
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 25 (2024), No. 1, pp. 465–477 DOI: 10.18514/MMN.2024.4338

THE DENSITY OF TUPLES RESTRICTED BY RELATIVELY
r-PRIME CONDITIONS

BRIAN D. SITTINGER AND VICKIE V. CHEN

Received 22 July, 2022

Abstract. In order to consider j-wise relative r-primality conditions that do not necessarily re-
quire all j-tuples of elements in a Dedekind domain to be relatively r-prime, we define the notion
of j-wise relative r-primality with respect to a fixed j-uniform hypergraph H. This allows us
to provide further generalisations to several results on natural densities not only for a ring of
algebraic integers O, but also for the ring Fq[x].
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1. INTRODUCTION

In 1976, Benkoski proved that the natural density of the set of relatively r-prime
m-tuples of positive integers (with rm > 1) equals 1/ζ(rm), where ζ is the Riemann
zeta function [1]. We note that an m-tuple of positive integers is relatively r-prime if
their greatest common rth power divisor is equal to 1.

This acted as a culmination of the work of Mertens [8], Lehmer [7], and Gegen-
bauer [3]. Thereafter, Tóth [14, 15] and Hu [5] found the natural density of the set
of j-wise relatively prime m-tuples of positive integers (where j ≤ m). Extensions
of these results have been made to ideals in a ring of algebraic integers O by Sit-
tinger [11, 13] and subsequently to elements in a ring of algebraic integers as well
by Micheli [2] and Sittinger [12]. Moreover, Morrison and Dong [9] as well as Guo,
Hou, and Liu [4] gave analogous results for elements in Fq[x].

We can further generalise the notion of j-wise relatively primality by considering
relative primality conditions that require some but not all j-tuples to be relatively
prime. A first step in this direction was investigated by Hu [6], who used graphs to
notate which pairs of integers are to be relatively prime.

Definition 1. Let D be a Dedekind domain. Fix r,m∈N. We say that β1, ...,βm ∈D
are relatively r-prime if pr ∤ ⟨β1, ...,βm⟩ for any prime ideal p⊆ D.
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In order to properly generalise the notion of G-wise relative primality, we use the
concept of a j-uniform hypergraph H, in which any edge connects exactly j vertices.

Definition 2. Let D be a Dedekind domain. Fix r, j,m ∈ N where j ≤ m, and let
H be a simple undirected j-uniform hypergraph whose m vertices are β1, . . . ,βm ∈ D.
We say that β1, . . . ,βm ∈ D are H-wise relatively r-prime if any j adjacent vertices
of H are relatively r-prime.

A few remarks are now in order. First, although we state the definitions in this
generality, we are in particular interested in the cases of a ring of algebraic integers
as well the polynomial rings Fq[x]. Next, suppose we take D = Z, j = 2, and r = 1.
Then our hypergraph is a graph G, and Definition 2 reduces to m integers are G-
wise relatively prime as defined in [6]. Moreover when D = O and H = K( j)

m , the
complete j-uniform hypergraph on m vertices, this definition reduces to m elements
being j-wise relatively r-prime as defined in [12].

Definition 3. Given a j-uniform hypergraph H, we say that a subset S of vertices
from H is an independent vertex set if S does not contain any hyperedge of H.
Moreover for any non-negative integer k, we let ik(H) denote the number of inde-
pendent sets of k vertices in H.

We now state the main results of this article, starting with the algebraic integer
case.

Theorem 1. Fix r, j,m ∈N such that j ≤ m and rm ≥ 2, and let K be an algebraic
number field over Q with ring of integers O. Then, the density of the set of H-wise
relatively r-prime ordered m-tuples of elements in O equals

∏
p

[ m

∑
k=0

ik(H)
(

1− 1
N(pr)

)m−k( 1
N(pr)

)k]
,

where the product is over all nonzero prime ideals in O.

After setting up the pertinent notation in Section 2, we prove Theorem 1.
Since the arithmetic in the rings Z and Fq[x] have striking similarities (for further

details, see [10]), we would expect that we can derive a H-wise relatively r-prime
density statement for Fq[x]. In Section 3, we state and prove an analogue of Theorem
1 for the function field case Fq[x].

Theorem 2. Fix r, j,m ∈ N such that j ≤ m and rm ≥ 2. Then the density of the
set of H-wise relatively r-prime ordered m-tuples of polynomials in Fq[x] equals

∏
f irred.

[
m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k
]
,

where it is understood that the product is over all monic irreducible polynomials in
Fq[x].
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Remark 1. By noting that N( f ) = |Fq[x]/⟨ f ⟩| = qdeg f , the analogy between this
latter density statement and the one given in the algebraic number ring case is made
clear.

2. DENSITY OF H-WISE RELATIVELY r-PRIME ELEMENTS IN O

Let K be an algebraic number field of degree n over Q with O as its ring of in-
tegers having integral basis B = {α1, ...,αn}. As a way to generalise the notion of all
positive integers less than or equal to some positive constant M, we define

OB [M] =
{ n

∑
i=1

ciαi : ci ∈ [−M,M)∩Z
}
.

The goal of this section is to derive a H-wise relatively prime density statement in O
by using the methods developed by [2] and [12]. First, we define a notion of density
for a subset T of Om that reduces to the classic notion of density over Z as follows.

Definition 4. Let T ⊆ Om and fix an integral basis B of O. The upper and lower
densities of T with respect to B are respectively defined as

DB(T ) = limsup
M→∞

|T ∩OB [M]m|
|OB [M]m|

and DB(T ) = liminf
M→∞

|T ∩OB [M]m|
|OB [M]m|

.

If DB(T ) = DB(T ), we say that its common value is called the density of T with
respect to B and denote this as DB(T ). Whenever this density is independent of the
chosen integral basis B , we denote this density as D(T ).

Although the manner in which we cover O could potentially depend on the choice
of the given integral basis B , it is a direct corollary to Theorem 1 that the density
of the set of H-wise relatively r-prime elements in O is actually independent of the
integral basis used.

For the remainder of this section, let S be a finite set of rational primes, and fix
positive integers r, j,m such that j ≤ m. Fix a j-uniform hypergraph H, and define
ES to be the set of m-tuples z = (z1, . . . ,zm) in Om such that any ideal generated by
j entries of z is H-wise relatively r-prime with respect to all p | ⟨p⟩ for each p ∈ S.
That is, ES consists of the H-wise relatively r-prime m-tuples of algebraic integers
from O with respect to S.

In order to aid us in analysing ES, let

π : Om →
(

∏
p|⟨p⟩
p∈S

O/pr
)m

be the surjective homomorphism induced by the family of natural projections

πpr : O → O/pr for all p | ⟨p⟩ where p ∈ S.

From the definition of H-wise relative r-primality of algebraic integers, we immedi-
ately deduce the following lemma.
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Lemma 1. For a given prime ideal p | ⟨p⟩ where p ∈ S and k ∈ {1,2, . . . ,m}, let
A(p)

k denote the set of elements in (O/pr)m where exactly k of their m components are
0, and these k components form an independent vertex set in H. Then,

ES = π
−1
(

∏
p|⟨p⟩
p∈S

m⋃
k=0

A(p)
k

)
.

Proposition 1. Suppose that p is a prime ideal in O that lies above a fixed rational
prime p, and let Dp = ∑p|⟨p⟩ fp where fp denotes the inertial degree of p. If we fix
q ∈ N and set N = ∏p∈S pr, then

|ES ∩OB [qN]m|= (2q)mn
∏
p|⟨p⟩
p∈S

prm(n−Dp)
[ m

∑
k=0

ik(H)
(
N(pr)−1

)m−k
N(pr)k

]
.

Proof. We first examine the map π. For brevity, we set Rp = ∏p|⟨p⟩ O/pr. Then
we let πN denote the reduction modulo N homomorphism, and ψ = (ψp)p∈S where
ψp : (O/⟨p⟩r)m → Rm

p is the homomorphism induced by the projection maps
O/⟨p⟩r → Rp. Finally, let ψ be its extension to (O/⟨N⟩)m (by applying the Chinese
Remainder Theorem to the primes in S). These maps are related to each other through
the following diagram

Om (O/⟨N⟩)m (∏p∈S Rp)
m

(∏p∈S O/⟨pr⟩)m (∏p∈S Rp)
m

πN ψ

∼= =

ψ

and it follows that π = ψ◦πN .
To prove this proposition, we start by examining ψ−1. Since for each rational

prime p the mapping ψp : (O/⟨pr⟩)m → Rm
p is a surjective free Zpr -module homo-

morphism, we have for all y ∈ (∏p∈S Rp)
m:

|ψ−1(y)|= ∏
p∈S

|ψ−1
p (yp)|= ∏

p∈S
|kerψp|= ∏

p∈S
prm(n−Dp).

Next, we compute
∣∣∣π−1

N (z) ∩ OB [qN]m
∣∣∣. Given z = (z1, . . . ,zm) ∈ (O/⟨N⟩)m, ob-

serve that since O/⟨N⟩ is a free ZN-module with basis {π(α1), . . . ,π(αn)}, there exist
unique c j

t ∈ [0,N)∩Z such that

z j =
n

∑
t=1

c j
t π(αt).
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Then for z = (z1, . . . ,zm) ∈ Om, it follows that πN(z) = z if and only if

z j =
n

∑
t=1

(c j
t + l j

t N)αt

for some l j
t ∈ Z. Moreover, since we need l j

t ∈ [−q,q)∩Z for each pair of indices j
and t, we deduce that ∣∣∣π−1

N (z)∩OB [qN]m
∣∣∣= (2q)mn.

We are ready to compute
∣∣∣ES ∩OB [qN]m

∣∣∣. By the definition of A(p)
k , we have for any

fixed k and p:

|A(p)
k |= ik(H)

(
N(pr)−1

)m−k
N(pr)k.

Since we know from the last lemma that ES = π−1(J), where

J = ψ
−1
(

∏
p|⟨p⟩
p∈S

m⋃
k=0

A(p)
k

)
,

it immediately follows that

|J|= ∏
p|⟨p⟩
p∈S

prm(n−Dp)
m

∑
k=0

ik(H)
(
N(pr)−1

)m−k
N(pr)k.

Therefore, we conclude that∣∣∣ES ∩OB [qN]m
∣∣∣= (2q)mn|J|

= (2q)mn
∏
p|⟨p⟩
p∈S

prm(n−Dp)
[ m

∑
k=0

ik(H)
(
N(pr)−1

)m−k
N(pr)k

]
,

as desired. □

We now compute the density of ES.

Lemma 2. Using the previous notation, we have for any integral basis B of O,

D(ES) = DB(ES) = ∏
p|⟨p⟩
p∈S

[ m

∑
k=0

ik(H)
(

1− 1
N(pr)

)m−k( 1
N(pr)

)k]
.

Proof. Define the sequence {a j} by a j =
|ES ∩OB [ j]m|
|OB [ j]m|

, and let D denote the value

of the density in question.
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First, we consider the subsequence {aqN}q∈N, where N = ∏p∈S pr. We claim that
this subsequence is constant. By the previous proposition along with the definitions
for N and Dp,

aqN =
1

(2qN)mn

[
(2q)mn · ∏

p|⟨p⟩
p∈S

prm(n−Dp)
m

∑
k=0

ik(H)
(
N(pr)−1

)m−k
N(pr)k

]

= ∏
p|⟨p⟩
p∈S

[ m

∑
k=0

ik(H)
(

1− 1
N(pr)

)m−k( 1
N(pr)

)k]
.

Hence, {aqN} is a constant subsequence and converges to D.
Next, we show that {ac+qN} also converges to D for any c ∈ {1,2, . . . ,N −1}, we

first find bounds for ac+qN . To this end, note that

aqN

( 2qN
2c+2qN

)mn
≤ ac+qN ≤ a(q+1)N

(2(q+1)N
2c+2qN

)mn
.

By letting q → ∞ and applying the Squeeze Theorem, we conclude that {ac+qN}
converges to D for any c ∈ {1,2, . . . ,N − 1}. Finally, since {ac+qN} converges to D
for any c ∈ {0,1, . . . ,N −1}, we conclude that {a j} converges to D. □

Note that the density in Lemma 2 is independent of the integral basis B used. Now
we are ready to establish to the main theorem of this section. For convenience, we
restate it here before proving it.

Theorem 3. Fix r, j,m ∈N such that j ≤ m and rm ≥ 2, and let K be an algebraic
number field over Q with ring of integers O. Then, the density of the set E consisting
of H-wise relatively r-prime ordered m-tuples of elements in O equals

∏
p

[ m

∑
k=0

ik(H)
(

1− 1
N(pr)

)m−k( 1
N(pr)

)k]
,

where the product is over all nonzero prime ideals in O.

Proof. Fix t ∈N and let St denote the set of the first t rational primes. For brevity,
we write Et = ESt . Since Et ⊇ E,

DB(E)≤ DB(Et) = D(E).
Observe that the last equality is due to the existence of D(E). Letting t → ∞,

DB(E)≤ ∏
p

[ m

∑
k=0

ik(H)
(

1− 1
N(pr)

)m−k( 1
N(pr)

)k]
.

It remains to show the opposite inequality. Noting that DB(Et)−DB(Et\E)≤DB(E),
it suffices to show that limt→∞DB(Et\E) = 0.

To this end, we introduce the following notation. Let p be a prime ideal in O, pt
be the t th rational prime, and M be a positive integer.
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(1) We write p≻ M iff p lies over a rational prime greater than M.
(2) We write M ≻ p iff the rational prime lying under p is less than M.

Using this notation, we can write

Et\E ⊆
⋃
p≻pt

( m

∏
j=1

pr
)
⊆ Om,

where it is understood that ∏
m
j=1 p

r is the subset of Om such that each entry of the
m-tuple is an element of pr. Then, we see that

(Et\E)∩OB [M]m ⊆
⋃

CMn≻p≻pt

m

∏
j=1

(
pr ∩OB [M]

)
for some constant C > 0 dependent only on B , and thus

DB(Et\E)≤ limsup
M→∞

∑
CMn≻p≻pt

|(pr ∩OB [M])m| · (2M)−mn.

By [2, Proposition 13], there exist constants c,d > 0 independent of M and p such
that

|(pr ∩OB [M])m| ≤ (2M)mn

N(pr)m + c
( 2M

dN(pr)1/n +1
)mn−1

.

Using this bound along with the facts that N(p) ≥ p for every p lying above a fixed
rational prime p, and at most n prime ideals lie above a fixed rational prime, we
obtain

DB(Et\E)≤ limsup
M→∞

∑
CMn≻p≻pt

[ 1
N(pr)m + c

( 2M
dN(pr)1/n +1

)mn−1
(2M)−mn

]
≤ limsup

M→∞
∑

CMn>p>pt

[ n
prm + cn

( 2M
d pr/n +1

)mn−1
(2M)−mn

]
.

It remains to show that the right side goes to 0 as t → ∞. First, observe that for all
sufficiently large M, we have 2M/d pr/n > 1 and thus( 2M

d pr/n +1
)mn−1

(2M)−mn <
(2

d

)mn
· 1

prm .

Then, by writing A = n+cn(2/d)mn which is a constant independent of M and p, we
deduce that

DB(Et\E)≤ limsup
M→∞

∑
CMn>p>pt

A
prm ≤

∞

∑
k=pt

A
krm

for all sufficiently large M.

Finally since
∞

∑
k=1

1
krm is convergent, we conclude that DB(Et\E) = 0. □

To conclude this section, we now state a corollary that indicates how this main
result provides a generalisation of the work from [12].
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Corollary 1. Fix r, j,m ∈N such that j ≤ m and rm ≥ 2, and let K be an algebraic
number field over Q with ring of integers O. Then the density of the set of j-wise
relatively r-prime ordered m-tuples of elements in O equals

∏
p

[ j−1

∑
k=0

(
m
k

)(
1− 1

N(pr)

)m−k( 1
N(pr)

)k]
.

Proof. Take H = K( j)
m as the hypergraph, and observe that

ik(H) =

{(m
k

)
if 0 ≤ k ≤ j−1

0 otherwise.

Applying Theorem 3 immediately yields the desired result. □

3. DENSITY OF H-WISE RELATIVELY r-PRIME ELEMENTS IN Fq[x]

Let Fq[x] be the ring of polynomials over the finite field Fq where q = pk for some
prime p and k ∈ N. The goal of this section is to derive a H-wise density statement
in Fq[x] by using methods developed in [4].

In order to define a suitable definition of density in Fq[x], we begin by giving
an enumeration of the polynomials in Fq[x]. Denoting the elements of Fq as a0 = 0,
a1, . . . ,aq−1, let Σ be the set of all (ad0 ,ad1 ,ad2 , . . .) whose entries are in Fq and di = 0
for all sufficiently large i. Then since non-negative integers have a unique expansion
base q, where q is a positive integer greater than 1, we have a bijection Φ : Σ → Z≥0
defined by

Φ(ad0 ,ad1 , . . .) =
∞

∑
i=0

diqi.

Using this bijection, we define for each j ∈ Z≥0

f j(x) =
∞

∑
i=0

adix
i, where j = φ(ad0 ,ad1 , . . .).

Note that Fq[x] = { f j(x) : j ∈ Z≥0}, thereby giving an ordering of the elements in
Fq[x]. Now, we are able to define a density in this ring.

Definition 5. Fix a positive integer m ≥ 2, and let MN be the subset of (Fq[x])m

consisting of m-tuples of elements in Fq[x] whose entries are taken from
{ f0, f1, . . . , fN}. For any subset T ⊆ (Fq[x])m, we define the upper and lower dens-
ities of T are respectively defined as

D(T ) = limsup
N→∞

|T ∩MN |
|MN |

and D(T ) = liminf
N→∞

|T ∩MN |
|MN |

.

If D(T ) = D(T ), we say that its common value is called the density of T and denote
this as D(T ).
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Let S be a finite set of irreducible polynomials in Fq[x], and fix r, j,m∈N satisfying
j ≤ m. Fix a j-uniform hypergraph H, and let ES denote the set of m-tuples of poly-
nomials from Fq[x] that are H-wise relatively r-prime with respect to all irreducible
polynomials in S.

For the following lemma and proposition, let

π : (Fq[x])m →
(

∏
f∈S

Fq[x]/⟨ f r⟩
)m

be the surjective homomorphism induced by the family of natural projections

π f r : Fq[x]→ Fq[x]/⟨ f r⟩ for each f ∈ S.

As in the algebraic integer case, the following lemma follows immediately from the
definition of H-wise relative r-primality of elements in Fq[x].

Lemma 3. For a given irreducible polynomial f ∈ S, let A( f )
k denote the set of

elements in (Fq[x]/⟨ f r⟩)m where exactly k of their m components are 0, and these k
components form an independent vertex set in H. Then,

ES = π
−1
(

∏
f∈S

m⋃
k=0

A( f )
k

)
.

Proposition 2. Let N = bqdegF −1 where b ∈ N, and F = ∏ f∈S f r. Then,∣∣ES ∩MN
∣∣ = (bqdegF)m

∏
f∈S

q−rmdeg f ·
m

∑
k=0

ik(H)(qr deg f −1)m−k(qr deg f )k.

Proof. Let πF denote the reduction modulo F homomorphism, and let

ψ : (Fq[x]/⟨F⟩)m →
(

∏
f∈S

(Fq[x]/⟨ f r⟩
)m

→ ∏
f∈S

(Fq[x]/⟨ f r⟩)m,

where the first part of ψ is induced by the Chinese Remainder Theorem and the
second part is an obvious isomorphism of free Fq[x]-modules.

Now we compute |π−1
F

(
h(x)

)
∩MN |. By the Division Algorithm, we have that

{ fl(x)}N
l=0 = { fs(x) · xdegF + ft(x) | 0 ≤ t ≤ qdegF −1and0 ≤ s ≤ b−1}.

Then for any fixed s ∈ {0,1, . . . ,b−1}, the map πF restricted to

{ fs(x) · xdegF + ft(x)}qdegF−1
t=0 → Fq[x]/⟨F⟩

is one-to-one. Since |ker(πF)|= bm, we conclude that |π−1
F

(
h(x)

)
∩MN |= bm.

We are now ready to compute |ES ∩MN |. We know that ES = π−1(J), where

J = ψ
−1
(

∏
f∈S

m⋃
k=0

A( f )
k

)
.
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Since for any fixed k ∈ {0,1, . . . ,m} and f ∈ S we have

|A( f )
k |= ik(H)(qr deg f −1)m−k(qr deg f )k,

we deduce that

|J|= qmdegF
∏
f∈S

q−rmdeg f ·
m

∑
k=0

ik(H)(qr deg f −1)m−k(qr deg f )k.

Therefore,

|ES ∩MN |= bm · |J|

= (bqdegF)m
∏
f∈S

q−rmdeg f ·
m

∑
k=0

ik(H)(qr deg f −1)m−k(qr deg f )k.

□

We now find the density of ES.

Lemma 4. Using the notation from Proposition 2,

D(ES) = ∏
f∈S

[ m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k]
.

Proof. Let a j =
|ES ∩M j|
|M j|

and let D be the value of the density in question. For

notational brevity, we let n = qdegF .
We first consider the subsequence {abn−1}b∈N. By Proposition 2, we find that

|ES ∩Mbn−1|
|Mbn−1|

= ∏
f∈S

[ m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k]
.

Hence, {abn−1} trivially converges to D.
Next, we show {abn+c} converges to D as well for each c ∈ {0,1, . . . ,n−2}. In a

manner reminiscent of the proof to Lemma 4, we find that( bn
bn+ c+1

)m
abn−1 ≤ abn+c ≤

( (b+1)n
(b+1)n+ c+1

)m
a(b+1)n−1.

Letting b→∞, the Squeeze Theorem implies that {abn+c} converges to D for each c∈
{0,1, . . . ,n−2}. Finally, since {abn+c} converges to D for each c ∈ {0,1, . . . ,n−1},
we conclude that {a j} converges to D, as desired. □

Now we are ready to state and prove the main theorem of this section.

Theorem 4. Fix r, j,m ∈ N such that j ≤ m and rm ≥ 2. Then the density of the
set of H-wise relatively r-prime ordered m-tuples of polynomials in Fq[x] equals

∏
f irred.

[
m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k
]
,
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where it is understood that the product is over all monic irreducible polynomials in
Fq[x].

Proof. Fix a monic irreducible polynomial f ∈ Fq[x] and let K f denote the set
of ordered m-tuples (g1, . . . ,gm) such that f divides the gcd of k of the entries from
(g1, . . . ,gm) whenever these k entries form an independent vertex set. Then by Lemma
4, we have

D(K f ) = 1−
m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k
.

However for any x ∈ [0,1], Bernoulli’s Inequality implies that
m

∑
k=0

ik(H)xk(1− x)m−k ≥ (1− x)m +mx(1− x)m−1

= (1− x)m−1(1+(m−1)x)

≥ (1− (m−1)x)(1+(m−1)x)

= 1− (m−1)2x2.

Therefore, letting x = q−deg f yields

D(K f )≤
( m−1

qr deg f

)2
.

Next, let St be the set of monic irreducible polynomials of a degree greater or equal
to t where t ∈ N, and set Et = ESt . Moreover, let Ŝ be the set of all monic irreducible
polynomials in Fq[x]. Then,

D(Et\E)≤ limsup
N→∞

|(
⋃

f∈Ŝ\St
K f )∩MN |

|MN |

≤ limsup
N→∞

∑ f∈Ŝ\St
|K f ∩MN |

|MN |
≤ ∑

f∈Ŝ\St

D(K f ).

Since D(K f ) = D(K f ), we obtain

D(Et\E)≤ ∑
f∈Ŝ\St

D(K f )

≤ ∑
f∈Ŝ\St

( m−1
qr deg f

)2

=
∞

∑
j=t+1

(m−1)2

q2r j ·ϕ( j),

where ϕ( j) denotes the number of monic irreducible polynomials of degree j in Fq[x].
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Since any irreducible polynomial over Fq[x] with degree j divides xq j − x (which
has no multiple roots), we have j ·ϕ( j)≤ q j. Therefore

D(Et\E)≤
∞

∑
j=t+1

(m−1)2

jq(2r−1) j
≤ (m−1)2

qt(q−1)
,

in which the last inequality follows from
∞

∑
j=t+1

1
jq(2r−1) j

=
1

q(2r−1)(t+1) ·
∞

∑
j=0

1
( j+ t +1)q(2r−1) j

≤ 1
q(2r−1)(t+1) ·

∞

∑
j=0

1
q(2r−1) j

≤ 1
qt(q−1)

.

Next, since E ∩MN ⊆ Et ∩MN , it follows that

D(E)≤ D(Et)≤ D(Et).

Similarly, since E ∩MN = (Et ∩MN)−
(
(Et\E)∩MN

)
, we obtain

D(E)≥ D(E)−D(E\Et)

≥ D(Et)−
(m−1)2

qt(q−1)
.

Finally noting that D(Et) exists, we conclude by letting t → ∞ that

D(E) = lim
t→∞

D(Et)

= lim
t→∞

∏
f∈St

[ m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k]
= ∏

f irred.

[ m

∑
k=0

ik(H)
(

1− 1
qr deg f

)m−k( 1
qr deg f

)k]
,

and this concludes the proof. □

In a manner reminiscent of the previous section, we conclude by giving without
proof the analogue of Corollary 2 for Fq[x] as originally given in [4].

Corollary 2. Fix r, j,m ∈ N such that j ≤ m and rm ≥ 2. Then the density of the
set of j-wise relatively r-prime ordered m-tuples of elements in Fq[x] equals

∏
f irred.

[ j−1

∑
k=0

(
m
k

)(
1− 1

qr deg f

)m−k( 1
qr deg f

)k]
,

where it is understood that the product is over all monic irreducible polynomials in
Fq[x].
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