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1. INTRODUCTION

In [14], Yuan and Hu determined when the two equations

x2
�kxyCy2

C2x D 0 (1.1)

and

x2
�kxyCy2

C4x D 0 (1.2)

have an infinite number of positive integer solutions x and y. They showed that
Eq.(1.1) has an infinite number of positive integer solutions x and y if and only if
k D 3;4 and Eq.(1.2) has an infinite number of positive integer solutions x and y if
and only if k D 3;4;6. In the present paper, we consider the equation

x2
�kxyCy2

C2rx D 0; (1.3)

where k is a positive integer and r is a nonnegative integer. Eq.(1.3) is a generaliza-
tion of Eq.(1.1) and Eq.(1.2). In order to decide when Eq.(1.3) has an infinite number
of positive integer solutions x and y, it is sufficient to determine when the equation

x2
�kxyCy2

C2n
D 0 (1.4)

has an infinite number of positive integer solutions x and y for nonnegative integer
n. Let us assume that Eq.(1.3) has positive integer solutions x and y. Then it follows
that xjy2 and thus y2D x´ for some positive integer ´: A simple computation shows
that gcd.x;´/D 2j for some nonnegative integer j . Thus x D 2ja2 and ´D 2j b2
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for some positive integers a and b with .a;b/ D 1. Then it follows that y D 2jab.
Substituting these values of x and y into Eq.(1.3), we obtain

a2
�kabCb2

C2r�j
D 0:

Therefore it is sufficient to know when x2 � kxyC y2C 2r�j D 0 has an infinite
number of positive integer solutions for 0� j � r:

Now we begin with some well known elementary properties about Pell equations.
Let d be a positive integer which is not a perfect square and N be any nonzero
fixed integer. Then the equation x2�dy2 D N is known as the Pell equation. For
N D ˙1, the equation x2�dy2 D ˙1 is known as the classical Pell equation. We
use the notations .x;y/, and xC y

p
d interchangeably to denote solutions of the

equation x2�dy2 D N: Also, if x and y are both positive, we say that xCy
p
d is

positive solution to the equation x2� dy2 D N: It is well known that the equation
x2�dy2 D 1 always has a positive solution when d � 2: The least positive integer
solution x1Cy1

p
d of the equation x2�dy2DN is called the fundamental solution.

If x1Cy1

p
d is the fundamental solution of the equation x2�dy2 D �1; it is well

known that .x1Cy1

p
d/2 is the fundamental solution to the equation x2�dy2 D 1:

Moreover, if x1Cy1

p
d is the fundamental solution to the equation x2�dy2 D 1;

then all positive integer solutions to the equation x2�dy2 D 1 are given by

.xnCyn

p
d/D .x1Cy1

p
d/n (1.5)

with n � 1: It can be seen that xn D .˛
nCˇn/=2 and yn D .˛

n�ˇn/=2
p
d; where

˛ D x1C y1

p
d and ˇ D x1 � y1

p
d: If xC y

p
d is a solution of the equation

x2�dy2 D N and aC b
p
d is a solution of the equation x2�dy2 D 1; then .aC

b
p
d/.xCy

p
d/ D .axCdby/C .ayC bx/

p
d is also a solution of the equation

x2�dy2 D N: This means that if the equation x2�dy2 D N has a solution, then it
has infinitely many solutions. For more information, see [10], [13], and [2].

In section 2;we determine when Eq.(1.4) has an infinite number of positive integer
solutions x and y for 0 � n � 10: Then in section 3; we give all positive integer
solutions to Eq.(1.4) for 0� n� 10:

2. MAIN THEOREMS

In this section, we determine when Eq.(1.4) has an infinite number of positive
integer solutions x and y for 0� n� 10:Before discussing this, we give the following
lemma and theorem, which will be needed in the proof of the main theorems.

Lemma 1. Let d > 2: If u1C v1

p
d is the fundamental solution of the equation

u2 � dv2 D ˙2; then .u2
1C dv

2
1/=2Cu1v1

p
d is the fundamental solution of the

equation x2�dy2 D 1:

Proof. Assume that d > 2 and ! D u1Cv1

p
d is the fundamental solution of the

equation u2�dv2 D˙2: Our purpose is to show that ˛ D !2=2D .u2
1Cdv

2
1/=2C
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u1v1

p
d is the fundamental solution of the equation x2�dy2 D 1: On the contrary,

assume that ˛ is not the fundamental solution of the equation x2� dy2 D 1: Then
there exists a fundamental solution ˇ D x1C y1

p
d of the equation x2� dy2 D 1

such that ˛D ˇn with n> 1: Assume that n is an even integer. Then nD 2k for some
positive integer k: By using ˛ D !2=2; we obtain !2 D 2ˇ2k; i.e., .!=ˇk/2 D 2: If
we write !=ˇk D aCb

p
d; then it follows that .!=ˇk/2D a2Cb2dC2ab

p
d D 2:

Thus ab D 0: This shows that aD 0 or b D 0: If aD 0; then b2d D 2; which implies
that d D 2: This contradicts with the fact that d > 2: If b D 0; then a2 D 2; which is
impossible. Now assume that n is an odd integer. Then nD 2tC1 for some positive
integer t: Thus it follows that !2 D 2˛ D 2ˇ2tC1; i.e., .!=ˇt /2 D 2ˇ: It is obvious
that ˇt >1:Writing !=ˇt D aCb

p
d gives .!=ˇt /2D a2Cb2dC2ab

p
d D 2ˇD

2x1C 2y1

p
d: Since ˇ is the fundamental solution of the equation x2� dy2 D 1;

it follows that ab > 0: Assume that a > 0 and b > 0: Since ! is the fundamental
solution of the equation u2�dv2 D˙2 and !=ˇt is a positive solution of the same
equation, we get ! � !=ˇt ; which implies that ˇt � 1: This is impossible since
ˇt > 1: Assume that a < 0 and b < 0: Then !=ˇt D�.eCf

p
d/ for some positive

integers e and f: This shows that �!=ˇt D eCf
p
d is a positive solution of the

equation u2�dv2 D˙2: Since ! is the fundamental solution of the same equation,
we get ! � �!=ˇt : From here, we find that ˇt � �1; a contradiction. �

The following theorem is given in [10].

Theorem 1. Let d be a positive integer which is not a perfect square. If x1 and
y1 are natural numbers satisfying the inequality

x1 >
y2

1

2
�1

and if ˛ D x1C y1

p
d is a solution of the equation x2 � dy2 D 1; then ˛ is the

fundamental solution of this equation.

The proof of the following theorem is given in [6], and [7].

Theorem 2. Let k > 3: Then the equation x2�kxyCy2C1D 0 has no positive
integer solutions.

Corollary 1. The equation x2�kxyCy2C1D 0 has an infinite number of pos-
itive integer solutions x and y if and only if k D 3.

Proof. By the above theorem, x2�kxyCy2C1D 0 has no positive integer solu-
tions when k > 3: It is clear that the equation x2�kxyCy2C1D 0 has no positive
integer solutions x and y for kD 1;2: For kD 3; x2�3xyCy2C1D 0 has an infin-
ite number of positive integer solutions .x;y/D .F2nC1;F2n�1/ with n � 0; where
Fn is the n-th Fibonacci number defined in section 3 (see [6], Theorem 1.6). �
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Theorem 3. The equation x2�kxyCy2C2D 0 has an infinite number of pos-
itive integer solutions x and y if and only if k D 4.

Proof. Assume that x2�kxyCy2C2D 0 for some positive integers x and y: It
is clear that x and y must be odd integers. Then it follows that k is even. Let k D 2t
for some positive integer t: Then x2 � kxyC y2C 2 D 0 implies that .x � ty/2 �
.t2� 1/y2 D �2: Let u1C v1

p
t2�1 be the fundamental solution of the equation

u2�
p
t2�1v2 D �2: Then from Lemma 1, it follows that .u2

1C .t
2� 1/v2

1/=2C

u1v1

p
t2�1 is the fundamental solution of the equation x2� .t2� 1/y2 D 1: For

t > 1; since .t;1/ is the fundamental solution of the equation x2� .t2�1/y2 D 1 by
Theorem 1, we get .u2

1C .t
2�1/v2

1/=2D t and u1v1 D 1. From this, it follows that
t D 2 and thus k D 4. �

Theorem 4. The equation x2�kxyCy2C4D 0 has an infinite number of pos-
itive integer solutions x and y if and only if k D 3;6.

Proof. Assume that x2� kxyCy2C 4 D 0 for some positive integers x and y.
Assume that x is even. Then y is even and thus xD 2a and y D 2b for some positive
integers a and b. Then it follows that a2 � kabC b2C 1 D 0; which implies that
k D 3 by Corollary 1. Now assume that x and y are odd integers. Then k is even
and 4 − k. Therefore k D 2t for some odd positive integer t . Completing the square
gives .x� ty/2� .t2� 1/y2 D �4: Since 8jt2� 1; it follows that x� ty D 2m and
thus m2 � ..t2 � 1/=4/y2 D �1: Let d D .t2 � 1/=4 and assume that u1C v1

p
d

is the fundamental solution of the equation u2�dv2 D �1: Then .u1Cv1

p
d/2 D

u2
1C dv

2
1 C 2u1v1

p
d is the fundamental solution of the equation x2 � dy2 D 1:

For t > 1; since .t;2/ is the fundamental solution of the equation x2�dy2 D 1 by
Theorem 1, we get u2

1Cdv
2
1C2u1v1

p
d D tC2

p
d . Then it follows that u1v1 D 1

and u2
1C ..t

2�1/=4/v2
1 D t: From this, we see that t D 3 and thus k D 6. �

Theorem 5. The equation x2�kxyCy2C8D 0 has an infinite number of pos-
itive integer solutions x and y if and only if k D 4;6;10.

Proof. Assume that x is even. Then y is even and thus x D 2a and y D 2b for
some positive integers a and b. Thus we get a2�kabCb2C2D 0. By Theorem 3,
it follows that k D 4: Now assume that x and y are odd positive integers. Then k is
even and 4 − k: Thus k D 2t for some odd positive integer t: Completing the square
gives .x� ty/2� .t2�1/y2D�8; which implies that x� ty D 2m for some positive
integerm. Thus we getm2� ..t2�1/=4/y2D�2: If t D 3; then we getm2�2y2D

�2: Since 4C 3
p
2 is a solution of the equation m2� 2y2 D �2; this equation has

infinitely many solutions. Thus we get k D 6: Let d D .t2� 1/=4 and assume that
t > 3: If u1Cv1

p
d is the fundamental solution of the equation u2�dv2D�2; then

by Lemma 1, .u2
1Cdv

2
1/=2Cu1v1

p
d is the fundamental solution of the equation

x2 � dy2 D 1: For t > 1; since .t;2/ is the fundamental solution of the equation



ON THE DIOPHANTINE EQUATION x2�kxyCy2C2n D 0 379

x2� dy2 D 1 by Theorem 1, we get .u2
1C dv

2
1/=2Cu1v1

p
d D t C 2

p
d . From

this, it follows that u1v1 D 2 and u2
1C ..t

2�1/=4/v2
1 D 2t: Solving these equations,

we see that t D 5 and thus we get k D 10: �

The proofs of the following theorems are similar to that of the above theorems and
therefore we omit their proofs.

Theorem 6. The equation x2 � kxy C y2C 16 D 0 has an infinite number of
positive integer solutions x and y if and only if k D 3;6;18:

Theorem 7. The equation x2 � kxy C y2C 32 D 0 has an infinite number of
positive integer solutions x and y if and only if k D 4;6;10;14;34.

Now, we consider the equation

x2
�dy2

DN; (2.1)

where N ¤ 0 and d is a positive integer which is not a perfect square. If u2�dv2 D

N; then we say that ˛D uCv
p
d is a solution to Eq.(2.1). Let ˛1 and ˛2 be any two

solutions to Eq.(2.1). Then ˛1 and ˛2 are called associated solutions if there exists a
solution ˛ to x2�dy2 D 1 such that

˛1 D ˛˛2:

The set of all solutions associated with each other forms a class of solutions to
Eq.(2.1). If K is a class, then K D

n
u�v

p
d j uCv

p
d 2K

o
is also a class. We

say that the class is ambiguous if K DK:
Now we give the following definitions from [1].

Definition 1. Assume that N < 0 or N D 1: Let u0C v0

p
d be a solution to

Eq.(2.1) given in a class K such that v0 is the least positive value of v which occurs
in K: If K is not ambiguous then the number u0 is uniquely determined. If K is
ambiguous we get a uniquely determined u0 by prescribing that u0 � 0:

Now we can give the following theorem from [10].

Theorem 8. LetN <0 and x1Cy1

p
d be the fundamental solution to x2�dy2D

1: If u0C v0

p
d is the fundamental solution to the equation u2� dv2 D N in its

class, then

0 < v0 �
y1

p
�Np

2.x1�1/
and 0� ju0j �

r
�1

2
.x1�1/N

Now we can give the following theorems.

Theorem 9. The equation x2 � kxy C y2C 64 D 0 has an infinite number of
positive integer solutions x and y if and only if k D 3;6;18;66.
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Proof. Assume that x2�kxyCy2C64D 0 for some positive integers x and y. If
x is even, then y is even and thus xD 2a and yD 2b for some positive integers a and
b. Substituting these values of x and y into the equation x2�kxyCy2C 64D 0;

we get a2�kabCb2C16D 0, which implies that k D 3;6;18 by Theorem 6. Now
assume that x and y are odd integers. Then k is even and 4 − k. Thus kD 2t for some
positive odd integer t . Completing the square gives .x� ty/2� .t2� 1/y2 D �64:

Since 8jt2�1, it follows that x� ty D 2n and t2�1D 8s for some positive integers
n and s. So we get n2 � 2sy2 D �16. It is seen that n is even. Then n D 2m
and thus 2m2� sy2 D �8. Since y is odd, it is seen that s is even and thus we get
m2� ..t2�1/=16/y2 D�4. Now we consider the equation

u2
�

�
t2�1

16

�
v2
D�4: (2.2)

Let u0Cv0

p
d be the fundamental solution to Eq.(2.2) in a given classK: If .m;y/ is

a solution in the classK; then it is seen that v0 is odd. Since .t;4/ is the fundamental
solution to the equation x2� ..t2�1/=16/y2 D 1 for t > 7 by Theorem 1, we get

0 < v0 �
4
p
4p

2.t �1/
�

4
p
4p

2.9�1/
D 2

by Theorem 8. Since v0 is odd, v0 D 1: If we substitute the value of v0 into Eq.(2.2),
we get .t � 4u/.t C 4u/D 65. First assume that t � 4uD 1 and t C 4uD 65. Then
we get t D 33 and thus k D 66. In a similar way, if t �4uD 5 and tC4uD 13; then
we get t D 9 and thus kD 18: Now assume that 1 < t � 7. Since .t2�1/=16 is not an
integer for 1 < t < 7; t must be 7. But if we substitute the value of t into Eq.(2.2), we
get u2�3v2 D�4; which has no positive integer solutions u and v. This completes
the proof. �

Theorem 10. The equation x2� kxyCy2C 128 D 0 has an infinite number of
positive integer solutions x and y if and only if k D 4;6;10;14;34;46;130.

Proof. Assume that x2�kxyCy2C128D 0 for some positive integers x and y.
If x is even, then y is even and thus x D 2a and y D 2b for some positive integers
a and b. Substituting these values of x and y into the equation x2 � kxyC y2C

128 D 0, we get a2 � kabC b2C 32 D 0, which implies that k D 4;6;10;14;34
by Theorem 7. Now assume that x and y are odd integers. Then k is even and
4 − k: Thus k D 2t for some positive odd integer t: Completing the square gives
.x� ty/2� .t2�1/y2 D �128. Since 8jt2�1, it is seen that x� ty D 4m and thus
we get m2� ..t2�1/=16/y2 D�8. Now we consider the equation

u2
�

�
t2�1

16

�
v2
D�8: (2.3)

Let u0Cv0

p
d be the fundamental solution to Eq.(2.3) in a given classK. If .m;y/ is

a solution in the classK, then it is seen that v0 is odd. Since .t;4/ is the fundamental
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solution to the equation x2� ..t2�1/=16/y2 D 1 for t > 7 by Theorem 1, we get

0 < v0 �
4
p
8p

2.t �1/
�

4
p
8p

2.9�1/
< 3

by Theorem 8. Since v0 is odd, v0 D 1. Substituting this value of v0 into Eq.(2.3),
we get .t �4u/.tC4u/D 129. A simple computation shows that t D 23 and t D 65.
Thus we get kD 46 and kD 130. Now assume that 1< t � 7: Since .t2�1/=16 is not
an integer for 1 < t < 7; t must be 7. If we substitute the value of t into Eq.(2.3), we
get u2�3v2 D�8; which has no positive integer solutions u and v: This completes
the proof. �

Since the proofs of the following theorems are similar to that of above theorems,
we omit them.

Theorem 11. The equation x2� kxyCy2C 256 D 0 has an infinite number of
positive integer solutions x and y if and only if k D 3;6;18;66;258.

Theorem 12. The equation x2� kxyCy2C 512 D 0 has an infinite number of
positive integer solutions x and y if and only if k D 4;6;10;14;34;46;66;130;174;
514.

Theorem 13. The equation x2�kxyCy2C1024D 0 has an infinite number of
positive integer solutions x and y if and only if k D 3;6;18;66;210;258;1026.

Assume that x and y are solutions of Eq.(1.4), where 1 � n � 10. Then it can be
shown that x and y have same parity. The equation x2�66xyCy2C1024D 0 has
positive integer solutions .4;4/ and .41;1/: The equation x2�46xyCy2C512D 0

has positive integer solutions .6;2/ and .19;1/: Morever, the equation x2� 18xyC

y2C64D 0 has positive integer solutions .2;2/ and .5;1/: It is seen from the proofs
of the above theorems that all x and y solutions of Eq.(1.4) are either odd or even for
.k;n/ … f.66;10/; .46;9/; .18;6/g :

3. SOLUTIONS OF SOME OF THE EQUATIONS x2�kxyCy2C2n D 0

In this section, we will give solutions of the equation x2�kxyCy2C2n D 0 for
0� n� 10: Solutions of the equation x2�kxyCy2C2nD 0 are related to the gener-
alized Fibonacci and Lucas numbers. Now we briefly mention the generalized Fibon-
acci and Lucas sequences .Un.k;s// and .Vn.k;s//. Let k and s be two integers with
k2C4s > 0:Generalized Fibonacci sequence is defined byU0.k;s/D 0,U1.k;s/D 1

and UnC1.k;s/D kUn.k;s/CsUn�1.k;s/ for n> 1 and generalized Lucas sequence
is defined by V0.k;s/ D 2; V1.k;s/ D k and VnC1.k;s/ D kVn.k;s/C sVn�1.k;s/

for n> 1; respectively. For negative subscript, U�n and V�n are defined by

U�n.k;s/D
�Un.k;s/

.�s/n
and V�n.k;s/D

Vn.k;s/

.�s/n
(3.1)
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for n> 1. We will use Un and Vn instead of Un.k;1/ and Vn.k;1/; respectively. For
s D�1; we represent .Un/ and .Vn/ by .un/D .Un.k;�1// and .vn/D .Vn.k;�1//

or briefly by .un/ and .vn/ respectively. Also, it is seen from Eq.(3.1) that

u�n D�Un.k;�1/ and v�n D Vn.k;�1/

for all n 2 Z: For k D s D 1; the sequences .Un/ and .Vn/ are called Fibonacci and
Lucas sequences and they are denoted as .Fn/ and .Ln/ ; respectively. For k D 2 and
sD 1, the sequences .Un/ and .Vn/ are called Pell and Pell Lucas sequences and they
are denoted as .Pn/ and .Qn/ ; respectively. Let ˛ and ˇ are the roots of the equation
x2�kx� s D 0: Then it is well known that

Un D
˛n�ˇn

˛�ˇ
and Vn D ˛

n
Cˇn (3.2)

where ˛ D .kC
p
k2C4s/=2 and ˇ D .k�

p
k2C4s/=2: The above identities are

known as Binet’s formulae. Clearly ˛CˇD k; ˛�ˇD
p
k2C4s; and ˛ˇD�s for

every n 2Z: Moreover, it is well known that

U 2
n �kUnUn�1�U

2
n�1 D .�1/

n�1; (3.3)

vn D unC1�un�1

and
u2

n�kunun�1Cu
2
n�1 D 1; (3.4)

where Un D Un.k;1/ and un D Un.k;�1/. For more information about generalized
Fibonacci and Lucas sequences, one can consult [11], [4], [12], [5], [8], and [9].

Now we give the following two theorems that help us to find solutions of some
of the equations x2�kxyCy2C2n D 0: Since the proofs of these theorems can be
found in [6], [5], [8], [9], and [3], we omit their proofs.

Theorem 14. Let k > 3. Then all nonnegative integer solutions of the equation
x2 � kxyC y2 � 1 D 0 are given by .x;y/ D .un;un�1/ with n � 0; where un D

Un.k;�1/:

Theorem 15. All nonnegative integer solutions of the equation x2�kxy�y2C

1D 0 are given by .x;y/D .U2n;U2n�1/ with n� 0; where Un D Un.k;1/:

Theorem 16. Let r � 0 be an integer. Then all positive integer solutions of the
equation x2� .22rC2/xyCy2C22r D 0 are given by .x;y/
D .U2nC1.2

r ;1/;U2n�1.2
r ;1// with n� 0:

Proof. Assume that x2� .22rC2/xyCy2C22r D 0 for some positive integers x
and y: It is easily seen that 2r jx�y:Without loss of generality, we may suppose x �
y: Let uD .x�y/=2r and v D y: Then we get x D 2ruCv and y D v: Substituting
these values of x and y into the equation x2�.22rC2/xyCy2C22r D 0;we obtain

.2ruCv/2� .22r
C2/.2ruCv/vCv2

C22r
D 0
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and this implies that u2 � 2ruv � v2C 1 D 0: Therefore by Theorem 15, we get
uDU2n.2

r ;1/ and vDU2n�1.2
r ;1/with n� 0: Thus xD 2rU2nCU2n�1DU2nC1

and y D U2n�1 with n � 0 : Conversely, if .x;y/ D .U2nC1;U2n�1/; then from
identity (3.3), it follows that x2� .22rC2/xyCy2C22r D 0: �

Theorem 17. Let r � 1 be an odd integer. Then all positive integer solutions of
the equation x2� .2rC2/xyCy2C2r D 0 are given by .x;y/D .unC1�un;un�

un�1/ with n� 0; where un D Un.2
rC2;�1/:

Proof. Assume that x2� .2r C 2/xyCy2C 2r D 0 for some positive integers x
and y: It is seen that x and y have the same parity. Without loss of generality, we
may suppose x � y: It can be easily seen that 2.rC1/=2jx�y: Moreover, it can be
shown that

2r

4
.xCy/2� .

2r

4
C1/.x�y/2 D 2r :

This implies that �
xCy

2

�2

� .2r�1
C2/

�
x�y

2.rC1/=2

�2

D 1:

Since ˛D
�
2r�1C1C2.r�1/=2

p
2r�1C2

�
is the fundamental solution to the equa-

tion x2� .2r�1C2/y2 D 1 by Theorem 1, it follows from (1.5) that

.xCy/=2D xn and .x�y/=2.rC1/=2
D yn

for some n � 0; where xnCyn

p
2r�1C2D ˛n: It is easily seen that xn D vn.2

r C

2;�1/=2 and yn D 2.r�1/=2un.2
r C 2;�1/: Then we get x D .vnC 2

run/=2 and
y D .vn� 2

run/=2: Since vn D unC1�un�1; it follows that x D .unC1�un�1C

2run/=2D .unC1CunC1�2un/=2D unC1�un: In a similar way, it is seen that yD
un�un�1: This shows that .x;y/D .unC1�un;un�un�1/ with n� 0: Conversely,
if .x;y/ D .unC1 � un;un � un�1/; then from identity (3.4), it follows that x2 �

.2rC2/xyCy2C2r D 0: �

As an alternative to Theorem 16, we can give the following theorem without proof,
since its proof is similar to that of Theorem 17.

Theorem 18. Let r � 1 be an integer. Then all positive integer solutions of the
equation x2� .22r C 2/xyCy2C 22r D 0 are given by .x;y/D .unC1�un;un�

un�1/ with n� 0; where un D Un.2
2rC2;�1/:

Now we can give the following corollaries from above theorems.

Corollary 2. All positive integer solutions of the equation x2�3xyCy2C1D 0

are given by .x;y/D .F2nC1;F2n�1/ with n� 0.

Corollary 3. All positive integer solutions of the equation x2�4xyCy2C2D 0

are given by .x;y/D .unC1�un;un�un�1/ with n� 0; where un D Un.4;�1/:
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Corollary 4. All positive integer solutions of the equation x2�3xyCy2C4D 0

are given by .x;y/D .2F2nC1;2F2n�1/ with n� 0:

Corollary 5. All positive integer solutions of the equation x2�6xyCy2C4D 0

are given by .x;y/D .P2nC1;P2n�1/ with n� 0.

Corollary 6. All positive integer solutions of the equation x2�4xyCy2C8D 0

are given by .x;y/D .2unC1�2un;2un�2un�1/with n� 0;where unDUn.4;�1/:

Theorem 19. All positive integer solutions of the equation x2�6xyCy2C8D 0

are given by .x;y/D .3unC1�un;3un�un�1/ with n� 0; where un D Un.6;�1/:

Proof. Assume that x2� 6xyC y2C 8 D 0 for some positive integers x and y.
Then by Theorem 3, it is seen that x and y are both odd integers. Also it is easily seen
that 8jx�3y. Without loss of generality, we may suppose x � 3y: Let uD .x�3y/=8
and vD .3x�17y/=8. Then we get xD 17u�3v and y D 3u�v: Substituting these
values of x and y into the equation x2�6xyCy2C8D 0; we obtain

.17u�3v/2�6.17u�3v/.3u�v/C .3u�v/2C8D 0

and this shows that u2 � 6uvC v2 � 1 D 0: From Theorem 14, we get .u;v/ D
.un;un�1/ with n � 0: If we substitute these values of u and v into the equations
x D 17u�3v and y D 3u�v; then it follows that x D 17un�3un�1 D 3unC1�un

and y D 3un�un�1 with n � 0: Conversely, if .x;y/D .3unC1�un;3un�un�1/;

then from identity (3.4), it follows that x2� 6xyCy2C 8D 0: This completes the
proof. �

Corollary 7. All positive integer solutions of the equation x2�10xyCy2C8D 0

are given by .x;y/D .unC1�un;un�un�1/ with n� 0; where un D Un.10;�1/:

Now we can give the following corollaries.

Corollary 8. All positive integer solutions of the equation x2�3xyCy2C16D 0

are given by .x;y/D .4F2nC1;4F2n�1/ with n� 0.

Corollary 9. All positive integer solutions of the equation x2�6xyCy2C16D 0

are given by .x;y/D .2P2nC1;2P2n�1/ with n� 0:

Corollary 10. All positive integer solutions of the equation x2 � 18xyC y2C

16D 0 are given by .x;y/D .U2nC1;U2n�1/ with n� 0; where Un D Un.4;1/:

Corollary 11. All positive integer solutions of the equation x2 � 4xy C y2C

32D 0 are given by .x;y/D .4unC1�4un;4un�4un�1/ with n � 0; where un D

Un.4;�1/:

Corollary 12. All positive integer solutions of the equation x2 � 6xy C y2C

32D 0 are given by .x;y/D .6unC1� 2un;6un� 2un�1/ with n � 0; where un D

Un.6;�1/:
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Corollary 13. All positive integer solutions of the equation x2 � 10xyC y2C

32D 0 are given by .x;y/D .2unC1� 2un;2un� 2un�1/ with n � 0; where un D

Un.10;�1/:

Corollary 14. All positive integer solutions of the equation x2 � 34xyC y2C

32 D 0 are given by .x;y/ D .unC1 � un;un � un�1/ with n � 0; where un D

Un.34;�1/:

Theorem 20. All positive integer solutions of the equation x2�14xyCy2C32D

0 are given by .x;y/D .3unC1�un;un�un�1/ with n� 0; where un DUn.4;�1/:

Proof. Assume that x2�14xyCy2C32D 0 for some positive integers x and y:
Then by Theorem 5, it is seen that x and y must be odd integers. Also, it is easily seen
that 8jx�3y:Without loss of generality, we may suppose x � 3y: Let uD .x�3y/=8
and v D .x� 11y/=8: Then we get x D 11u� 3v and y D u� v: Substituting these
values of x and y into the equation x2�14xyCy2C32D 0; we obtain

.11u�3v/2�14.11u�3v/.u�v/C .u�v/2C32D 0

and this shows that u2� 4uvC v2� 1 D 0: Therefore by Theorem 14, we get u D
Un.4;�1/ and vDUn�1.4;�1/with n� 0: Thus it follows that xD 11un�3un�1D

3unC1�un and yDun�un�1 with n� 0:Conversely, if .x;y/D .3unC1�un;un�

un�1/; then from identity (3.4), it follows that x2�14xyCy2C32D 0: �

In order to find all positive integer solutions of the equation x2 � 46xyC y2C

128D 0; we need the following theorem given in [1].

Theorem 21. If uCv
p
d is a solution in nonnegative integers to the Diophantine

equation u2�dv2DN; whereN < 0; then there exists a nonnegative integerm such
that

uCv
p
d D .u1Cv1

p
d/.x1Cy1

p
d/m

where u1Cv1

p
d is the fundamental solution to the class of solutions of the equation

u2�dv2DN to which uCv
p
d belongs and x1Cy1

p
d is the fundamental solution

to the equation x2�dy2 D 1:

Lemma 2. All positive integer solutions of the equation x2�33y2D�8 are given
by .x;y/D .j17unC5un�1j ;3un�un�1/ with n 2Z; where un D Un.46;�1/:

Proof. Assume that x2�33y2 D�8 for some positive integers x and y: It can be
seen from Theorem 8 that the equation x2�33y2D�8 has two solution classes. And
the fundamental solutions of these classes are 5C

p
33 and �5C

p
33: By Theorem

21, all positive integer solutions of the equation x2�33y2 D�8 are given by

anCbn

p
33D .5C

p
33/.xnCyn

p
33/

with n� 0 or
cnCdn

p
33D .�5C

p
33/.xnCyn

p
33/
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with n � 1; where xnCyn

p
33 is the solution of the equation x2�33y2 D 1: Since

the fundamental solution of this equation is ˛ D 23C4
p
33; we get xnCyn

p
33D

˛n and therefore xn D .˛
nCˇn/=2 and yn D .˛

n�ˇn/=2
p
33; where ˇ D 23�

4
p
33: Thus we get bn D 5yn C xn and dn D �5yn C xn: It is seen that xn D

Vn.46;�1/=2 and yn D 4Un.46;�1/: This shows that bn D 20unCvn=2D unC1�

3un with n � 0 and dn D �20unC vn=2 D 3un�un�1 with n � 1: Since 3u�n�

u�n�1D unC1�3un for n> 0;we can take y as yD unC1�3un with n2Z: Substi-
tuting the value of y into the equation x2�33y2 D�8; we get x D j17unC5un�1j

with n 2 Z: Conversely, if .x;y/D .j17unC5un�1j ;3un�un�1/; then from iden-
tity (3.4), it follows that x2�33y2 D�8: �

Theorem 22. All positive integer solutions of the equation x2 � 46xy C y2C

128 D 0 are given by .x;y/ D .3unC1�un;3un�un�1/ with n 2 Z; where un D

Un.46;�1/:

Proof. Assume that x2� 46xyCy2C 128 D 0 for some positive integers x and
y: Completing the square gives .x � 23y/2 � 528y2 D �128; which implies that
x� 23y D˙4m for some positive integer m: Rearranging the equation gives m2�

33y2 D �8: By Lemma 2, we get .m;y/ D .j17unC5un�1j ;3un � un�1/ with
n 2Z: Thus x D 23y˙4mD 23.3un�un�1/˙4.17unC5un�1/ and therefore we
get xD 3unC1�un or xD 3un�1�un�2 with n2Z: Since 3u.nC2/�1�u.nC2/�2D

3unC1 � un; we can take .x;y/ D .3unC1 � un;3un � un�1/ with n 2 Z: Con-
versely, if .x;y/ D .3unC1 � un;3un � un�1/; then from identity (3.4), it follows
that x2�46xyCy2C128D 0: �

The proofs of the following theorems are similar to that of Theorem 22 and there-
fore we omit them.

Theorem 23. All positive integer solutions of the equation x2 � 174xyC y2C

512 D 0 are given by .x;y/ D .3unC1�un;3un�un�1/ with n 2 Z; where un D

Un.174;�1/:

Theorem 24. All positive integer solutions of the equation x2 � 66xy C y2C

512 D 0 are given by .x;y/ D .9unC1�un;9un�un�1/ with n 2 Z; where un D

Un.66;�1/:

Theorem 25. All positive integer solutions of the equation x2 � 210xyC y2C

1024D 0 are given by .x;y/D .5unC1�un;5un�un�1/ with n 2 Z; where un D

Un.210;�1/:

Theorem 26. All positive integer solutions of the equation x2 � 66xy C y2C

1024D 0 are given by .x;y/D .41unC1�un;41un�un�1/ with n 2Z; where unD

Un.66;�1/ or .x;y/D .4U2nC1;4U2n�1/ with n� 0; where Un D Un.8;1/:

Since all positive integer solutions of the following equations
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x2
�kxyCy2

C64D 0; k 2 f3;6;18;66g ;

x2
�kxyCy2

C128D 0; k 2 f4;6;10;14;34;130g ;

x2
�kxyCy2

C256D 0; k 2 f3;6;18;66;258g ;

x2
�kxyCy2

C512D 0; k 2 f4;6;10;14;34;46;130;514g ;

and
x2
�kxyCy2

C1024D 0; k 2 f3;6;18;258;1026g

can be given easily by using the previous theorems and corollaries, we do not give
their solutions.
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