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Abstract. The purpose of this paper is to study biharmonic curves along Riemannian submer-
sions. We first consider a Riemannian submersion from a Riemannian manifold onto Rieman-
nian manifold and investigate under what conditions a biharmonic curve on the total manifold is
transformed to a biharmonic curve on the base manifold. We obtain several results with certain
restrictions on curvatures. We then consider a Riemannian submersion from a Kaehler mani-
fold onto a Riemannian manifold. Necessary and sufficient conditions were obtained for a curve
that is biharmonic in the total manifold of Riemannian submersion to be biharmonic on the base
manifold along the Riemannian submersion. In addition, considering the special cases of the
curvatures of the curve, the biharmonicity of the curve on the base manifold is discussed.
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1. INTRODUCTION

Riemannian submersions between Riemannian manifolds were studied by O’Neill
[14] and Gray [9]. Riemannian submersions have been used as an effective tool to
obtain new manifolds with certain curvatures and to compare their geometry when
given two manifolds. In addition, Riemannian submersions are very useful tools for
the applications of Kaluza-Klein theory [8, 10] and robotic theory [2].

Harmonic maps F : (M,g)→ (N,gN) between Riemannian manifolds are the crit-
ical points of the energy E(F) = 1

2
∫

M |dF |2υg, and they are therefore the solutions of
the corresponding Euler-Lagrange equation. This equation is giving by the vanishing
of the tension field τ(F) = trace∇dF . On the other hand, Jiang [11] studied first and
second variation formulas of the bienergy functional E2(F) whose critical points are
called as biharmonic maps.

Biharmonic maps have been a very active research area in recent years and many
interesting results have been obtained [1, 3–7, 12, 14–16, 18–21], for update results
about biharmonic theory, see:[17]. However, as far as we know, there are no studies
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on whether a given biharmonic curve is biharmonic in the base manifold along a
Riemann submersion.

In this paper, we study curves along Riemannian submersions between Rieman-
nian manifolds We first considered the curve as horizontal curve and check the bihar-
monicity of a curve on the base manifold along a Riemannian submersion. We also
study curves along Riemannian submersions from complex space form onto Rieman-
nian manifolds. The paper is organized as follows. In Section 2, we present the
basic information needed for this paper. In Section 3, we investigate necessary and
sufficient conditions for the curves along Riemannian submersions from Riemannian
manifolds to be biharmonic. We show that, if horizontal vector field A is parallel,
then this curve is biharmonic. Then, we investigate necessary and sufficient condi-
tions for the Frenet curves along Riemannian submersions from Riemannian mani-
folds to be biharmonic. In Section 4, we investigate necessary and sufficient condi-
tions for the curves along Riemannian submersions from complex space forms to be
biharmonic. We also investigate necessary and sufficient conditions for the Frenet
curves along Riemannian submersions from complex space forms to be biharmonic.

2. PRELIMINARIES

In this section, we recall some basic notions from [3, 8] and [22] which will be
needed throughout the paper.

Let F be a Riemannian submersion between Riemannian manifolds (M,gM) and
(N,gN ). The geometry of Riemannian submersion is characterized by O’Neill’s ten-
sors T and A defined for vector fields E,F on M by

AEF = H ∇H EV F +V ∇H EH F, TEF = H ∇V EV F +H ∇V EH F (2.1)

where ∇ is the Levi-Civita connection of gM, H and V are projections to horizontal
and vertical subbundles, respectively. It is easy to see that a Riemannian submersion
F : M → N has totally geodesic fibres if and only if T vanishes identically. For any
E ∈ Γ(T M), TE and AE are skew -symmetric operators on (Γ(T M),g) reversing the
horizontal and the vertical distributions. AE and TE are anti-symmetric with respect
to g. It is easy to see that T is vertical, TE = TV E and A is horizontal AE = AH E .
We note that the tensor field T is symmetric, TVW = TWV , ∀V,W ∈ Γ(kerF∗) and
A is anti-symmetric, AXY =−AY X = 1

2 V [X ,Y ], ∀X ,Y ∈ Γ((kerF∗)⊥). On the other
hand, from (2.1), we have

∇XV = AXV +V ∇XV (2.2)
∇XY = H ∇XY +AXY

for X ,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗). If X is basic, then H ∇V X = AXV .
Let α : I → M be a curve parametrized by arc length in an n-dimensional Rieman-

nian manifold (M,g). If there exists orthonormal vector fields E1 = α
′
= T,E2, . . . ,Er

along α such that

∇T E1 = κ1E2,
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∇T E2 =−κ1E1 +κ2E3,

. . .

∇T Er =−κr−1Er−1. (2.3)

then α is called a Frenet curve of osculating order r, where κ1, . . . ,κr−1 are positive
functions on I and 1 ≤ r ≤ n. A Frenet curve of osculating order 1 is a geodesic. A
Frenet curve of osculating order 2 is called a circle if κ1 is a nonzero positive constant.
A Frenet curve of osculating order r ≥ 3 is called a helix of order r if κ1, . . . ,κr−1 are
nonzero positive constants. A helix of order 3 is shortly called a helix.

Let F : (M,g) → (N,h) be a map between two Riemannian manifolds of dimen-
sions m and n respectively. The second fundamental form of a map is defined by

(∇F∗)(X ,Y ) =
N

∇
F

X F∗Y −F∗(
M
∇XY ) (2.4)

for any vector fields X , Y on M, where
M
∇ is the Levi-Civita cennection of M and

N
∇F

is the pull-back of the connection
N
∇ of N to the induced vector bundle F−1(T N). It is

well known that ∇F∗ is symmetric. It is known that, F is a harmonic map if and only
if the tension field τ(F) = trace(∇F∗) = 0, which is called the harmonic equation or
the Euler-Lagrange equation.

A map F : (M,gM)→ (N,gN ) between Riemannian manifolds is a biharmonic map
if the bitension field of F

τ2(F) =−∆Fτ(F)+ traceR
N
(τ(F),F∗)F∗

vanishes, where R
N

denotes the curvature tensor field of N. The operator ∆F is the

rough Laplacian acting on Γ(F∗T M) defined by ∆F := −∑
n
i=1(

N
∇F

ei

N
∇F

ei −
N

∇F
N
∇ei ei

),

where {ei}n
i=1 is a local orthonormal frame field of N.

3. BIHARMONIC CURVES ALONG RIEMANNIAN SUBMERSIONS FROM
RIEMANNIAN MANIFOLDS

In this section, we study biharmonic curves along Riemannian submersions from
Riemannian manifolds. Then, we will investigate necessary and sufficient conditions
for the curves along Riemannian submersions from Riemannian manifolds to be bi-
harmonic. We first recall the biharmonic equation for curves from [3]. Let α : I → M
be a curve defined on an open interval I and parametrized by arc-length. Then the
bitension field is given by

τ2(α) = ∇
3
T T −R(T,∇T T )T (3.1)

where T = α
′

and ∇3
T T = ∇T ∇T ∇T T . Then, using Frenet equations, the bitension

field of α becomes

τ2(α) =−3κ1κ
′
1E1 +(κ

′′
1 −κ

3
1 −κ1κ

2
2 + cκ1)E2 +(2κ

′
1κ2 +κ1κ

′
2)E3
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+κ1κ2κ3E4.

Theorem 1. Let F be a Riemannian submersion from a space form (M(c),gM)
with constant sectional curvature c to a Riemannian manifold (N,gN). Let α : I →
(M(c),gM) be a biharmonic horizontal curve. Then F ◦α : γ : I → (N,gN) is a bihar-
monic curve if and only if the following condition is satisfied

−2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v −κ1F∗H

M
∇E1hAE1hE2v = 0, (3.2)

where E1h and E1v denote the horizontal part and the vertical part of E1.

Proof. Let F : (M(c),gM)→ (N,gN) be a Riemannian submersion from a Rieman-
nian manifold (M(c),gM) to a Riemannian manifold (N,gN). Let α : I → (M(c),gM)
be a biharmonic horizontal curve. Then, we have

α
′
= T = E1h, γ

′
= F∗T = T̃ , (3.3)

where E1h is horizontal part of T =E1. Note that γ
′
= T̃ is the unit tangent vector field

along the curve. Since F is Riemannian submersion, then (∇F∗)(X ,Y ) = 0, where
X ,Y ∈ Γ(H ), using (2.3) and (3.3) we get

N
∇T̃ T̃ = κ1F∗E2h.

and
N
∇

2

T̃ T̃ = κ
′
1F∗E2h +κ1((∇F∗)(E1h,E2h)+F∗

M
∇E1hE2h). (3.4)

From (2.2), (2.3) and Frenet formulas, we have

H
M
∇E1hE2h =−κ1E1h +κ2E3h −AE1hE2v. (3.5)

Using (3.5) in (3.4), we derive

N
∇

2

T̃ T̃ = κ
′
1F∗E2h −κ

2
1F∗E1h +κ1κ2F∗E3h −κ1F∗AE1hE2v. (3.6)

Taking the covariant dervivative of (3.6) and using the second fundamental form of
the Riemannian submersion, we get

N
∇

3

T̃ T̃ = κ
′′
1F∗E2h +κ

′
1F∗H

M
∇E1hE2h −2κ1κ

′
1F∗E1h −κ

2
1F∗H

M
∇E1hE1h

+κ
′
1κ2F∗E3h +κ1κ

′
2F∗E3h +κ1κ2F∗H

M
∇E1hE3h

−κ
′
1F∗AE1hE2v −κ1F∗H

M
∇E1hAE1hE2v. (3.7)

Since

H
M
∇E1hE3h =−κ2E2h +κ3E4h −AE1hE3v (3.8)
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due (3.5), (3.8) and Frenet formulas, using (3.7), we arrive at

N
∇

3

T̃ T̃ =−3κ1κ
′
1F∗E1h +(κ̃

′′
1 −κ

3
1 −κ1κ

2
2)F∗E2h +(2κ

′
1κ2 +κ1κ

′
2)F∗E3h

+κ1κ2κ3F∗E4h −2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v

−κ1F∗H
1
∇E1hAE1hE2v. (3.9)

It is easy to see that

RN(T̃ ,
N
∇T̃ T̃ )T̃ = RN(F∗E1h,κ1F∗E2h)F∗E1h,

Taking the vertical and horizontal parts of E2, we find

RM(T,
M
∇T T )T = RM(E1h,κ1E2v)E1h +RM(E1h,κ1E2h)E1h.

Hence, we obtain

F∗(RM(T,
M
∇T T )T ) = F∗(RM(E1h,κ1E2v)E1h)+F∗(RM(E1h,κ1E2h)E1h).

Since F is Riemannian submersion, we have

F∗(RM(T,
M
∇T T )T )

= F∗(RM(E1h,κ1E2v)E1h)+RN(F∗E1h,κ1F∗E2h)F∗E1h.

On the other hand, since M is a space form, we obtain

RN(F∗E1h,κ1F∗E2h)F∗E1h =−cκ1F∗E2h. (3.10)

Putting (3.9) and (3.10) in (3.1), we have

τ2(γ) =
N
∇

3

T̃ T̃ −RN(T̃ ,
N
∇T̃ T̃ )T̃

=−3κ1κ
′
1F∗E1h +(κ

′′
1 −κ

3
1 −κ1κ

2
2 + cκ1)F∗E2h

+(2κ
′
1κ2 +κ1κ

′
2)F∗E3h +κ1κ2κ3F∗E4h −2κ

′
1F∗AE1hE2v

−κ1κ2F∗AE1hE3v −κ1F∗H
M
∇E1hAE1hE2v.

Since τ2(α) = 0, we can write F∗τ2(α) = 0 . Then, using this equation in τ2(γ), we
get

τ2(γ) =−2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v −κ1F∗H

M
∇E1hAE1hE2v.

Thus F ◦α : γ : I → (N,gN) is a biharmonic curve if and only if (3.2) is satisfied. □

In particular cases, we have the following results.
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Theorem 2. Let F : (M(c),gM) → (N,gN) be a Riemannian submersion from a
Riemannian manifold (M(c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(c),gM) be a biharmonic horizontal curve and κ1 = constant ̸= 0. Then F ◦
α : γ : I → (N,gN) is a biharmonic curve if and only if

κ2F∗AE1hE3v +F∗H
M
∇E1hAE1hE2v = 0.

Proof. The assertion follows from Theorem 1. □

Theorem 3. Let F : (M(c),gM) → (N,gN) be a Riemannian submersion from a
Riemannian manifold (M(c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(c),gM) be a biharmonic horizontal curve and horizontal vector field A be a par-
allel. Then F ◦α : γ : I → (N,gN) is a biharmonic curve.

Proof. Since, horizontal vector field A is a parallel, we have A = 0. Then the
assertion follows from Theorem 1 . □

If the curve is the Frenet curve, the following theorem regarding the biharmonicity
of the curve on the base manifold is obtained.

Theorem 4. Let F : (M(c),gM) → (N,gN) be a Riemannian submersion from a
Riemannian manifold (M(c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(c),gM) be a horizontal Frenet curve. Then Frenet curve F ◦α : γ : I → (N,gN) is
a biharmonic curve if and only if

κ̃1 = constant ̸= 0, κ̃2 = constant, κ̃1
2 + κ̃2

2 = c, κ̃2κ̃3 = 0.

where κ̃1, . . . , ˜κr−1 are positive functions of γ on I.

Proof. Let F : (M(c),gM)→ (N,gN) be a Riemannian submersion from a Rieman-
nian manifold (M(c),gM) to a Riemannian manifold (N,gN). Since α : I →
(M(c),gM) is a horizontal Frenet curve, we have

α
′
= T = E1h, γ

′
= F∗T = T̃ ,

where E1h is horizontal part of T = E1. Then for an orthonormal frame E1 = α
′
=

T,E2, . . . ,Er along α, we have Frenet formulas of γ as follows
N
∇T̃ T̃ = κ̃1F∗E2h

N
∇T̃ F∗E2h =−κ̃1F∗E1h + κ̃2F∗E3h

. . .

N
∇T̃ F∗Erh =−κ̃r−1F∗E(r−1)h.

Thus, by direct computations, we have
N
∇T̃ T̃ =

N
∇F∗E1hF∗E1h = κ̃1F∗E2h,
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N
∇

2

T̃ T̃ =−κ̃1
2F∗E1h + κ̃1

′
F∗E2h + κ̃1κ̃2F∗E3h,

and
N
∇

3

T̃ T̃ =−3κ̃1κ̃1
′
F∗E1h +(κ̃

′′
1 − κ̃1

3 − κ̃1κ̃2
2)F∗E2h

+(2κ̃1
′
κ̃2 + κ̃1κ̃2

′
)F∗E3h + κ̃1κ̃2κ̃3F∗E4h. (3.11)

Then, using the Frenet formulas, we obtain

RN(T̃ ,
N
∇T̃ T̃ )T̃ = RN(F∗E1h, κ̃1F∗E2h)F∗E1h = κ̃1RN(F∗E1h,F∗E2h)F∗E1h. (3.12)

Now, taking the vertical and horizontal parts of E2, we find

RM(T,
M
∇T T )T = RM(E1h,κ1E2)E1h = RM(E1h,κ1E2v)E1h +RM(E1h,κ1E2h)E1h.

Thus, we obtain

F∗(RM(T,
M
∇T T )T ) = F∗(RM(E1h,κ1E2v)E1h)+F∗(RM(E1h,κ1E2h)E1h).

Since F is a Riemannian submersion, we have

F∗(RM(T,
M
∇T T )T ) = F∗(RM(E1h,κ1E2v)E1h)+RN(F∗E1h,κ1F∗E2h)F∗E1h.

Using, Riemannian curvature tensor of M, we get

RN(F∗E1h,F∗E2h)F∗E1h =
1
κ1

F∗(RM(T,
M
∇T T )T )− 1

κ1
F∗(RM(E1h,κ1E2v)E1h).

=−cF∗E2h. (3.13)

Then, using (3.13) into (3.12), we have

RN(T̃ ,
N
∇T̃ T̃ )T̃ =−cκ̃1F∗E2h. (3.14)

Thus putting (3.11) and (3.14) in (3.1), we have

τ2(γ) =−3κ̃1κ̃1
′
F∗E1h +(κ̃

′′
1 − κ̃1

3 − κ̃1κ̃2
2 + cκ̃1)F∗E2h +(2κ̃1

′
κ̃2 + κ̃1κ̃2

′
)F∗E3h

+ κ̃1κ̃2κ̃3F∗E4h.

Thus, Frenet curve F ◦α : γ : I → (N,gN) is a biharmonic curve if and only if

−3κ̃1κ̃1
′
F∗E1h +(κ̃

′′
1 − κ̃1

3 − κ̃1κ̃2
2 + cκ̃1)F∗E2h +(2κ̃1

′
κ̃2 + κ̃1κ̃2

′
)F∗E3h

+ κ̃1κ̃2κ̃3F∗E4h = 0

which gives the assertion. □

From Theorem 4, we have the following result.
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Corollary 1. Let F : (M(c),gM) → (N,gN) be a Riemannian submersion from a
Riemannian manifold (M(c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(c),gM) be a horizontal Frenet curve. Then Frenet curve F ◦α : γ : I → (N,gN) is
a biharmonic curve such that κ̃2 = 0 if and only if

• γ is a circle with κ̃1 =
√

c such that n ≥ 2,
or

• γ is a helix with κ̃1
2 + κ̃2

2 = c such that n ≥ 3.

4. BIHARMONIC CURVES ALONG RIEMANNIAN SUBMERSIONS FROM COMPLEX
SPACE FORMS

A 2n−dimensional Riemannian manifold (M,g,J) is called an almost Hermitian
manifold if there exist a tensor field J of type (1,1) on M such that J2 = −I and
g(JX ,JY ) = g(X ,Y ), ∀X ,Y ∈ χ(M) where I denotes the identity transformation of
TpM. Consider an almost Hermitian manifold (M,g,J) and denote by ∇ the Levi-
Civita connection on M with respect to g. Then M is called a Kaehler manifold if
J is parallel with respect to ∇, i.e., (∇X J)Y = 0, for X ,Y ∈ χ(M). Let Mm(4c) be a
complex space form of holomorphic sectional curvature 4c. Let us denote by J the
complex structure and by g the Riemannian metric on Mm(4c). Then its curvature
operator is given by

RMm(4c)(X ,Y )Z =c{g(Y,Z)X −g(X ,Z)Y +g(JY,Z)JX −g(JX ,Z)JY

+2g(X ,JY )JZ}

for X ,Y,Z ∈ χ(M).
In this section, we study biharmonic curves along Riemannian submersions from

complex space forms. More precisely, we will investigate necessary and sufficient
conditions for the curves along Riemannian submersions from complex space forms
to be biharmonic. We first recall the criteria for a curve on a complex manifold to be
biharmonic from [3]. Let (M,g) be a complex space form and α : I → M be a curve
defined on an open interval I and parametrized by arc-length. Then, using Frenet
equations for an orthonormal frame E1 = α

′
= T,E2, . . . ,Er along α, the bitension

field of α becomes

τ2(α) =−3κ1κ
′
1E1 +(κ

′′
1 −κ

3
1 −κ1κ

2
2 + cκ1)E2 +(2κ

′
1κ2 +κ1κ

′
2)E3 +κ1κ2κ3E4

−3cκ1τ12JE1.

Following S. Maeda and Y. Ohnita [13], we define the complex torsions of the curve
α by τi j = g(Ei,JE j), 1 ≤ i < j ≤ r.

The following theorem gives the appropriate condition for a biharmonic curve
given on the total manifold to be biharmonic on the base manifold along a Rieman-
nian submersion from a complex space form to a Riemannian manifold.
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Theorem 5. Let F : (M(4c),gM) → (N,gN) be a Riemannian submersion from
a complex space form (M(4c),gM) to a Riemannian manifold (N,gN) and α : I →
(M(4c),gM) a biharmonic horizontal curve. Then F ◦α : γ : I → (N,gN) is a bihar-
monic curve if and only if

−2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v −κ1F∗H

M
∇E1hAE1hE2v −3cκ1τ12mixF∗JE1h = 0,

where τ12mix = gM(E1h,JE2v).

Proof. Let F : (M(4c),gM)→ (N,gN) be a Riemannian submersion from a comp-
lex space form (M(4c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(4c),gM) be a biharmonic horizontal curve. Then, we have the following equation.

τ2(α) =−3κ1κ
′
1E1 +(κ

′′
1 −κ

3
1 −κ1κ

2
2 + cκ1)E2 +(2κ

′
1κ2 +κ1κ

′
2)E3 +κ1κ2κ3E4

−3cκ1τ12JE1.

Since α is horizontal curve, we have

α
′
= T = E1h, γ

′
= F∗T = T̃ ,

where E1h is horizontal part of T = E1. Note that γ
′
= T̃ is the unit tangent vector

field along the curve. Using (2.4) we obtain
N
∇T̃ T̃ =

N
∇F∗E1hF∗E1h = (∇F∗)(E1h,E1h)+F∗

M
∇E1hE1h.

Since F is Riemannian submersion, we get
N
∇T̃ T̃ = κ1F∗E2h. (4.1)

From this we derive
N
∇

2

T̃ T̃ = κ
′
1F∗E2h +κ1((∇F∗)(E1h,E2h)+F∗

M
∇E1hE2h). (4.2)

By using (2.2), (2.3) and Frenet formulas, we have

H
M
∇E1hE2h =−κ1E1h +κ2E3h −AE1hE2v. (4.3)

Inserting (4.3) in (4.2), we have

N
∇

2

T̃ T̃ = κ
′
1F∗E2h −κ

2
1F∗E1h +κ1κ2F∗E3h −κ1F∗AE1hE2v.

From (2.4) we obtain,

N
∇

3

T̃ T̃ = κ
′′
1F∗E2h +κ

′
1F∗H

M
∇E1hE2h −2κ1κ

′
1F∗E1h −κ

2
1F∗H

M
∇E1hE1h

+κ
′
1κ2F∗E3h +κ1κ

′
2F∗E3h +κ1κ2F∗H

M
∇E1hE3h −κ

′
1F∗AE1hE2v

−κ1F∗H
M
∇E1hAE1hE2v. (4.4)
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Similar to expression (4.3), we have

H
M
∇E1hE3h =−κ2E2h +κ3E4h −AE1hE3v (4.5)

Putting (4.1), (4.3) and (4.5) in (4.4), we have

N
∇

3

T̃ T̃ =−3κ1κ
′
1F∗E1h +(κ

′′
1 −κ

3
1 −κ1κ

2
2)F∗E2h +(2κ

′
1κ2 +κ1κ

′
2)F∗E3h

+κ1κ2κ3F∗E4h −2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v

−κ1F∗H
M
∇E1hAE1hE2v. (4.6)

On the other hand, using (4.1) and (2.4), we obtain

RN(T̃ ,
N
∇T̃ T̃ )T̃ = RN(F∗E1h,κ1F∗E2h)F∗E1h.

and

RM(T,
M
∇T T )T = RM(T,κ1E2)T, (4.7)

respectively. Now, taking the vertical and horizontal parts of E2 in (4.7), we find

RM(T,
M
∇T T )T = RM(E1h,κ1E2v)E1h +RM(E1h,κ1E2h)E1h.

Since F is a Riemannian submersion, we derive

F∗(RM(T,
M
∇T T )T ) = F∗(RM(E1h,κ1E2v)E1h)+RN(F∗E1h,κ1F∗E2h)F∗E1h.

Using curvature operator, we get

RN(F∗E1h,κ1F∗E2h)F∗E1h =−cκ1F∗E2h −3cκ1τ12F∗JE1h

−3cκ1gM(E2v,JE1h)F∗JE1h. (4.8)

Thus putting (4.6) and (4.8) in (2.4), we have

τ2(γ) =−3κ1κ
′
1F∗E1h +(κ

′′
1 −κ

3
1 −κ1κ

2
2 + cκ1)F∗E2h ++(2κ

′
1κ2 +κ1κ

′
2)F∗E3h

+κ1κ2κ3F∗E4h −2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v −κ1F∗H

M
∇E1hAE1hE2v

+3cκ1τ12F∗JE1h +3cκ1gM(E2v,JE1h)F∗JE1h.

Since τ2(α) = 0, we can write F∗τ2(α) = 0 . Then, using this equation in τ2(γ), we
have

τ2(γ) =−2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v −κ1F∗H

M
∇E1hAE1hE2v −3cκ1τ12mixF∗JE1h.

Thus, proof is complete. □

In particular, if κ1 =constant̸= 0, then we have the following result.
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Theorem 6. Let F : (M(4c),gM)→ (N,gN) be a Riemannian submersion from a
complex space form (M(4c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(4c),gM) be a biharmonic horizontal curve and κ1 =constant̸= 0. Then F ◦
α : γ : I → (N,gN) is a biharmonic curve if and only if

κ2F∗AE1hE3v +F∗H
M
∇E1hAE1hE2v +3cτ12mixF∗JE1h = 0

Proof. Since κ1 =constant̸= 0, we have κ
′
1 = 0. Then the assertion follows from

Theorem 5. □

Theorem 7. Let F : (M(4c),gM)→ (N,gN) be a Riemannian submersion from a
complex space form (M(4c),gM) to a Riemannian manifold (N,gN) . Let α : I →
(M(4c),gM) be a biharmonic horizontal curve such that κ1 =constant ̸= 0 and hori-
zontal tensor field A is parallel. Then F ◦α : γ : I → (N,gN) is a biharmonic curve if
and only if either c = 0 or τ12mix = 0, here τ12mix = gM(E1h,JE2v).

Proof. Since κ1 =constant̸= 0, we have κ
′
1 = 0. The parallelity of A implies that

A = 0. The assertion follows from Theorem 5. □

Theorem 8. Let F : (M(4c),gM)→ (N,gN) be an invariant Riemannian submer-
sion from a complex space form (M(4c),gM) to a Riemannian manifold (N,gN) . Let
α : I → (M(4c),gM) be a biharmonic horizontal curve. Then F ◦α : γ : I → (N,gN)
is a biharmonic curve if and only if

−2κ
′
1F∗AE1hE2v −κ1κ2F∗AE1hE3v −κ1F∗H

M
∇E1hAE1hE2v = 0.

Proof. Since F is an invariant Riemannian submersion, we have J(kerF∗)⊆ kerF∗.
The asserion follows from Theorem 5. □

Theorem 9. Let F : (M(4c),gM)→ (N,gN) be an invariant Riemannian submer-
sion from a complex space form (M(4c),gM) to a Riemannian manifold (N,gN) . Let
α : I → (M(4c),gM) be a biharmonic horizontal curve such that κ1 =constant̸= 0
and horizontal tensor field A is parallel. Then F ◦α : γ : I → (N,gN) is a biharmonic
curve.

Proof. The parallelity of A implies that A = 0. The assertion follows from The-
orem 8. □

The following theorem gives the appropriate condition for a horizontal Frenet
curve given on the total manifold to be biharmonic on the base manifold along a
Riemannian submersion from a complex space form to a Riemannian manifold.

Theorem 10. Let F : (M(4c),gM) → (N,gN) be a Riemannian submersion from
a complex space form (M(4c),gM) to a Riemannian manifold (N,gN) and α : I →
(M(4c),gM) a horizontal Frenet curve. Then Frenet curve F ◦α : γ : I → (N,gN) is a
biharmonic curve if and only if

κ̃1 = constant ̸= 0,
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κ̃1
2 + κ̃2

2 = c{1+3(τ12 − τ12mix)gN(F∗JE1h,F∗E2h)},

κ̃2
′
=−c{3(τ12 − τ12mix)gN(F∗JE1h,F∗E3h)},

κ̃2κ̃3 =−c{3(τ12 − τ12mix)gN(F∗JE1h,F∗E4h)}.

where κ̃1, . . . , ˜κr−1 are positive functions of γ on I.

Proof. Let F : (M(4c),gM)→ (N,gN) be a Riemannian submersion from a com-
plex space form (M(4c),gM) to a Riemannian manifold (N,gN). Since α : I →
(M(4c),gM) is a horizontal Frenet curve, we have

α
′
= T = E1h, γ

′
= F∗T = T̃ ,

where E1h is horizontal part of T = E1. Note that γ
′
= T̃ is the unit tangent vector

field along the curve. Then we have Frenet formulas of γ as follows

N
∇T̃ T̃ = κ̃1F∗E2h

N
∇T̃ F∗E2h =−κ̃1F∗E1h + κ̃2F∗E3h

. . .

N
∇T̃ F∗Erh =−κ̃r−1F∗E(r−1)h.

Thus we have
N
∇T̃ T̃ =

N
∇F∗E1hF∗E1h = κ̃1F∗E2h.

Then, using Frenet formulas of γ, we get

N
∇

2

T̃ T̃ =−κ̃1
2F∗E1h + κ̃1

′
F∗E2h + κ̃1κ̃2F∗E3h.

Thus
N
∇

3

T̃ T̃ becomes

N
∇

3

T̃ T̃ =−3κ̃1κ̃1
′
F∗E1h +(κ̃

′′
1 − κ̃1

3 − κ̃1κ̃2
2)F∗E2h

+(2κ̃1
′
κ̃2 + κ̃1κ̃2

′
)F∗E3h + κ̃1κ̃2κ̃3F∗E4h. (4.9)

Then, using the Frenet formulas, we obtain

RN(T̃ ,
N
∇T̃ T̃ )T̃ = RN(F∗E1h, κ̃1F∗E2h)F∗E1h = κ̃1RN(F∗E1h,F∗E2h)F∗E1h. (4.10)

Now, taking the vertical and horizontal parts of E2, we find

RM(T,
M
∇T T )T = RM(E1h,κ1E2)E1h

= RM(E1h,κ1E2v)E1h +RM(E1h,κ1E2h)E1h. (4.11)
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From (4.11), we obtain

F∗(RM(T,
M
∇T T )T ) = F∗(RM(E1h,κ1E2v)E1h)+F∗(RM(E1h,κ1E2h)E1h).

Since F is a Riemannian submersion, we have

F∗(RM(T,
M
∇T T )T ) = F∗(RM(E1h,κ1E2v)E1h)+RN(F∗E1h,κ1F∗E2h)F∗E1h.

Using curvature operator, we get

RN(F∗E1h,F∗E2h)F∗E1h =
1
κ1

F∗(RM(T,
M
∇T T )T )− 1

κ1
F∗(RM(E1h,κ1E2v)E1h).

=
1
κ1

F∗(−cκ1E2 −3cκ1τ12JE1h)

− 1
κ1

F∗c{gM(κ1E2v,E1h)E1h −gM(E1h,E1h)κ1E2v

+gM(JE1h,E1h)Jκ1E2v −gM(Jκ1E2v,E1h)JE1h

+2gM(JE1h,κ1E2v)JE1h}
=−cF∗E2h −3cτ12F∗JE1h +3cgM(JE2v,E1h)F∗JE1h.

(4.12)

Then, using (4.12) into (4.10), we have

RN(T̃ ,
N
∇T̃ T̃ )T̃ = κ̃1(−cF∗E2h −3cτ12F∗JE1h +3cgM(JE2v,E1h)F∗JE1h)

=−cκ̃1F∗E2h −3cκ̃1τ12F∗JE1h +3cκ̃1τ12mixF∗JE1h. (4.13)

Thus putting (4.9) and (4.13) in (3.1), we have

τ2(γ) =
N
∇

3

T̃ T̃ −RN(T̃ ,
N
∇T̃ T̃ )T̃

=−3κ̃1κ̃1
′
F∗E1h +(κ̃

′′
1 − κ̃1

3 − κ̃1κ̃2
2 + cκ̃1)F∗E2h +(2κ̃1

′
κ̃2 + κ̃1κ̃2

′
)F∗E3h

+ κ̃1κ̃2κ̃3F∗E4h +3cκ̃1τ12F∗JE1h −3cκ̃1τ12mixF∗JE1h.

Thus proof is complete. □

In particular cases, we have the following results.

Theorem 11. Let F : (M(4c),gM) → (N,gN) be a Riemannian submersion from
a complex space form (M(4c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(4c),gM) be a horizontal Frenet curve such that τ12 = τ12mix. Then Frenet curve
F ◦α : γ : I → (N,gN) is a biharmonic curve if and only if

κ̃1 = constant ̸= 0, κ̃2 = constant, κ̃1
2 + κ̃2

2 = 0, κ̃2κ̃3 = 0.

Proof. Since τ12 = τ12mix, we have E1h ⊥ JE2h. The assertion follows from The-
orem 10. □
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Corollary 2. Let F : (Mm(4c),gM)→ (Nn,gN) be a Riemannian submersion from
a complex space form (M(4c),gM) to a Riemannian manifold (N,gN). Let α : I →
(M(4c),gM) be a horizontal Frenet curve such that τ12 = τ12mix. Then Frenet curve
F ◦α : γ : I → (N,gN) is a biharmonic curve if and only if

• γ is a circle with κ̃1 =
√

c such that n ≥ 2 or
• γ is a helix with κ̃1

2 + κ̃2
2 = c such that n ≥ 3.
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