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Abstract. In this paper the Decomposition Theorem for functional equations is shown. As an
application of this Theorem the two times continuously differentiable solution of the functional
equation

G1(x(x+ y))+F1(y) = G2(y(x+ y))+F2(y)
can be given with unknown functions Gi, Fi : R+→ R (i = 1,2) where the Equation is fulfilled
for all x,y ∈ R+ (where R+ := {x ∈ R | x > 0}).
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1. INTRODUCTION

The main purpose of this paper is to show the decomposition of Pexider functional
equations.

The Pexider equations are functional equations contained more than one unknown
functions. For example, consider the well-known Lobachevsky functional equation

f (x+ y) f (x− y) = f 2(x)

where the unknown function f : R→R satisfies the Equation for all x,y∈R [1]. The
Pexider version [17] of this Equation is

F(x+ y)G(x− y) = H2(x),

where the unknown functions F , G, H : R→ R satisfy the Equation for all x,y ∈ R.
The decomposition of functional equations is a method for Pexider equations with

certain symmetric structure. Such an equation results in two other, simpler equations.
The general (twice continuously differentiable) solution of the original function equa-
tion can be expressed by the general (twice continuously differentiable) solutions of
the obtained equations.

In section 2 the Decomposition Theorem is given. In the rest of the paper any
applications of the Decomposition Theorem can be found.

© 2022 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2022.4320


692 T. GLAVOSITS, A. HÁZY, AND J. TÚRI

2. THE DECOMPOSITION THEOREMS

Theorem 1. Let X be a set; ◦ and ∗ be binary operations on the set X; (Y,+) be
a uniquely two divisible Abelian group.

(1) If the functions Gi, Fi : X → Y (i = 1,2) are solutions of the functional equa-
tion

G1(x◦ y)+F1(x∗ y) = G2(y◦ x)+F2(y∗ x) (x,y ∈ X), (2.1)

and the functions g, γ, f , ϕ : X → Y are defined by

g :=
1
2
(G1 +G2),

γ :=
1
2
(G1−G2),

f :=
1
2
(F1 +F2),

ϕ :=
1
2
(F1−F2),

(2.2)

then this functions satisfy the Equation

g(x◦ y)+ f (x∗ y) = g(y◦ x)+ f (y∗ x),

γ(x◦ y)+ γ(y◦ x) =−ϕ(x∗ y)−ϕ(y∗ x)
(x,y ∈ X).

(2) If the functions g, γ, f , ϕ : X → Y are solutions of Equation (1), and the
functions Gi, Fi : X → Y are defined by

G1 := g+ γ,

G2 := g− γ,

F1 := f +ϕ,

F2 := f −ϕ,
(2.3)

then this functions satisfy Equation (2.1).

Proof. (1) Assume that the functions Gi, Fi : X → Y (i = 1,2) are solutions of the
functional equation (2.1). Consider the Equation (2.1) and the Equation which can
be obtained from Equation (2.1) by changing x and y.

G1(x◦ y)+F1(x∗ y) = G2(y◦ x)+F2(y∗ x)

G2(x◦ y)+F2(x∗ y) = G1(y◦ x)+F1(y∗ x)
(2.4)

for all x,y ∈ X . Add and subtract the Equations of (2.4). Thus we have

(G1 +G2)(x◦ y)+(F1 +F2)(y) = (G1 +G2)(y◦ x)+(F1 +F2)(x)

(G1−G2)(x◦ y)+(F1−F2)(y) = (G2−G1)(y◦ x)+(F2−F1)(x)
(2.5)

for all x,y∈ X . Define the functions g, γ, f , ϕ : X→Y by (2.2) thus by Equation (2.5)
we obtain the Equations of (1).
(2) Assume that the functions g, γ, f , ϕ : X → Y are solutions of the Equations of
(2.3) and define the functions Gi, Fi : X → Y (i = 1,2) by (1). Then

G1(x◦ y)+F1(x∗ y)

= (g(x◦ y)+ γ(x◦ y))+( f (x∗ y)+ϕ(x∗ y))

= (g(x◦ y)+ f (x∗ y))+(γ(x◦ y)+ϕ(x∗ y))
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= (g(y◦ x)+ f (y∗ x))+(− γ(y◦ x)−ϕ(y∗ x))

= (g(y◦ x)− γ(y◦ x))+( f (y∗ x)−ϕ(y∗ x))

= G2(y◦ x)+F2(y∗ x)

for all x,y ∈ X which completes the proof. □

The following Theorem is a special case of Theorem 1 with x∗y := y for all x,y ∈
X .

Theorem 2. Let X be a set ◦ be a binary operation on the set X, (Y,+) be a
uniquely two divisible Abelian group. The functions Gi,Fi : X → Y (i = 1,2) are
solutions of the functional equation

G1(x◦ y)+F1(y) = G2(y◦ x)+F2(x) (x,y ∈ X) (2.6)

if and only if they are of the form

G1(x) = g(x)+ γ(x),

G2(x) = g(x)− γ(x),

F1(x) = f (x)− γ(x◦ x),

F2(x) = f (x)+ γ(x◦ x)

for all x ∈ X where the functions f , g, γ : X → Y are solutions of the Equations

g(x◦ y)+ f (y) = g(y◦ x)+ f (x)

γ(x◦ x)+ γ(y◦ y) = γ(x◦ y)+ γ(y◦ x)

(x,y ∈ X)

(x,y ∈ X).

Proof. This Theorem can be similarly proven as Theorem 1. □

We investigate the case X := R+ := {x ∈ R | x > 0}, x◦ y := x(x+ y) for all x,y ∈
R+, Y (+) := R(+), and we want to find the twice continuously differentiable solu-
tions. By Theorem 2 instead of Equation

G1(x(x+ y))+F1(y) = G2(y(x+ y))+F2(x) (x,y ∈ R+) (2.7)

with unknown functions Gi, Fi : R+→R (i = 1,2) where the Equation is fulfilled for
all x,y∈R+ it is enough to give the twice continuously differentiable solutions of the
Equations

g(x(x+ y))+ f (y) = g(y(x+ y))+ f (y) (x,y ∈ R+) (2.8)

and
γ(x(x+ y))+ γ(y(x+ y)) = γ(2x2)+ γ(2y2) (x,y ∈ R+). (2.9)

In Equation (2.9) we will use the function δ : R+→ R defined by δ(x) := γ(2x2)
for all x ∈ R+.

Equation (2.9) (and with it its Pexider version, Equation 2.7) is related to equations
containing means and equations containing the Gauss composition of these means
(see [3], [4], [5], [7], and [8]), so these equations are very important.

The measurable solutions of Equation of (2.7) can be easily obtained by using
the method of A. Járai [15], [16], but we do not deal with finding the measurable
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solutions, because we want to know the general solutions in more general settings
see our Conjecture in the last section of this paper.

3. THE TWICE CONTINUOUSLY DIFFERENTIABLE SOLUTIONS OF EQUATION
(2.8)

In his paper [18] S. Narumi was the first to use differential calculus to solve func-
tional equations. Nowadays, there are many different methods for constructing dif-
ferential operators that can be used to reduce a functional equation to a differential
equation [10], [14], [19]. Instead of them we will use only two similar and natural
differential operators.

Proposition 1. If the functions Fi, Gi : R+→ R are twice differentiable solutions
of Equation(2.7) then

0 =
−2x+ y
x+2y

F ′1(y)+
−2x− y
x+2y

F ′′1 (y)+
−x+2y
x+2y

F ′2(x)+
x
y

F ′′2 (x) (3.1)

for all x,y ∈ R+.

Proof. Apply the differential operator

D1 :=
1

2x+ y
∂

∂x
− 1

x
∂

∂y
for Equation (2.7), whence we have that

−1
x

F ′1(y) =−
2(x+ y)2

x(2x+ y)
G′2(xy+ y2)+

1
2x+ y

F ′2(x) (x,y ∈ R+),

whence by ordering we have that

G′2(xy+ y2) =
2x+ y

2(x+ y)2 F ′1(y)+
x

2(x+ y)2 F ′2(x) (x,y ∈ R+). (3.2)

Apply the differential operator

D2:=
1
y

∂

∂x
− 1

x+2y
∂

∂y
for Equation (3.2) thus we obtain Equation (3.1). □

Proposition 2. If the functions f , g : R+→R are twice differentiable solutions of
the Equation (2.8), and the constants c1, c2; and functions a0, a1, Φ : R+→ R are
defined by

c1 := f ′(1), c2 := f ′′(1),

a0(x) := c1
2x−1

x(x+2)
+ c2

2x+1
x(x+2)

(x ∈ R+)

a1(x) :=
x−2

x(x+2)
(x ∈ R+),

Φ(x) := f ′(x) (x ∈ R+),

(3.3)



DECOMPOSITION OF FUNCTIONAL EQUATIONS WITH APPLICATIONS 695

then
Φ
′(x) = a0(x)+a1(x)Φ(x) (x ∈ R+) (3.4)

Proof. Write f (y) instead of F1(y) and f (x) instead of F2(x) in Equation(3.1) thus
we have that

0 =
−2x+ y
x+2y

f ′1(y)+
−2x− y
x+2y

f ′′(y)+
−x+2y
x+2y

f ′(x)+
x
y

f ′′(x) (3.5)

for all x,y ∈ R+. Write 1 instead of y in Equation (3.5) after order the obtained
Equation. Thus we have that

f ′′(x) = f ′(1)
2x−1

x(x+2)
+ f ′′(1)

2x+1
x(x+2)

+
x−2

x(x+2)
f ′(x) (x ∈ R+),

whence by the notations of (3.3) we obtain the differential Equation (3.4). □

For to solve the above differential equation we can apply the well-known formula

Φ(x) = exp
(∫ x

1
a1(u)du

)(
c1 +

∫ x

1

a0(v)
exp(

∫ v
1 a1(u)du)

dv
)

(x ∈ R+).

Proposition 3. Preserve the notation of Proposition 2. The solution of differential
equation (3.4) (with boundary values Φ(1) = c1, Φ′(1) = c2) is

Φ(x) = c1
x2 +1

2x
+ c2

x2−1
2x

(x ∈ R+). (3.6)

Proof. It is easy to see that

exp
(∫ x

1
a1(u)du

)
=

(x+2)2

9x
,∫ x

1

a0(v)
exp(

∫ v
1 a1(u)du)

dv = c1

∫ x

1

18v−9
(v+2)3 dv+ c2

∫ x

1

18v+9
(v+2)3 dv

= c1

(
−−7x2 +8x−1

2(x+2)2

)
+ c2

(
−9(x2−1)

2(x+2)2

)
,

whence we obtain Equation (3.6). □

Theorem 3. The twice continuously differentiable solution of Equation (2.8) is
g(x) =C1x+C2 ln(x)+C4 (x ∈ R+),

f (x) =C1x2 +C2 ln(x)+C3 (x ∈ R+)
(3.7)

where Ci are arbitrary constants for i = 1,2,3.

Proof. Since Φ(x) = f ′(x) for all x ∈ R+ thus by Equation (3.6) we obtain that

f (x) = c1

∫ x

1

u2 +1
2u

du+ c2

∫ x

1

u2−1
2u

du+ f (1)

=
1
4
(c1 + c2)x2 +

1
2
(c1− c2) ln(x)− 1

4
(c1 + c2)+ f (1)
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for all x ∈ R+ whence we obtain the second Equation of (3.7) with constants C1 :=
1
4(c1 + c2), C2 := 1

2(c1− c2) and C3 :=−1
4(c1 + c2)+ f (1).

Take the substitution x← x√
x+1

, y← 1√
x+1

,that is, take x← u√
u+1

and y← 1√
u+1

after u← x thus we obtain the Equation

g(x) =− f
(

1√
x+1

)
+ f

(
x√

x+1

)
+g(1) (x ∈ R+). (3.8)

From the second Equation of (3.7) and Equation (3.8) we obtain that

g(x) =−C1
1

x+1
−C2 ln

(
1√

x+1

)
+C1

x2

x+1
+C2 ln

(
x√

x+1

)
+C3 +g(1)−C1

=C1x+C2 ln(x)+C3 +g(1)−C1,

which is the first Equation of (3.7) with constants C4 :=C3 +g(1)−C1.
The converse statement can be obtained by trivial calculation. □

4. THE TWICE CONTINUOUSLY DIFFERENTIABLE SOLUTIONS OF EQUATION
(2.9) AND (2.7)

Proposition 4. If the function γ :R+→R is twice differentiable solutions of Equa-
tion (2.9), and the functions b0, b1, Φ : R+→ R and the constants d1, d2 are defined
by

δ(x) := γ(2x2),

d1 := δ
′(1), d2 := δ

′′(1),

b0(x) := d1
2x−1

x(x+2)
+d2

2x+1
x(x+2)

(x ∈ R+)

b1(x) :=
x−2

x(x+2)
(x ∈ R+),

Ψ(x) := δ
′(x) (x ∈ R+),

(4.1)

then
Ψ
′(x) = b0(x)+b1(x)Φ(x) (x ∈ R+) (4.2)

Proof. Write −δ(y) instead of F1(y) and δ(x) instead of F2(x) in Equation(3.1)
thus we have that

0 =−−2x+ y
x+2y

δ
′(y)+

2x+ y
x+2y

δ
′′(y)+

−x+2y
x+2y

δ
′(x)+

x
y

δ
′′(x)

for all x,y ∈ R+. Write 1 instead of y in Equation (3.5) after order the obtained
Equation. Thus we have that

δ
′′(x) = δ

′(1)
2x+1

x(x+2)
+δ
′′(1)
−2x−1
x(x+2)

+
x−2

x(x+2)
f ′(x) (x ∈ R+),
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whence by the notations of (4.1) we obtain the differential equation (4.2). □

Proposition 5. Preserve the notation of Proposition 4. The solution of differential
equation (3.4) (with boundary values Ψ(1) = d1, Ψ′(1) = d2) is

Ψ(x) = d1
−5x2 +16x+7

18x
+d2
−(x−2)2

2x
(x ∈ R+). (4.3)

Proof. It is easy to see that

exp
(∫ x

1
b1(u)du

)
=

(x+2)2

9x
,∫ x

1

b0(v)
exp(

∫ v
1 b1(u)du)

dv = d1

∫ x

1

−18v+9
(v+2)3 dv+d2

∫ x

1

−18v−9
(v+2)3 dv

= d1

(
−−7x2 +8x−1

2(x+2)2

)
+d2

(
−9(x2−1)

2(x+2)2

)
,

whence we obtain Equation (4.3). □

In the proof of following Theorem we shall use the difference operator ∆λ defined
by

∆λF(x) := F(λx)−F(x) (x ∈ R+),

where λ > 0 and F : R+→ R is an arbitrary function. This difference operator was
used first in [6] where was applied to give the general solution of Vajzović equation,
see also [9] and have been also used in [11].

Theorem 4. If the function γ : R+→R is a twice continuously differentiable solu-
tion of Equation (2.9), then it is a constant function.

Proof. Preserve the notations of Proposition 4 and Proposition 5. Since Φ(x) =
δ′(x) for all x ∈ R+ thus by Equation (4.3) we obtain that

δ(x) = d1

∫ x

1

−5u2 +16u+7
18u

du+d2

∫ x

1

−(u−2)2

2u
du+δ(1)

=
d1

36
(−5x2 +32x+14ln(x)−27)+

d2

4
(−x2 +2ln(x)+1)+δ(1)

for all x ∈ R+. Since γ(x) = δ(
√ x

2) for all x ∈ R+ thus we have that

γ(x) =
(
− 5

72
d1−

1
8

d2

)
+

4
√

2
9

d1
√

x

+

(
7
36

d1 +
1
4

d2

)
(ln(x)− ln(2))+

(
−3

4
d1 +

1
2

d2 +δ(1)
) (4.4)
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for all x ∈R+. Define the function γ2 : R+→R by γ2 := ∆2γ. Thus by Equation (4.4)
we have that

γ2(x) =
(
− 5

72
d1−

1
8

d2

)
x+

4
√

2
9

(√
2−1

)
d1
√

x

+

(
7
36

d1 +
1
4

d2

)
ln(2)

= D1x+D2
√

x+D3 (x ∈ R+)

(4.5)

with constants

D1 :=− 5
72

d1−
1
8

d2, D2 :=
4
√

2
9

(√
2−1

)
d1,

D3 :=
(

7
36

d1 +
1
4

d2

)
ln(2).

(4.6)

□

It is easy to see that the function γ2 is satisfies the Equation (2.9) thus we can write
the function γ2 instead of the function γ in this Equation. Thus by simple calculation
we obtain that

D1 = D2

(√
x+
√

y
)√

x+ y−
√

2(x+ y)
(x− y)2

(x,y ∈ R+,x ̸= y)

which shows that D1 = D2 = 0 whence by (4.6) we have that d1 = d2 = 0 whence
by Equation (4.4) we obtain that γ(x) = δ(1) = γ(2) for all x ∈ R+ which was to be
proven.

Now, we can give the twice continuously differentiable solution of Equation (2.7).

Theorem 5. The twice continuously differentiable solution of Equation (2.7) is

G1(x) =C1x+C2ln(x)+D1,

G2(x) =C1x+C2ln(x)+D3,

F1(x) =C1x2 +C2ln(x)+D2,

F2(x) =C1x2 +C2ln(x)+D4

for all x∈R+ where Ci i = 1,2, and D j ∈R j = 1,2,3,4 are arbitrary constants such
that D1 +D2 = D3 +D4.

Proof. The assertion can be easily obtained by Theorem 2, Theorem 3, and The-
orem 4. □

5. ADDITIONAL APPLICATIONS AND CONJECTURES

In this chapter we shell apply the notations of Theorem 2.
In paper [13] was investigated the case when X = F+ where F = F(+, ·) is an

ordered field (the operation · is commutative) the T+ is the set of positive elements
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of the F, x◦ y := x
y+1 for all x,y ∈ F+, Y = Y (+) is a uniquely two-divisible Abelian

group. In this settings the general solution of Equation (2.6) is

G1(x) = l1x+ l2(x+1)+ l3(x)+d1,

G2(x) = l1x+ l2(x+1)− l3(x)+d3,

F1(x) = l1(x(x+1))+ l2(x)− l3

(
x+1

x

)
+d2,

F2(x) = l1(x(x+1))+ l2(x)+ l3

(
x+1

x

)
+d4,

for all x ∈ F+ where li : F+ → Y (i = 1,2,3) are arbitrary logarithmic functions,
di ∈Y (i = 1,2,3,4) are arbitrary constants such that d1 +d2 = d3 +d4. (Concerning
the logarithmic functions see [1], and [17]). This result can not be improved.

In paper [11] was investigated the case when X = F+ where F = F(+, ·) is an
Archimedean ordered field (the operation · is commutative), x ◦ y := x(y+ 1) for all
x,y ∈ F+, Y = Y (+) is a uniquely two-divisible Abelian group. In this settings the
general solution of Equation (2.6) is

G1(x) = a(x)+ l2(x)+ l3(x)+d1,

G2(x) = a(x)+ l2(x)− l3(x)+d3,

F1(x) =−a(x)+ l2

(
x

x+1

)
− l3(x(x+1))+d2,

F2(x) =−a(x)+ l2

(
x

x+1

)
+ l3(x(x+1))+d4,

(5.1)

for all x∈F+ where a : F+→Y is an arbitrary additive function, li : F+→Y (i= 2,3)
are arbitrary logarithmic functions, di ∈ Y (i = 1,2,3,4) are arbitrary constants such
that d1 + d2 = d3 + d4. (Concerning the additive and logarithmic functions see [1],
and [17]). This result could perhaps be improved writing simply ordered field instead
of Archimedean ordered field, that is,

Conjecture 1. If X =F+ where F=F(+, ·) is an ordered field, x◦y := x(y+1) for
all x,y ∈ F+, Y = Y (+) is a uniquely two-divisible Abelian group, then the general
solution of Equation (2.6) is of the form (5.1) for all x ∈ F+ where a : F+→ Y is an
arbitrary additive function, li : F+→Y (i = 2,3) are arbitrary logarithmic functions,
di ∈ Y (i = 1,2,3,4) are arbitrary constants such that d1 +d2 = d3 +d4.

The above two problems have probability background see [18], [2], [13], and [11].
Two pairs of new equations can be derived from the above two equations, the Pex-
ider versions of the second of these equations (which contain the unknown gamma
function) characterize the logarithmic functions see [12].

Finally, we can formulate our Conjecture concerning the main equation of this
paper.
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Conjecture 2. If X =F+ where F= F(+, ·) is an ordered field, x◦y := x(x+y) for
all x,y ∈ F+, Y = Y (+) is a uniquely two-divisible Abelian group, then the general
solution of Equation (2.6) is

G1(x) = a(x)+ l(x)+d1,

G2(x) = a(x)+ l(x)+d3,

F1(x) = a(x2)+ l(x)+d2,

F2(x) = a(x2)+ l(x)+d4

for all x ∈ F+ where a : F+→ Y is an arbitrary additive function, l : F+→ Y is an
arbitrary logarithmic function, di ∈ Y i = 1,2,3,4 are arbitrary constants such that
d1 +d2 = d3 +d4.
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gary
E-mail address: matgt@uni-miskolc.hu

Attila Házy
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