
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 25 (2024), No. 2, pp. 819–828 DOI: 10.18514/MMN.2024.4366
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Abstract. Inequalities play an important role in pure and applied mathematics. In particular,
Petrović inequality is an important inequality which have several interesting generalizations. In
this work we prove a new Petrović-type inequality for measurable functions defined on a space
with finite measure, and we apply it to generalized Riemann–Liouville-type integral operators.
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1. INTRODUCTION

Integral inequalities are used in countless mathematical problems such as approx-
imation theory, spectral analysis, statistical analysis, distribution theory, etc. Studies
involving integral inequalities play an important role in several areas of science and
engineering.

In recent years there has been a growing interest in the study of many classical
inequalities applied to integral operators associated with different types of fractional
derivatives, since integral inequalities and their applications play a vital role in the
theory of differential equations and applied mathematics. Some of the inequalities
studied are Gronwall, Chebyshev, Hermite–Hadamard-type, Ostrowski-type, Opial-
type, Grüss-type, Hardy-type, Gagliardo–Nirenberg-type, reverse Minkowski and re-
verse Hölder inequalities (see, e.g., [3, 5, 9–11, 14–16, 20, 21]).

In 1905, J. Jensen was the first to define convex functions (see [7] and [19, p. 8])
and to draw attention to their importance. One of the most significant inequalities is
the distinguished Petrović’s inequality for convex functions (see Theorem 1). There
are many generalizations of Petrović’s inequality (see, e.g., [1, 6, 13, 17, 18] and the
references therein).
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
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In this work we obtain a new Petrović-type inequality for measurable functions
defined on a space with finite measure, and we apply it to the generalized Riemann–
Liouville-type integral operators defined in [2], which include the well-known Rie-
mann–Liouville-type integral operators.

2. PRELIMINARIES

One of the first operators that can be called fractional is the Riemann–Liouville
fractional integrals and derivatives of order α∈C, with Re(α)> 0, defined as follows
(see [4]).

Definition 1. Let a < b and f ∈ L1([a,b]). The left and right side Riemann–
Liouville fractional integrals of order α, with Re(α) > 0, are defined, respectively,
by

RLJα

a+ f (t) =
1

Γ(α)

∫ t

a
(t − s)α−1 f (s)ds, (2.1)

and

RLJα

b− f (t) =
1

Γ(α)

∫ b

t
(s− t)α−1 f (s)ds, (2.2)

with t ∈ (a,b).

When α ∈ (0,1), their corresponding Riemann–Liouville fractional derivatives are
given by (RLDα

a+ f
)
(t) =

d
dt

(RLJ1−α

a+ f (t)
)
=

1
Γ(1−α)

d
dt

∫ t

a

f (s)
(t − s)α

ds,

(RLDα

b− f
)
(t) =− d

dt

(RLJ1−α

b− f (t)
)
=− 1

Γ(1−α)

d
dt

∫ b

t

f (s)
(s− t)α

ds.

Other definitions of fractional operators are the following ones.

Definition 2. Let a < b and f ∈ L1([a,b])). The left and right side Hadamard
fractional integrals of order α, with Re(α)> 0, are defined, respectively, by

Hα

a+ f (t) =
1

Γ(α)

∫ t

a

(
log

t
s

)α−1 f (s)
s

ds, (2.3)

and

Hα

b− f (t) =
1

Γ(α)

∫ b

t

(
log

s
t

)α−1 f (s)
s

ds, (2.4)

with t ∈ (a,b).
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When α ∈ (0,1), Hadamard fractional derivatives are given by the following ex-
pressions:(HDα

a+ f
)
(t) = t

d
dt

(
H1−α

a+ f (t)
)
=

1
Γ(1−α)

t
d
dt

∫ t

a

(
log

t
s

)−α f (s)
s

ds,

(HDα

b− f
)
(t) =−t

d
dt

(
H1−α

b− f (t)
)
=

−1
Γ(1−α)

t
d
dt

∫ b

t

(
log

s
t

)−α f (s)
s

ds,

with t ∈ (a,b).

Definition 3. Let 0 < a < b, g : [a,b] → R an increasing positive function on
(a,b] with continuous derivative on (a,b), f : [a,b]→ R an integrable function, and
α ∈ (0,1) fixed real number. The left and right side fractional integrals in [8] of order
α of f with respect to g are defined, respectively, by

Iα

g,a+ f (t) =
1

Γ(α)

∫ t

a

g′(s) f (s)(
g(t)−g(s)

)1−α
ds, (2.5)

and

Iα

g,b− f (t) =
1

Γ(α)

∫ b

t

g′(s) f (s)(
g(s)−g(t)

)1−α
ds, (2.6)

with t ∈ (a,b).

There are other definitions of integral operators in the global case, but they are
slight modifications of the previous ones.

3. GENERAL FRACTIONAL INTEGRAL OF RIEMANN–LIOUVILLE TYPE

Now, we give the definition of a general fractional integral introduced in [2].

Definition 4. Let a < b and α ∈ R+. Let g : [a,b]→ R be a positive function on
(a,b] with continuous positive derivative on (a,b), and G : [0,g(b)−g(a)]×(0,∞)→
R a continuous function which is positive on (0,g(b)−g(a)]× (0,∞). Let us define
the function T : [a,b]× [a,b]× (0,∞)→ R by

T (t,s,α) =
G
(
|g(t)−g(s)|,α

)
g′(s)

.

The left and right integral operators, denoted respectively by Jα

T,a+ and Jα

T,b− , are
defined for each measurable function f on [a,b] as

Jα

T,a+ f (t) =
∫ t

a

f (s)
T (t,s,α)

ds,

Jα

T,b− f (t) =
∫ b

t

f (s)
T (t,s,α)

ds,

with t ∈ [a,b].
We say that f ∈ L1

T ([a,b]) if Jα

T,a+ | f |(t),J
α

T,b− | f |(t)< ∞ for every t ∈ [a,b].
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Note that these operators generalize the integral operators in Definitions 1, 2 and
3:

(A) If we choose

g(t) = t, G(x,α) = Γ(α)x1−α, T (t,s,α) = Γ(α) |t − s|1−α,

then Jα

T,a+ and Jα

T,b− become the left and right Riemann–Liouville fractional
integrals RLJα

a+ and RLJα

b− in (2.1) and (2.2), respectively. Its corresponding
left and right Riemann–Liouville fractional derivatives are(RLDα

a+ f
)
(t) =

d
dt

(RLJ1−α

a+ f (t)
)
,

(RLDα

b− f
)
(t) =− d

dt

(RLJ1−α

b− f (t)
)
.

(B) If we choose

g(t) = log t, G(x,α) = Γ(α)x1−α, T (t,s,α) = Γ(α) t
∣∣∣ log

t
s

∣∣∣1−α

,

then Jα

T,a+ and Jα

T,b− become the left and right Hadamard fractional integrals
Hα

a+ and Hα

b− in (2.3) and (2.4), respectively. Its corresponding left and right
Hadamard fractional derivatives are(HDα

a+ f
)
(t) = t

d
dt

(
H1−α

a+ f (t)
)
,

(HDα

b− f
)
(t) =−t

d
dt

(
H1−α

b− f (t)
)
.

(C) If we choose a function g with the properties in Definition 4 and

G(x,α) = Γ(α)x1−α, T (t,s,α) = Γ(α)
|g(t)−g(s)|1−α

g′(s)
,

then Jα

T,a+ and Jα

T,b− are the left and right fractional integrals Iα

g,a+ and Iα

g,b− in
(2.5) and (2.6), respectively.

Definition 5. Let a < b and α ∈ R+. Let g : [a,b]→ R be a positive function on
(a,b] with continuous positive derivative on (a,b), and G : [0,g(b)−g(a)]×(0,∞)→
R a continuous function which is positive on (0,g(b)−g(a)]× (0,∞). For each func-
tion f ∈ L1

T [a,b], its left and right generalized derivative of order α are defined,
respectively, by

Dα

T,a+ f (t) =
1

g′(t)
d
dt

(
J1−α

T,a+ f (t)
)
,

Dα

T,b− f (t) =
−1

g′(t)
d
dt

(
J1−α

T,b− f (t)
)
.

for each t ∈ (a,b).

Note that if we choose

g(t) = t, G(x,α) = Γ(α)x1−α, T (t,s,α) = Γ(α) |t − s|1−α,

then Dα

T,a+ f (t) = RLDα

a+ f (t) and Dα

T,b− f (t) = RLDα

b− f (t). Also, we can obtain other
fractional derivatives such as Hadamard type as particular cases of this generalized
derivative.
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4. PETROVIĆ-TYPE INEQUALITY

The famous Petrović inequality is stated as follows, see [12]:

Theorem 1. Let ϕ be a convex function on [0,a], and w1, . . . ,wn ≥ 0. If t1, . . . , tn ∈
[0,a] satisfy ∑

n
k=1 tkwk ∈ (0,a], and

n

∑
k=1

tkwk ≥ t j, j = 1, . . . ,n,

then
n

∑
k=1

ϕ(tk)wk ≤ ϕ

( n

∑
k=1

tkwk

)
+
( n

∑
k=1

wk −1
)

ϕ(0).

There are many generalizations of Petrović’s inequality (see, e.g., [1, 6, 13, 17, 18]
and the references therein).

Next, we present a continuous version of the above Petrović inequality.

Theorem 2. Let µ be a finite measure on the space X, ϕ be a convex function on
[0,a], and f : X → [0,a] be a measurable function with

∫
X f dµ ∈ (0,a]. Then ϕ◦ f is

a µ-integrable function. If

f (x)≤
∫

X
f dµ

for every x ∈ X, then∫
X

ϕ◦ f dµ ≤ ϕ

(∫
X

f dµ
)
+
(
µ(X)−1

)
ϕ(0).

Proof. Assume first that f is constant a.e. f = c. Thus, Theorem 1 with n = 1,
t1 = c and w1 = µ(X) gives the conclusion.

Assume now that f is not constant a.e. We have

0 ≤ f (x)≤ A =
∫

X
f dµ

for every x ∈ X and 0 < A =
∫

X f dµ, since f is not constant a.e. Since ϕ is a convex
function on [0,a], ϕ◦ f is a bounded function. Since µ is a finite measure, ϕ◦ f is a
µ-integrable function.

For each n ≥ 1 and 1 ≤ k < 2n, consider the sets

In,k =
(
(k−1)2−nA, k2−nA

]
,

In,2n =
(
(2n −1)2−nA, A

)
,

In,0 = {0}, In,2n+1 = {A}.

Note that {In,k}2n+1
k=0 is a partition of [0,A] for each n ≥ 1.

For each n ≥ 1 and 0 ≤ k ≤ 2n +1, define the sets

Sn,k = f−1(In,k
)
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and choose constants an,k ∈ In,k satisfying

an,k µ
(
Sn,k

)
=

∫
Sn,k

f dµ.

Thus, an,0 = 0 and an,2n+1 = A.
Since f is a measurable function satisfying 0 ≤ f ≤ A, we have that {Sn,k}2n+1

k=0 are
pairwise disjoint measurable sets and X = ∪2n+1

k=0 Sn,k for each n.
Recall that the characteristic function of a set E is defined as χE(x) = 1 if x ∈ E

and χE(x) = 0 if x /∈ E. If we define

fn =
2n+1

∑
k=0

an,k χSn,k ,

then ∫
X

fn dµ =
2n+1

∑
k=0

an,k µ(Sn,k) =
2n+1

∑
k=0

∫
Sn,k

f dµ =
∫

X
f dµ.

It is clear that

0 ≤ an,k ≤
∫

X
f dµ =

∫
X

fn dµ, 0 ≤ fn ≤
∫

X
f dµ, | fn − f | ≤ 2−nA.

Hence, fn uniformly converges to f and

0 ≤ fn ≤
∫

X
f dµ =

∫
X

fn dµ.

Since {Sn,k}2n+1
k=0 are pairwise disjoint sets and X = ∪2n+1

k=0 Sn,k, we have

ϕ◦ fn =
2n+1

∑
k=0

ϕ(an,k)χSn,k ,

∫
X

ϕ◦ fn dµ =
2n+1

∑
k=0

ϕ(an,k)µ(Sn,k).

Since ϕ is a convex function on [0,A], it is continuous on (0,A) and it can be written
on [0,A] as

ϕ = ϕ0 +δ0χ{0}+δAχ{A},

where ϕ0 is a continuous convex function on [0,A] and δ0,δA ≥ 0. Hence

ϕ◦ fn =
2n+1

∑
k=0

ϕ(an,k)χSn,k

=
2n+1

∑
k=0

ϕ0(an,k)χSn,k +δ0χ f−1({0})+δAχ f−1({A})

= ϕ0 ◦ fn +δ0χ f−1({0})+δAχ f−1({A})
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and ∫
X

ϕ◦ fn dµ =
2n+1

∑
k=0

ϕ(an,k)µ(Sn,k)

=
2n+1

∑
k=0

ϕ0(an,k)µ(Sn,k)+δ0µ( f−1({0}))+δAµ( f−1({A}))

= δ0µ( f−1({0}))+δAµ( f−1({A}))+
∫

X
ϕ0 ◦ fn dµ.

Since

0 ≤ an, j ≤
∫

X
f dµ =

∫
X

fn dµ =
2n+1

∑
k=0

an,k µ(Sn,k)

for 0 ≤ j ≤ 2n +1, Petrović’s inequality gives

2n+1

∑
k=0

ϕ(an,k)µ(Sn,k)≤ ϕ

( 2n+1

∑
k=0

an,k µ(Sn,k)
)
+
(
µ(X)−1

)
ϕ(0). (4.1)

Then the right hand side of (4.1) is equal to

ϕ

(∫
X

f dµ
)
+
(
µ(X)−1

)
ϕ(0).

Since 0 ≤ fn ≤ A =
∫

X f dµ for every n, limn→∞ fn = f and ϕ0 is a continuous
function on [0,A], we have limn→∞ ϕ0 ◦ fn = ϕ0 ◦ f .

Since ϕ0 is a continuous function on [0,A], there exists a constant M with |ϕ0| ≤ M
on [0,A], hence |ϕ0 ◦ fn| ≤ M for every n.

Since µ is a finite measure, M ∈ L1(X ,µ) and the dominated convergence theorem
gives

lim
n→∞

∫
X

ϕ0 ◦ fn dµ =
∫

X
ϕ0 ◦ f dµ.

Therefore, the left hand side of (4.1) has limit

lim
n→∞

2n+1

∑
k=0

ϕ(an,k)µ(Sn,k) = lim
n→∞

∫
X

ϕ◦ fn dµ

= δ0µ( f−1({0}))+δAµ( f−1({A}))+ lim
n→∞

∫
X

ϕ0 ◦ fn dµ

= δ0µ( f−1({0}))+δAµ( f−1({A}))+
∫

X
ϕ0 ◦ f dµ

=
∫

X
ϕ◦ f dµ.

This fact finishes the proof. □

Jensen’s inequality and Theorem 2 provide the following result.
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Corollary 1. Let µ be a finite measure on the space X, ϕ be a convex function on
[0,a], and f : X → [0,a] be a measurable function with

∫
X f dµ ∈ (0,a]. Then ϕ◦ f is

a µ-integrable function. If

f (x)≤
∫

X
f dµ

for every x ∈ X, then

µ(X)ϕ
( 1

µ(X)

∫
X

f dµ
)
≤

∫
X

ϕ◦ f dµ ≤ ϕ

(∫
X

f dµ
)
+
(
µ(X)−1

)
ϕ(0).

5. APPLICATION TO FRACTIONAL INTEGRALS

Corollary 1 has the following direct consequence for general fractional integrals
of Riemann–Liouville type.

Proposition 1. Let a < b, α,B > 0 be real constants and T be a function as in
Definition 4. If f : [a,b]→ [0,B] is a measurable function,

T(α) =
∫ b

a

1
T (b,s,α)

ds =
∫ g(b)−g(a)

0

dx
G(x,α)

< ∞,
∫ b

a

f (s)
T (b,s,α)

ds ∈ (0,B],

ϕ is a convex function on [0,B], and

f (x)≤
∫ b

a

f (s)
T (b,s,α)

ds

for every x ∈ [a,b], then ϕ( f (s))/T
(
b,s,α

)
∈ L1([a,b]) and

T(α)ϕ
( 1
T(α)

∫ b

a

f (s)
T
(
b,s,α

) ds
)
≤

∫ b

a

ϕ( f (s))
T
(
b,s,α

) ds

≤ ϕ

(∫ b

a

f (s)
T
(
b,s,α

) ds
)
+
(
T(α)−1

)
ϕ(0).

Proposition 1 for the classical Riemann–Liouville fractional integrals RLJα

a+ , RLJα

b−
and for the Hadamard fractional integrals Hα

a+ , Hα

b− reads as follows.

Corollary 2. Let a < b, α,B > 0 be real constants. If f : [a,b]→ [0,B] is a meas-
urable function,

RLJα

a+ f (b) =
1

Γ(α)

∫ b

a
(b− s)α−1 f (s)ds ∈ (0,B],

ϕ is a convex function on [0,B], and

f (x)≤ 1
Γ(α)

∫ b

a
(b− s)α−1 f (s)ds
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for every x ∈ [a,b], then (b− s)α−1
ϕ( f (s)) ∈ L1([a,b]) and

(b−a)α

Γ(α+1)
ϕ

(
α

(b−a)α

∫ b

a
(b− s)α−1 f (s)ds

)
≤ 1

Γ(α)

∫ b

a
(b− s)α−1

ϕ( f (s))ds

≤ ϕ

( 1
Γ(α)

∫ b

a
(b− s)α−1 f (s)ds

)
+
( (b−a)α

Γ(α+1)
−1

)
ϕ(0).

Similarly for the right Riemann–Liouville fractional integral RLJα

b− f (a).

Corollary 3. Let a < b, α,B > 0 be real constants. If f : [a,b]→ [0,B] is a meas-
urable function,

Hα

a+ f (b) =
1

Γ(α)

∫ b

a

(
log

b
s

)α−1 f (s)
s

ds ∈ (0,B],

ϕ is a convex function on [0,B], and

f (x)≤ 1
Γ(α)

∫ b

a

(
log

b
s

)α−1 f (s)
s

ds

for every x ∈ [a,b], then
(

log b
s

)α−1 ϕ( f (s))
s ∈ L1([a,b]) and(

log b
a

)α

Γ(α+1)
ϕ

(
α(

log b
a

)α

∫ b

a

(
log

b
s

)α−1 f (s)
s

ds
)

≤ 1
Γ(α)

∫ b

a

(
log

b
s

)α−1
ϕ( f (s))

s
ds

≤ ϕ

( 1
Γ(α)

∫ b

a

(
log

b
s

)α−1 f (s)
s

ds
)
+
(( log b

a

)α

Γ(α+1)
−1

)
ϕ(0).

Similarly for the right Hadamard fractional integral Hα

b− f (a).
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