.

Proposition 1. [1, Proposition 3.2, Page 6] A basis of $\Delta_R(X)$ as an R-module is given by $\{a - a_0 : a \in A \setminus \{a_0\}\}$, where $a_0 \in A$ is a fixed element.

The following has been conjectured in [1, Conjecture 6.5, Page 20].

Conjecture 1. Let $R_n = \{a_0, a_1, \dots, a_{n-1}\}$ denote the dihedral quandle of order n. Then we have the following statements.

- (1) For an odd integer n > 1, $\Delta^{k}(R_n)/\Delta^{k+1}(R_n) \cong \mathbb{Z}_n$ for all $k \geq 1$.
- (2) For an even integer n > 2, $\left| \Delta^k(\mathbf{R}_n) / \Delta^{k+1}(\mathbf{R}_n) \right| = n$ for $k \ge 2$.

The first statement has been confirmed by Elhamdadi, Fernando and Tsvelikhovskiy in [2, Theorem 6.2, Page 182]. The second statement holds true for n = 4, see [1]. Here we have given a counterexample in Theorem 1 to show that the conjecture is not true in general.

2. Counterexample

Theorem 1. Let R_8 be the dihedral quandle of order 8. Then

$$\left| \Delta^2 \left(R_8 \right) / \Delta^3 \left(R_8 \right) \right| = 16.$$

From Proposition 1, we get that $\{e_i = a_i - a_0 : i = 1, 2, \dots, n-1\}$ is a basis for $\Delta(\mathbb{R}_n)$. We will be using this notation in the subsequent computation.

Lemma 1. Let R_{2n} denote the dihedral quandle of order 2n $(n \ge 2)$. Then $e_i \cdot e_n = 0$ for all $i = 1, 2, \dots, 2n - 1$.

Proof. Observe that

$$e_i \cdot e_n = (a_i - a_0) \cdot (a_n - a_0) = a_{2n-i} - a_{2n-i} - a_0 + a_0 = 0.$$

Lemma 2. Let R_{2n} denote the dihedral quandle of order 2n $(n \ge 2)$. Then $e_i \cdot e_j = e_i \cdot e_{n+j}$ for all $j = 1, 2, \dots, n-1$ and for all $i = 1, 2, \dots, 2n-1$.

Proof. Note that

$$e_i \cdot e_{n+j} = a_i a_{n+j} - a_i a_0 - a_0 a_{k+j} + a_0$$

= $a_i a_j - a_i a_0 - a_0 a_j + a_0 = e_i \cdot e_j$.

We will use Lemma 1 and Lemma 2 to simplify the multiplication tables.

Proof of Theorem 1. Recall that a basis of $\Delta(R_8)$ is given by $\mathcal{B}_1 = \{e_1, e_2, \dots, e_7\}$. The multiplication table for the $e_i \cdot e_j$ is given as follows:

	e_1	e_2	e_3
e_1	$e_1 - e_2 - e_7$	$e_3 - e_4 - e_7$	$e_5 - e_6 - e_7$
e_2	$-e_{2}-e_{6}$	$e_2 - e_4 - e_6$	$-2e_{6}$
e_3	$-e_2 - e_5 + e_7$	$e_1 - e_4 - e_5$	$e_3 - e_5 - e_6$
e_4	$-e_2 - e_4 + e_6$	$-2e_{4}$	$e_2 - e_4 - e_6$
<i>e</i> ₅	$-e_2 - e_3 + e_5$	$-e_3 - e_4 + e_7$	$e_1 - e_3 - e_6$
e_6	$-2e_2 + e_4$	$-e_2-e_4+e_6$	$-e_{2}-e_{6}$
<i>e</i> ₇	$-e_1 - e_2 + e_3$	$-e_1 - e_4 + e_5$	$-e_1 - e_6 + e_7$

Since $\Delta^2(R_8)$ is generated by $e_i \cdot e_j$ as a \mathbb{Z} -module, using row reduction over \mathbb{Z} one can show that a \mathbb{Z} -basis is given by

$$\mathcal{B}_2 = \{ u_1 = e_1 - e_2 - e_7, u_2 = e_2 + e_6, u_3 = e_3 - e_4 - e_7, u_4 = e_4 + 2e_6, u_5 = e_5 - e_6 - e_7, u_6 = 4e_6 \}.$$

We now want to express a \mathbb{Z} -basis of Δ^3 (R₈) in terms of \mathcal{B}_2 . First we calculate the products $u_i \cdot e_j$. This is presented in the following table.

	e_1	e_2	<i>e</i> ₃
u_1	$2e_1 + e_2 - e_3$	$e_1 - e_2 + e_3$	$e_1 - e_4 + e_5$
	$+e_{6}-e_{7}$	$+e_4-e_5+e_6-e_7$	$+2e_{6}-2e_{7}$
u_2	$-3e_2+e_4-e_6$	$-2e_{4}$	$-e_2+e_4-3e_6$
и3	$e_1 + e_2 - e_3$	$2e_1 + 2e_4 - 2e_5$	$e_1 - e_2 + e_3 + e_4$
	$+e_4-e_5-e_6+e_7$		$-e_5 + e_6 - e_7$
u_4	$-5e_2-e_4+e_6$	$-2e_2-4e_4+2e_6$	$-e_2-e_4-3e_6$
<i>u</i> ₅	$e_1 + 2e_2 - 2e_3$	$e_1 + e_2 - e_3 + e_4$	$2e_1 + e_2 - e_3 + e_6 - e_7$
	$-e_4 + e_5$	$-e_5 - e_6 + e_7$	
u_6	$-8e_2 + 4e_4$	$-4e_2-4e_4+4e_6$	$-4e_2 - 4e_6$

Hence, a \mathbb{Z} -basis for $\Delta^3(R_8)$ is given by

$$\mathcal{B}_3 = \{ v_1 = e_1 - e_2 + e_3 + e_4 - e_5 + e_6 - e_7, v_2 = e_2 - e_3 - 2e_4 + 2e_5 + e_6 - e_7, \\ v_3 = -e_3 - e_4 + 2e_5 - 2e_6 - e_7, v_4 = -2e_4, v_5 = -4e_5 - 4e_6 + 4e_7, v_6 = 8e_6 \}.$$

Now we will present the elements of \mathcal{B}_3 in terms of \mathcal{B}_2 . We have the following presentation.

$$\begin{array}{rclrcl}
 v_1 & = & u_1 & & +2u_4 & -u_5 & -u_6 \\
 v_2 & = & u_2 & -u_3 & -u_4 & +2u_5 & +u_6 \\
 v_3 & = & & -u_3 & -2u_4 & +2u_5 & +u_6 \\
 v_4 & = & & 2u_4 & -u_6 \\
 v_5 & = & & -4u_5 \\
 v_6 & = & & 2u_6.
 \end{array}$$

Note that we can alter the basis \mathcal{B}_2 of $\Delta^2(R_8)$ as follows:

$$\{u_1+2u_4-u_5-u_6,u_2-u_3-u_4+2u_5+u_6,u_3+2u_4-2u_5-u_6,u_4,u_5,u_6\}.$$

Hence.

$$\begin{split} \frac{\Delta^{2}\left(R_{8}\right)}{\Delta^{3}\left(R_{8}\right)} &\cong \frac{\mathbb{Z}v_{1} \oplus \mathbb{Z}v_{2} \oplus \mathbb{Z}v_{3} \oplus \mathbb{Z}u_{4} \oplus \mathbb{Z}u_{5} \oplus \mathbb{Z}u_{6}}{\mathbb{Z}v_{1} \oplus \mathbb{Z}v_{2} \oplus \mathbb{Z}v_{3} \oplus \mathbb{Z}(2u_{4} - u_{6}) \oplus \mathbb{Z}(-4u_{5}) \oplus \mathbb{Z}(2u_{6})} \\ &\cong \mathbb{Z}_{4} \oplus \frac{\mathbb{Z}u_{4} \oplus \mathbb{Z}u_{6}}{\mathbb{Z}(2u_{4} - u_{6}) \oplus \mathbb{Z}(2u_{6})} \cong \mathbb{Z}_{4} \oplus \frac{\mathbb{Z}u_{4} \oplus \mathbb{Z}u_{6}}{\mathbb{Z}u_{4} \oplus \mathbb{Z}(4u_{6})} \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}. \end{split}$$

3. FURTHER REMARKS

We have calculated that for k = 2, 3, 4 and n = 6, 8, 10, the isomorphism

$$\frac{\Delta^{k}\left(\mathbf{R}_{2n}\right)}{\Delta^{k+1}\left(\mathbf{R}_{2n}\right)} \cong \mathbb{Z}_{n} \oplus \mathbb{Z}_{n}.$$

holds. Hence, we propose the following improved version of the main conjecture given in [1].

Conjecture 2. Let R_{2n} denotes the dihedral quandle of order 2n for $n \ge 2$. Then for k > 1,

$$\frac{\Delta^{k}\left(\mathsf{R}_{2n}\right)}{\Delta^{k+1}\left(\mathsf{R}_{2n}\right)}\cong\mathbb{Z}_{n}\oplus\mathbb{Z}_{n}.$$

ACKNOWLEDGEMENTS

The first author (Panja) acknowledges the support of NBHM PhD fellowship. The second author (Prasad) was supported by UGC (NET)-JRF fellowship.

REFERENCES

- [1] V. G. Bardakov, I. B. S. Passi, and M. Singh, "Quandle rings," J. Algebra Appl., vol. 18, no. 8, pp. 1950 157, 23, 2019, doi: 10.1142/S0219498819501573.
- [2] M. Elhamdadi, N. Fernando, and B. Tsvelikhovskiy, "Ring theoretic aspects of quandles," *J. Algebra*, vol. 526, pp. 166–187, 2019, doi: 10.1016/j.jalgebra.2019.02.011.

Authors' addresses

Saikat Panja

(Corresponding author) Department of Mathematics, IISER Pune, Maharashtra, India *E-mail address:* panjasaikat300@gmail.com

Sachchidanand Prasad

Department of Mathematics and Statistics, IISER Kolkata, West Bengal, India

E-mail address: sp17rs038@iiserkol.ac.in